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Abstract  
Land cover mapping is essential for environmental monitoring and evaluating the effects of human 
activities. Recent studies have demonstrated the effective application of particular deep learning models for 
tasks such as wetland mapping. Nonetheless, it is still ambiguous which advanced models developed for 
natural images are most appropriate for remote sensing data. This study focuses on the segmentation of 
agricultural fields using satellite imagery to distinguish between cultivated and non-cultivated areas. We 
employed Sentinel-2 imagery obtained during the summer of 2023 in Ukraine, illustrating the nation's 
varied land cover. The models were trained to differentiate among three principal categories: water, fields, 
and background. 
We chose and optimised five advanced semantic segmentation models, each embodying distinct 
methodological methods derived from U-Net. Upon examination, all models exhibited robust performance, 
with total accuracy spanning from 80% to 89.2%. The highest-performing models were U-Net with Residual 
Blocks and U-Net with Residual Blocks and Batch Normalisation, whereas U-Net with LeakyReLU 
Activation exhibited much quicker inference times. 
The findings suggest that semantic segmentation algorithms are highly effective for efficient land cover 
mapping utilising multispectral satellite images and establish a dependable benchmark for assessing future 
advancements in this domain. 
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1. Introduction 

Land cover (LC) changes play a crucial role in assessing the current state of the environment. Human 
activities or regional climate variations can drive these changes. LC is considered one of the essential 
climate variables [1], making its timely assessment a key application in satellite remote sensing. 
Annually, thematic maps are essential for the purpose of addressing a wide range of environmental 
and land management needs. For medium-resolution mapping (approximately 250 m), the 
measurement uncertainty should be kept below 15%, while for high-resolution mapping (10 30 m), 
it should be kept below 5% [34]. 

Satellite optical imagery is the primary source of information for modern land cover mapping 
techniques. This process is significantly influenced by Landsat data, which is frequently 
supplemented by images from MODIS or SPOT-5 [12]. Additionally, high-resolution imagery and 
digital elevation models (DEMs) are employed as supplementary information sources for land cover 
mapping [14]. A contemporary source of optical imagery is the Copernicus Sentinel-2. It has become 
an additional critical data source due to its five-day revisit interval [13]. 

The Copernicus program [15], which is implemented by the European Space Agency (ESA) with 
the assistance of Sentinel satellites, is an example of an international initiative that actively 
contributes to the provision of unrestricted access to Earth observation (EO) data for a diverse array 
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of commercial and non-
multibillion-euro investment initiative that is designed to provide critical services using satellite data 
that is both extremely accurate and timely. The primary goals of the program are to enhance 
environmental management, mitigate the consequences of climate change, and promote the creation 
of new applications and services, including urban planning support and environmental monitoring. 

The practical application of sophisticated methodologies, such as deep learning, that were 
previously untenable due to the necessity of extensive, representative datasets, is now facilitated by 
the availability of complimentary satellite data for mapping through initiatives such as Copernicus. 
Deep learning has led to significant progress in the fields of computer vision and pattern recognition 
in recent years [16, 17]. The intricate, multilevel architecture of deep learning models is responsible 
for their efficacy, as it enables the extraction of hierarchical feature sets from data and generates 
non-linear functions. Furthermore, the comprehensive learning framework of the system enables the 
concurrent acquisition of features from raw inputs and the forecasting of the objective task, thereby 
eliminating the need for heuristic feature design. This provides an advantage over traditional 
machine learning methods, including support vector machines (SVM) and random forests (RF), which 
operate on a multi-step feature engineering process. This procedure is replaced by a streamlined, 
end-to-end workflow in deep learning [18]. The availability of a vast array of datasets is a critical 
prerequisite for the effective application of deep learning techniques, as it allows the model to 
autonomously derive representative features for the predictive tasks. 

Conventional supervised classification algorithms [19] have been the primary method employed 
by the majority of land cover mapping systems, regardless of the imagery type employed. Support 
vector machines (SVM), decision trees, random forests (RF), and maximum likelihood classifiers 
(MLC) are the most frequently employed classifiers. The development and improvement of 
segmentation models necessitates a substantial investment of time and professional effort in feature 
engineering, the process of acquiring the numerous features necessary for classification. 

