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Abstract 
In this article, an analysis of optimization methods, in particular, first-order methods, which are actively 
used to minimize loss functions in various problems, is presented. Optimization is a key component in 
both business and research, particularly in machine learning, where it plays a critical role in training 
models and improving their performance. The main focus was on gradient descent and its modifications, 
such as Momentum, Heavy Ball, and Nesterov. 

First-order methods, such as Standard Gradient Descent, are effective due to their simplicity of 
implementation, but can suffer from oscillation and slow convergence. Modifications, such as Momentum, 
Heavy Ball, and Nesterov, can in some cases significantly improve the optimization process. 

A review of the recent publications has confirmed the importance of using these methods to solve 
applied problems requiring high accuracy and efficiency. Comparison of gradient descent modifications 
showed that each method has its own characteristics, and the choice of the optimal approach depends on 
the specifics of the case. In particular, the use of methods such as Nesterov Accelerated. 

Gradient can significantly reduce the training time in real-world conditions. 
In the practical part of this work, several optimization methods were tested on benchmark functions, 
including Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale. The methods implemented included 
Standard Gradient Descent, Momentum, Heavy Ball, and Nesterov. Applying the Analytic Hierarchy 
Process enabled a thorough evaluation of each method based on key criteria: the number of iterations, 
average time per iteration, total execution time, and the function value at the final iteration. This 
structured approach allowed for a clearer, more precise comparison, aiding in the selection of the most 
effective method for various optimization challenges. According to the experimental results, the Heavy 
Ball method demonstrated the best results on most functions, while the Standard Gradient Descent and 
other methods showed mixed results, depending on the properties of the functions.  
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1. Introduction 

Optimization is an important aspect in many fields, ranging from economics and engineering to 
bioinformatics and artificial intelligence [1]. It allows to find the best solutions for complex 
problems by minimizing or maximizing a certain function depending on the task at hand. In the 
real world, the optimization process is used to find the most efficient ways to use resources, 
improve technological processes, and solve optimal management problems [2]. Optimization plays 
a particularly important role in machine learning, where it helps train models based on large 
amounts of data. In the context of machine learning, optimization plays a key role in tuning the 
parameters of models such as neural networks, regression models, support vector machines 
(SVMs), etc. These models are used for forecasting, classification, decision making, etc. [3]. For 
example, neural networks can be used to solve problems related to IT projects [4]. 
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One of the key optimization tools in machine learning is gradient descent methods, which are 
used to minimize loss functions. They allow quick and efficient training of machine learning 
models by gradually reducing the error based on the calculation of gradients. Due to their 
simplicity and efficiency, gradient descent methods have become the basis of many modern 
optimization algorithms. However, for more complex or non-uniform loss functions, standard 
gradient descent may not be fast enough or stable enough. 

In this paper, several modifications of gradient descent, including Momentum, Heavy Ball, and 
Nesterov, are reviewed and compared. These methods offer different approaches to speeding up 
the optimization process and increasing its resistance to local minima. The main focus will be on 
comparing their effectiveness in terms of the number of iterations, time to reach the minimum, 
average time per iteration, and accuracy of the result. 

2. Using optimization in machine learning 

Machine learning is a vast field of study that includes data analysis and model building techniques 
used to solve various problems, including time series forecasting [5]. Optimization in machine 
learning is a key element that determines the efficiency and accuracy of models. The process of 
training machine learning models is to find parameters that minimize the loss function, a 
mathematical representation of the errors between predicted and actual values. The goal of 
optimization is to find the model parameters that provide the best results on new, unknown data 
[6].  

In most machine learning tasks, the goal is to minimize the loss function that represents the 
model error on the training data. To achieve this, various optimization methods are used to 
gradually adjust the model parameters to reduce the error. One of the most common optimization 
methods in machine learning is gradient descent and its modifications. Gradient descent uses the 
derivative of the loss function to determine the direction in which the parameters should be 
adjusted to reduce the value of the function. Classical gradient descent, as well as its advanced 
versions, such as Momentum, are among the tools used to optimize neural networks and many 
other models. During optimization, the choice of hyperparameters, such as learning rate, number 
of iterations, and other parameters that affect the speed and stability of the learning process, plays 
an important role. Automated methods, such as grid search, help to automate this process. 

Optimization challenges in machine learning: 
• High dimensionality of the parameter space. In complex models, such as deep neural 

networks, the number of parameters can reach millions or even billions. Optimization in 
such a large space is computationally challenging, and therefore first-order methods are the 
most appropriate due to their efficiency. 

• The presence of local minima. In nonlinear models, local minima are often present, which 
can prevent the global minimum of the loss function from being reached. Gradient descent 
modifications can help solve this problem. 

• Convergence speed. Optimization can be time-consuming for large models and data. 
Therefore, optimizers that use acceleration, such as Nesterov Accelerated Gradient, can 
significantly reduce model training time. 

Thus, optimization is a fundamental component of machine learning that determines the 
success of a model in solving real-world problems. Effective use of optimization methods allows to 
create models capable of finding complex patterns in data and making accurate predictions. 

3. Analysis of recent research and publications 

This work [7] provides an overview of various gradient descent-based optimization algorithms and 
explains their strengths and weaknesses. The author sought to provide practical intuitions for 
understanding the behavior of these algorithms so that the user could apply them more effectively. 
The article discusses three main variants of gradient descent, of which the most popular is the 
mini-batch gradient descent method. The author also analyzes in detail the most common 
algorithms for optimizing stochastic gradient descent, including Momentum, accelerated Nesterov 
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gradient, and other methods, including adaptive ones. In addition, various algorithms for 
optimizing asynchronous SGD are investigated, as well as additional improvement strategies such 
as data shuffling, curriculum learning, batch normalization, and early stopping. The main 
conclusion of the article is that various variants and modifications of gradient descent can be 
adapted for certain machine learning tasks depending on the specifics of the data and model 
architecture. This review is useful for our article, as our paper also compares different 
modifications of gradient descent, including Momentum and Nesterov. The importance of choosing 
the right optimization strategy for a particular task is emphasized, which resonates with our 
analysis of the effectiveness of these methods in different settings. 