The growing need for accurate monitoring and management of agricultural land through satellite 
technologies presents challenges in the processing and analysis of geospatial data  
[26, 27]. To make good use of this kind of data, precise semantic segmentation algorithms must be 
created that can quickly and accurately tell the difference between different types of surfaces. 
Traditional methods often lack sufficient accuracy or demand significant computational resources, 
limiting their application in real-time and over large areas. Integrating deep learning into geospatial 
data analysis holds promise for addressing these issues, but the selection and optimisation of models 
for specific agricultural segmentation tasks remain unresolved [25,28]. The lack of a universal 
approach for choosing a neural network architecture that performs segmentation tasks efficiently 
with minimal computational time highlights the need for further research and adaptation of existing 
deep learning models. 

2. Related Work 

Advances in deep learning methods, notably convolutional neural networks (CNNs), have had a 
substantial influence on computer vision disciplines such as self-driving vehicles, image search 
engines, medical diagnostics, and augmented reality [19]. These innovations are also seeing increased 
use in agriculture and remote sensing. 

Zhu et al. [2] emphasised the unique characteristics of remote sensing imagery, which provide 
significant issues when compared to typical RGB imagery. These problems include the georeferenced 
nature of the data, its multimodal composition, specialised imaging geometries, and interpretation 
complications. The challenge is exacerbated by a lack of adequate ground truth or labelled data for 
training deep learning models. Furthermore, most cutting-edge CNNs are intended for three-channel 
RGB pictures, demanding changes for optimal performance with remote sensing data. 

Despite these constraints, recent research has looked at the use of deep learning in remote sensing 
imaging, focussing on applications such images preprocessing [29], target identification [30], 
classification [9], and semantic feature extraction and scene interpretation [16]. Deep learning 
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approaches for land cover (LC) or land use mapping have mostly focused on optical satellite, aerial, 
and multispectral data because to their similarity to RGB images typically utilised in computer vision 
research. 

One key problem for academics is the lack of consistent, countrywide labelled data that spans 
both geographical and temporal dimensions. The European Union's Common Agricultural Policy 
(CAP) requires each member state to create paid agencies to handle this problem. These organisations 
use the Land Parcel Identification System (LPIS) [4] to gather data on parcel geometry and crop types 
for each farmer. This approach assures that data is collected consistently across nations, but national-
scale ground truth data has been limited for years owing to access restrictions to these statements. 
Since 2019, nations such as France, Catalonia, Estonia, Croatia, Slovenia, Slovakia, and Luxembourg 
have gradually improved public access to these datasets, opening up significant prospects for creative 
agricultural applications within the Earth observation community. 

Existing datasets, such as BigEarthNet [5], are largely concerned with land use/land cover 
categorisation from open data sources. BigEarthNet is one of the first large-scale benchmark 
archives, spanning 10 European nations and 125 Sentinel-2 tiles. Similarly, the Eurosat dataset [6] 
provides multiclass annotations for all 13 Sentinel-2 spectral bands, totalling 27,000 geo-referenced 
and labelled picture segments. Another dataset, So2Sat [7], focusses on metropolitan regions 
throughout the globe utilising Sentinel-1 and Sentinel-2 picture segments, with hand labelling by 
domain professionals. 

However, the time component of satellite picture gathering is often disregarded in most available 
datasets, which prioritise annotated tags above segmentation masks. This restricts their usefulness 
to simple classification tasks and renders them unsuitable for more complicated applications such as 
object identification, picture segmentation, and parcel counting. The absence of the temporal 
component also limits deep learning models' capacity to capture seasonal patterns across different 
land cover classes. 

For the classification of crop types using optical satellite images, a variety of deep learning 
methods have been devised, occasionally surpassing conventional computer vision or machine 
learning methods [8]. For example, [9] uses a hybrid technique of 1-D and 2-D CNNs to categorise 
11 land cover types in Ukraine using Sentinel-2 and Landsat-8 data. Extra data, like area borders and 
statistical data, were added to the model to make the forecasts more accurate. Similarly, by including 
an additional branch for independent pixel-wise categorisation, the FG-Unet architecture [10] 
improves upon the popular U-Net model [11] and allows for more precise polygon borders. 

The potential of hybrid feature selection for semantic crop and weed segmentation was 
established in [23]. This methodology may serve as a basis for creating more precise systems for 
identifying crops and weeds in fields, which is critical for successful agromanagement. Furthermore, 
in [24], three different U-Net topologies were tested for inventorying inland water bodies. The 
findings showed the benefits of attention processes and pre-trained networks in improving 
segmentation accuracy, which might be used to the identification of different agricultural land types. 

Recent studies have significantly advanced semantic segmentation models by introducing 
modifications to the U-Net architecture to enhance feature extraction and accuracy. CM-UNet 
incorporates a Mamba-based decoder with a Channel and Spatial Mamba (CSMamba) block and a 
Multi-Scale Attention Aggregation (MSAA) module, achieving superior segmentation metrics across 
multiple remote sensing datasets [35]. Another approach combines DenseNet with U-Net, dilated 
convolutions, and DeconvNet, leading to an 11.1% increase in Pixel Accuracy and a 13.5% 
improvement in mean Intersection over Union (mIoU) while reducing parameters by 59% compared 
to traditional U-Net models on the Potsdam dataset [36]. 

Attention mechanisms are increasingly employed to capture multi-scale information and enhance 
segmentation accuracy. HAssNet utilizes a spatial attention mechanism for global correlation and 
channel attention to improve task-related channel focus, achieving a 6.7% mIoU improvement over 
prior models on remote sensing data [37]. Additionally, Deep Attention U-Net enhances global 
feature extraction by incorporating channel self-attention, showing a 2.48% improvement in mIoU 
over baseline U-Net models, particularly in handling occlusions [38]. 



4 
 

Hybrid models that integrate CNNs and Transformers have also shown promising results. 
MFTransNet, a CNN-Transformer hybrid, demonstrates efficient segmentation across high-
resolution remote sensing data, balancing accuracy with resource utilization [39]. Similarly, HST-
UNet combines Shunted Transformer embedding with a Multi-Scale Convolutional Attention 
Network (MSCAN), achieving high F1 scores on ISPRS datasets [40]. 

Furthermore, models like AMMUNet introduce Granular Multi-Head Self-Attention (GMSA) and 
Attention Map Merging Mechanism (AMMM) to enhance segmentation precision, achieving mIoU 
scores of 75.48% on Vaihingen and 77.90% on Potsdam datasets, thus showing advantages in handling 
fine-grained details in agricultural and remote sensing contexts [41]. 

These recent studies underscore the critical role of architectural modifications, attention 
mechanisms, and hybrid CNN-Transformer architectures in overcoming challenges like class 
imbalance and limited segmentation precision, paving the way for more robust applications in 
agricultural monitoring and environmental management. 

3. Research Objectives 

The aim of this research is to develop and conduct a comparative analysis of U-Net architecture 
modifications for the task of semantic segmentation of agricultural lands based on satellite imagery. 
The study seeks to identify optimal architectural and training approaches that ensure high 
segmentation accuracy with minimal computational costs, with the goal of improving the efficiency 
of agricultural land monitoring and management. Special attention is given to analysing the impact 
of residual blocks, normalisation methods, and regularisation techniques on overall model 
performance, in order to establish best practices for processing geospatial data in the agricultural 
sector. 

4. Methodology 
 

4.1. Neural network 

The main structure of this work is based on U-Net model [3], which is well known as an encoder-
decoder configuration with skip connections to enable accurate pixel-wise segmentation. The 
encoder has multiple convolutional and pooling layers to obtain spatial information, while the 
decoder restores back original resolution by using upsampling and concatenation with 
corresponding encoder layers for contextillation. 

In order to increase the performance of segmentation, some improvements were made: for better 
flow of at gradients, residual blocks were included, and Batch Normalisation was introduced to 
stabilise training while Dropout  was used in an attempt to reduce overfitting. Activation functions 
ReLU and LeakyReLU were used for adding non-linearity helping the model to learn complex 
patterns. Softmax activation was then used on the output layer to classify the pixels between 
agricultural and non-agricultural classes. 

For segmentation accuracy and visual consistency, we tested for various models trained with 
Adam Optimiser to determine the best architecture for the effective way of supporting agricultural 
field monitoring. 

4.2. Data Source 

In order to accomplish the goals of this study, we used satellite images acquired on June 5, 2023, from 
the Sentinel-2 mission (scene identifier: 
S2A_MSIL2A_20230605T083601_N0509_R064_T36TWS_20230605T125758.SAFE) in the Copernicus 
HUB archive. In order to assess the state of agricultural areas before the disastrous Kakhovka 
Hydroelectric Power Plant, this date was chosen. The chosen images include data from the following 
spectrum bands: 
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• B03 (Blue band, 490 nm): In order to recognise surface water and differentiate it from 
vegetation, this band is crucial since it helps differentiate between water bodies and plants. 

• B04 (Red band, 665 nm): It is vital to analyse plant health and identify regions of stressed 
or unhealthy vegetation using B04 (Red band, 665 nm), which is mostly used for measuring 
chlorophyll levels in plants. 

• B8A (Near-infrared, 865 nm): When measuring plant biomass and health, the near-
infrared band (B8A, 865 nm) is essential. Its sensitivity to plant structure makes it a valuable 
tool for crop productivity estimation and field monitoring in agriculture. 

• B11 (Shortwave infrared, 1610 nm): Soil moisture levels and plant water content may 
be effectively analysed using the B11 (shortwave infrared, 1610 nm) band. As a result, it can 
shed light on irrigation requirements and drought situations by differentiating between dry 
regions, healthy flora, and bare soil. 

For model training, a 2560x2560 pixel area (51.2 thousand m²) was extracted from the larger image, 
allowing for the generation of 400 image fragments, each sized 128x128 pixels (Figure 1). In the Figure 
1 red box indicates the region selected for data collection and model training, featuring a variety of 
land covers such as agricultural fields, water bodies, and urban areas. A manual annotation of the 
data was performed for this image with three classes (Figure 2): agricultural fields (field), water 
bodies (water), and others (other), which includes roads, forests, urban and rural development areas, 
and more. In the figure 2 each image tile was manually annotated into three distinct classes: 
Agricultural fields ( green), Water bodies (blue), and Other (brown). 

 
Figure 1: Study area map.  

4.3. Data preprocessing 

In order to guarantee the efficacy of the models' learning process, the following comprehensive data 
preprocessing protocol was implemented: 
Image Fragmentation 

A total of 400 individual image tiles were produced by dividing the selected region into smaller 
fragments, each of which measured 128x128 pixels. This fragmentation process enabled the model to 
concentrate on smaller areas, thereby improving its segmentation performance and capturing 
detailed features across a variety of land cover types. The model was able to more effectively 
understand the subtleties of various surface characteristics by dividing the larger image into smaller 
segments. 
Manual Annotation 
Three distinct classifications were carefully annotated onto each of the image tiles (Figure 2): 

• Agricultural fields (field): Areas that are cultivated for the purpose of agriculture. 
• Water bodies (water): This category encompasses rivers, lakes, and other substantial bodies 

of water. 
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• Other (other): Including urban areas, forests, roads, and non-agricultural land cover. 
This manual annotation procedure guaranteed the production of precise, high-quality labels, which 
are essential for the training of deep learning models in semantic segmentation. 

Pixel Intensity Normalisation 
The pixel intensity values of the images were normalised to the range [0, 1] to aid in the quicker 

and more stable convergence required for model training. This normalisation step allowed the model 
to process the input data more effectively. To guarantee that the models were trained solely on the 
original data, no additional data augmentation techniques were implemented, as the dataset was a 
sufficient size. 

 

 
Figure 2. Data annotation based on satellite images. 

4.4. Evaluation methods and analytical tools 

Evaluation Methods: 
The primary strategy for evaluating segmentation results was based on the confusion matrix and 

visual analysis, aimed at assessing the quality of the extracted agricultural fields. Future work will 
expand the evaluation tools by incorporating additional metrics, allowing for a more comprehensive 
analysis of the models' performance. 

Analytical Tools and Software: 
In this study, Python was utilised as the foundation for developing the deep learning models. The 

TensorFlow and Keras libraries were employed to build and train the neural networks, while NumPy 
and Rasterio were used for satellite image processing, providing powerful tools for data 
manipulation. GeoPandas were crucial for handling geospatial data and facilitating efficient spatial 
analysis. Manual data annotation for training the models was performed using the GroundWork tool, 
which ensured high-quality training datasets and accurate identification of target objects in the 
images. 

This methodology reflects a comprehensive approach to analysing agricultural lands using 
satellite imagery and deep learning technologies. It provides a robust foundation for assessing the 
potential of various models in segmentation tasks. 

5. Experiments  

In this study, five different variations of the U-Net architecture were designed and implemented, 
each with specific enhancements aimed at improving segmentation accuracy and generalisation: 

Model #1: U-Net with ReLU Activation (3x3 Kernel => 2x2 Max Pooling) 

The spatial resolution of the input image (128x128 pixels with 4 channels) is gradually reduced by 
three encoder blocks in this model (Figure 3), which employ max-pooling and convolutional 
operations. The encoder's filter count increases from 32 to 128. The "Bottleneck" layer, located at the 
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core of the network, employs 128 filters to process the data, deriving more detailed features and 
preserving critical information. 

The decoder is intended to recapture the spatial resolution to its original scale by integrating 
feature maps from corresponding encoder blocks and performing upsampling and concatenation 
operations. This allows for the preservation of spatial context. For each decoding phase, 
UpSampling2D is implemented, followed by a convolutional layer that employs ReLU activation. This 
enables the network to more precisely reconstruct the segmentation map. 

Each pixel is classified into one of the two target classes: agricultural fields and non-agricultural 
areas, using softmax activation in the output layer. This architecture serves as a benchmark for 
assessing the effects of more sophisticated enhancements, offering a simple U-Net design that 
requires no further modifications. 

 

Figure 3: Architecture of Model #1 (U-Net with ReLU Activation, 3x3 Kernel => 2x2 Max Pooling). 

Model #2: U-Net with LeakyReLU Activation and Batch Normalisation (3x3 
Kernel => 2x2 Max Pooling) 

The spatial resolution of the input image (128x128 pixels) is reduced by four encoder blocks, each 
of which employs a combination of 3x3 convolutions and 2x2 max-pooling operations, as seen in 
Figure 4. At each block, the number of filters increases, going from 64 to 512, allowing the model to 
capture complicated patterns at numerous scales. 

Positioned at the centre, the bottleneck layer employs 1024 filters to extract deep semantic 
features and efficiently encode contextual information. Each convolutional layer is succeeded by 
Batch Normalisation, which normalises activations to stabilise and expedite the training process. 
The decoder component of the network reconstructs the spatial resolution while maintaining the 
context from the encoder by concatenating and upsampling the corresponding encoder feature maps. 
In order to incorporate non-linearity, a LeakyReLU-activated convolutional layer is included after 
each upsampling step. In an effort to guarantee semantic segmentation that is both precise and 
seamless, the output layer implements Softmax to generate pixel-wise classification into two classes.  

Model #3: U-Net with Residual Blocks 

The design of Model #3 (Figure 5) integrates the traditional U-Net framework with residual blocks, 
so augmenting the model's efficacy by facilitating improved gradient flow during training. The model 
starts with an input layer that handles pictures of 128x128 pixels and including 4 channels. 
Subsequently, there are four encoder blocks with residual connections: the initial block has 32 filters, 
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while the subsequent block comprises 64 filters. Each block has two convolutional layers utilising 
ReLU activation, succeeded by max-pooling, which diminishes the picture dimensions by fifty 
percent. The core or "bottleneck" layer analyses data using 128 filters at a resolution of 32x32 pixels. 
 
 

 
Figure 4: Architecture of Model #2 (U-Net with LeakyReLU Activation and Batch Normalisation, 
3x3 Kernel => 2x2 Max Pooling). 

The decoder has two blocks that sequentially restore the picture to its original dimensions: the 
first block, utilising 64 filters, upsamples the image to 64x64 pixels, while the second block, 
employing 32 filters, restores the image to 128x128 pixels. Both decoder blocks include upsampling, 
concatenation with corresponding encoder blocks, and two convolutional procedures using ReLU 
activation and residual connections. The output layer utilises softmax to categorise each pixel into 
one of two distinct groups, hence facilitating successful semantic segmentation of the image. 

 

 
Figure 5: Architecture of Model #3 (U-Net with Residual Blocks). 
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Model #4: U-Net with Residual Blocks, Batch Normalisation, and Dropout 

By adding Batch Normalisation and Dropout layers to each residual block, Model #4's architecture 
(Figure 7) builds on the design concepts of Model #2 and emphasises enhanced efficiency. By 
normalising the input data prior to activation, batch normalisation helps to reduce the internal 
covariate shift issue and increases training speed and stability overall. Dropout, when applied at a 
rate of 0.5, reduces overfitting by arbitrarily turning off neurones during training, which enhances 
generalisation by gaining more robust patterns of data. With these improvements, Model #3 is more 
robust against overfitting problems and performs better in semantic segmentation tasks, especially 
on complicated and varied datasets. 

 
Figure 6: Architecture of Model #4 (U-Net with Residual Blocks, Batch Normalisation, and 
Dropout). 

Model #5: U-Net with Residual Blocks, Batch Normalisation, Dropout, and 
LeakyReLU 

The architecture of Model #5 is intended to capitalise on the advantages of a U-Net style (residual 
connections) in conjunction with regularisation techniques, resulting in superior segmentation 
accuracy. It employs four channels to compute 128×128-pixel images. The encoder is constructed by 
layering three residual blocks, each of which contains two 3x3 convolutional layers with Batch 
Normalisation and LeakyReLU activation. In this case, the number of filters is doubled to 64 and a 
MaxPooling2D is added to reduce spatial dimensions. The total number of filters is 128, which is then 
used with a MaxPooling2D. 

The decoder employs two residual blocks for upsampling (residual_upconv_before and 
residual_upconv_after) in order to align with the encoder structure. This is followed by feature 
concatenation with the corresponding encoder block. The fourth block employs UpSampling2D, 
concatenates the second encoder block, and employs two 64-layer convolutional filters. The fifth 
block then collapses with the first encoder block and applies 32 filters to restore the image 
dimensions to their original size. 

In order to prevent overfitting, dropout layers (with a 0.5 rate) are incorporated after each residual 
block. In order to classify each pixel into an agricultural field or non-agricultural area, the final result 
is predicted after an 11-layer convolution with softmax activation in the final output layer. This 
model is capable of effectively capturing more complex patterns while assuring training stability by 
utilising leaky ReLU activation, Batch Normalisation, Dropout, and residual blocks. 
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Figure 7: Architecture of Model #5 (U-Net with Residual Blocks, Batch Normalisation, Dropout, 
and LeakyReLU). 

6. Results and discussion 

The performance of the five U-Net model variations, each with distinct architectural enhancements, 
was evaluated based on multiple metrics, including validation accuracy, Intersection over Union 
(IoU), F1 Score, approximate training time, and model stability notes. These metrics provide insights 

capability. Table 1 summarizes these metrics for each model, highlighting the strengths and trade-
offs of different architectural approaches. 

 
Table 1: Performance Comparison of U-Net Model Variations 

Model Accuracy IoU F1 Score 
Approx. 
Training 

Time (hours) 

Model 
Stability 

Notes 
Model #1: U-Net with ReLU Activation 79.67% 65.15% 78.90% 0.06 Stable 
Model #2: U-Net with LeakyReLU and 
Batch Normalization 89.23% 82.79% 90.58% 0.43 Overfitting 

Model #3: U-Net with Residual Blocks 80.59% 80.13% 88.97% 0.06 Stable 
Model #4: U-Net with Residual Blocks, 
Batch Normalization, and Dropout 87.65% 78.39% 87.89% 0.08 Overfitting 

Model #5: U-Net with Residual Blocks, 
Batch Normalization, Dropout, and 
LeakyReLU 

86.73% 78.38% 87.88% 0.08 Stable 

 

Model #1 

Accuracy: The model showed a significant improvement in accuracy over the initial epochs, 
increasing from 70.06% in the first epoch to 79.67 and IoU 65.15% on the validation set by the tenth 
epoch. The model demonstrates stability throughout training, with a relatively high F1 Score (78.90%) 
and minimal overfitting.. This steady progression suggests that the model effectively learned basic 
feature representations but plateaued early, indicating a need for additional enhancements. 
Visual Analysis:  
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The model demonstrates strong performance in segmenting large water bodies from satellite 
imagery (Fig.8), successfully delineating water resources from other landscape elements. However, 
in more complex regions with mixed terrain, the model exhibited occasional misclassifications, 
especially around areas with similar spectral characteristics. These errors indicate that while the 
model is capable of general segmentation tasks, it struggles with fine-grained differentiation, 
suggesting the need for further refinement. 

 
Figure 8: Results from Model #1: Original image;  Predicted mask; Ground truth mask. 

Model #2 

Accuracy: Improved validation accuracy from 81.24% to 89.23% and achieving the highes IoU 82.79% 
among the models, along with an F1 Score of 90.58% 
Visual Analysis: 

 Agricultural Fields: The model successfully segments fields but makes errors when terrain 
and textures of fields resemble other natural elements. 

 Water Bodies: The model accurately identifies water bodies, showing clear boundaries 
around water features. 

 Urban Areas: The model occasionally misclassifies buildings and other structures as fields, 
indicating a need for further refinement to improve class distinction. 

Model #3 

Accuracy: The highest accuracy on the training data was achieved by the final epoch, reaching 
approximately 80.59%. with an IoU of 80.13% and an F1 Score of 88.97%.  
With a quick training time (0.06 hours), Model #3 offers a balance between accuracy and stability, 
making it suitable for applications where both are valued. 
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Figure 9: Results from Model #2: Original image;  Predicted mask; Ground truth mask. 

 
Precision: While the model demonstrates the ability to distinguish between classes, there is 
significant room for improvement. A high number of false positives indicate that the model often 
misclassifies non-cultivated areas as cultivated. Conversely, the number of false negatives, although 
lower, suggests that the model tends to miss some cultivated areas. 
Visual Analysis: 

With the inclusion of residual blocks, the model exhibits improved segmentation capabilities. 
However, certain regions still lack precision compared to the ground truth masks, indicating the 
need for further refinement. This analysis shows that Model #2 is capable of identifying segmented 
zones, but errors persist, particularly in classifying non-agricultural areas. To improve performance, 
deeper architectures or advanced training methods, such as transfer learning or additional data 
augmentation, may be required. 

Model #4 

Accuracy: The highest training accuracy was achieved in the final epoch, reaching approximately 
87.65% and an IoU of 78.39%, with an F1 Score of 87.89%. 
Precision: Shows improvements in class recognition compared to previous models. However, a high 
number of false positives and false negatives indicate the need for further model optimization.  
Visual Analysis: 
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Figure 10: Results from Model #3: Original image;  Predicted mask; Ground truth mask. 
 

Predicted masks show that the model can detect objects, but there are inaccuracies in processing 
edges and finer details, especially in complex image regions. Model #3, which employs residual blocks 
with Batch Normalisation and Dropout, demonstrates better overall classification accuracy compared 
to previous iterations. The inclusion of Dropout helps prevent overfitting, and Batch Normalisation 
stabilizes and accelerates the training process. However, the high number of false positives and false 
negatives suggests that further improvements are required, particularly in boundary detection. Based 
on the visual analysis of the predicted masks, the model requires enhanced segmentation accuracy 
to achieve clearer and more precise object detection, with minimized classification errors. 

Model #5 

Accuracy: The model achieved a peak training accuracy of 86.73% with an IoU of 78.38% and an F1 
Score of 87.88% in one of the final epochs.. While this indicates reasonable performance, the model 
showed variability across epochs, suggesting potential overfitting. 
Precision: The model demonstrates adequate classification capability, but there is significant room 
for improvement, particularly in reducing false positive predictions. The model tends to overestimate 
the presence of agricultural fields, which affects overall precision. 
Visual Analysis:  

The visual assessment of predicted segmentation masks indicates that the model effectively 
identifies large objects, such as extensive agricultural fields, but struggles with smaller and more 
detailed objects, resulting in misclassification. This limitation is particularly evident in regions with 
complex textures or mixed land cover. Despite employing residual blocks and Dropout, the model 
still produces inconsistencies along object boundaries, leading to misinterpretation of finer details. 
This suggests that further refinement is necessary, such as through hyperparameter tuning, 
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additional data augmentation techniques, or integrating advanced learning strategies like transfer 
learning. 

 
Figure 11. Results from Model #4: Original image;  Predicted mask; Ground truth mask 

 
Figure 12: Results from Model #5: Original image;  Predicted mask; Ground truth mask. 
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6.1. Discussion 

The assessment of the five U-Net models revealed discrepancies in segmentation efficacy based on 
the architectural alterations used. Although residual blocks and Batch Normalisation enhanced 
training stability and mitigated gradient problems, the models had difficulties in attaining high 
accuracy in intricate areas, especially when textures were analogous across classes. 

Models #2 and #3 saw improved feature propagation due to residual connections; nonetheless, the 
elevated incidence of false positives in uncultivated regions indicates that managing spatial context 
continues to pose a difficulty. Model #4 attained the best overall accuracy; yet, boundary 
misclassifications remained, highlighting the need for more sophisticated techniques to enhance 
edge detection and fine-grained segmentation. 

Model #5, including all changes, demonstrated significant training robustness but inadequately 
captured tiny and intricate objects. This indicates a more extensive constraint in the models' capacity 
to manage complex spatial patterns and border areas, despite gradual architectural enhancements. 

The findings indicate that future endeavours should prioritise the integration of sophisticated 
approaches such as attention mechanisms, which are more effective in capturing spatial 
relationships. Recent research indicates that attention-based models significantly enhance 
segmentation performance by enabling the model to concentrate on pertinent characteristics while 
disregarding extraneous ones [32]. Furthermore, hybrid architectures that combine CNNs with 
transformer-based models for enhanced contextual comprehension are becoming more common in 
the domain [30]. 

Investigating multi-scale feature extraction and using temporal information from satellite time 
series may improve the models' capacity to distinguish between classes with greater precision. 
Kussul et al. [31] showed that the use of temporal data significantly enhanced land cover 
categorisation accuracy in dynamic conditions. 

Furthermore, the integration of generative adversarial networks (GANs) for data augmentation 
has shown potential in augmenting model resilience to overfitting and boosting generalisation 
capacities [33]. This may be especially advantageous in agricultural contexts where labelled data is 
often limited. 

Although these U-Net versions provide a robust basis for agricultural land segmentation, more 
research is required to create more advanced models capable of addressing intricate segmentation 
challenges and enhancing practical applicability. 

7. Conclusions 

This research assessed five variants of U-Net architectures for the semantic segmentation of 
agricultural landscapes using high-resolution satellite images. The models included existing 
architectural improvements, including residual blocks, Batch Normalisation, and Dropout, to tackle 
issues associated with various agricultural landscapes. Despite these alterations enhancing training 
stability and segmentation performance, persistent limits across all models underscore the need for 
more refinement and the investigation of more sophisticated approaches. 

U-Net with Residual Blocks, Batch Normalisation, and Dropout attained the best accuracy of 
87.65%. The incorporation of Dropout markedly minimised overfitting, but Batch Normalisation 
enhanced stability and expedited training. Nonetheless, false positives and false negatives, especially 
in areas with unclear borders, continued to pose a concern. Incorporating multi-scale feature 
extraction or hierarchical network topologies may enhance the model's capacity to manage 
complicated regions. The examination across all models identified a persistent problem in precisely 
segmenting intricate borders and differentiating between classes with similar textures. Although the 
models shown significant promise for extensive segmentation tasks, their limitations suggest that 
more study is necessary to attain enhanced accuracy and resilience. Future research may concentrate 
on a more comprehensive investigation of hyperparameter optimisation, the incorporation of 
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attention processes, and the use of multi-temporal or multi-spectral data to enhance model flexibility 
and segmentation efficacy. 

Furthermore, integrating supplementary assessment measures, like Intersection over Union (IoU), 
F1-score, and Precision-Recall curves, may provide a more thorough comprehension of model 
performance. Considering that accuracy alone may not encompass the intricacies of segmentation 
tasks, particularly with unbalanced class distributions, using these measures would provide more 
profound insights into the advantages and disadvantages of each model. 

In conclusion, although the U-Net variations evaluated in this study demonstrate encouraging 
outcomes for agricultural land segmentation, future endeavours should prioritise the incorporation 
of more complex architectural elements, the exploration of advanced loss functions, and the 
utilisation of multi-modal data to enhance overall efficacy and relevance to practical land monitoring 
contexts. This study establishes a significant basis for creating more efficient and dependable 
instruments for agricultural land management, enhancing sustainable farming practices, and 
optimising land resource utilisation. 
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