This [8] article is devoted to improving the method of gradient descent with momentum, which 
is widely used to minimize loss functions in machine learning. The authors consider the method 
with the so-called Nesterov acceleration, where the gradient is calculated not at the current 
position in the parameter space, but at the expected position after one step. A new modification of 

controlled by a new hyperparameter. The results show that the super-acceleration of the moment 
method is useful not only for the idealized problem, but also for the MNIST classification task using 
neural networks. An important conclusion is that this modification of the gradient descent with 
moment improves the convergence speed and efficiency of minimizing loss functions, which is 
especially relevant for large models in machine learning. In the context of our paper, this approach 
is relevant because our analysis also includes modifications of gradient descent, such as the 
momentum and Nesterov acceleration methods. The proposal to use the gradient from positions 
several steps ahead may provide additional advantages over standard methods, making this 
approach relevant to our study of optimization methods. 

Work [9] is devoted to the use of the heavy ball moment to accelerate gradient descent in 
optimization problems. The authors first explain the concept of pathological curvature arising in 
different regions of a function and give an overview of standard gradient descent. They 
demonstrate the problems associated with applying gradient descent to the function given as an 
example. The main idea is that without a moment, the gradient descent may converge too slowly 
due to the characteristics of the function. To solve this problem, the moment is used to adjust the 
current step in the direction of the previous one, speeding up the convergence process. Using the 
same example, the author shows that using the moment improves the learning process and 
converges to the minimum much faster. This article is important for our topic because it 
demonstrates the heavy ball method, which is also analyzed in our study. 

Paper [10] presents a new optimization method based on control theory called Controlled 
Gradient Descent (CGD). This approach is aimed at overcoming the shortcomings of optimization 
algorithms, in particular, the problems associated with the choice of an appropriate geometric 
structure. The effectiveness of CGD is demonstrated using various test functions, such as the 
Rosenbrock benchmark function, as well as a non-planar objective function and a semi-convex 
objective function, which are often encountered in machine learning problems. This approach is 
suitable for solving large-scale problems and shows promise for further development of 
optimization methods. The Rosenbrock function, which will also be used in our practical part of the 
paper, is an important tool for demonstrating the effectiveness of the method. 

Paper [11] is devoted to the use of stochastic gradient descent with momentum (SGDM) for 
training deep neural networks (DNNs) and recurrent neural networks (RNNs), which was 
previously considered a difficult task due to problems with optimizing such models. The authors 
show that with proper initialization and careful use of parameters, both DNNs and RNNs can be 
trained successfully, achieving results that were previously only possible with complex second-
order methods such as Hessian-Free (HF). An important aspect of the study is that improperly 
initialized networks cannot be trained effectively using momentum, and that the absence or poor 
tuning of momentum significantly reduces performance. The researchers also proved that a well-
tuned momentum can successfully solve problems in deep and recurrent network training tasks 
that previously required the use of second-order methods. This is directly related to our topic, as 
our work also considers various modifications of gradient descent, including moment and Nesterov 
methods. The article emphasizes that even first-order methods, such as SGD with moment, can 
achieve optimization performance similar to second-order methods, which is especially important 



126 
 

for training complex models. This study confirms the importance of careful tuning of the moment 
parameters, emphasizing the benefits of the moment to speed up convergence and improve 
optimization quality. 

Article [12] is devoted to the use of artificial intelligence (AI) and transfer learning techniques 
to automate e-waste sorting in smart cities. The authors emphasize the importance of digitalization 
in the context of the circular economy and consider automated e-waste processing as one of the 
key steps towards sustainable development. The study uses the AlexNet model with the transfer 
learning technique. Particular attention is paid to tuning the gradient descent optimizer and 
selecting the learning rate, which is directly related to our topic, since various modifications of 
gradient descent are also analyzed. The results show that using SGDM with a properly tuned 
learning rate yields an accuracy of almost 98%, which emphasizes the effectiveness of this 
approach. The paper also addresses overfitting issues and applies data augmentation techniques to 
improve model generalization, which is also useful for our study. This study demonstrates that the 
use of optimization algorithms such as gradient descent can improve the efficiency and accuracy of 
processing systems, contributing to the development of circular smart cities. 

In this article [13], a new method of accelerated gradient descent is proposed that combines 
Taylor expansion and conjugate direction with the Nesterov accelerated gradient method. The goal 
was to increase the speed of convergence of optimization processes on the example of optimizing 
the thickness of an oil film to minimize the friction coefficient on a textured surface. Nesterov 
method is known for its faster convergence than standard first-order methods, but the authors 
improved it by including additional terms through the Taylor expansion, which allows for a more 
accurate approximation of the solution. The use of conjugate directions makes the method more 
efficient for large-scale problems, where it has advantages over the gradient descent method and is 
less memory intensive than Newton's method. The results of numerical experiments conducted 
using the finite element method in FreeFEM++ show that the proposed method has faster 
convergence than the Nesterov method and is capable of finding deeper solutions. Moreover, the 
method is easy to implement and suitable for large-scale continuous optimization problems. The 
useful conclusions relate to the improvement of gradient descent methods, in particular the 
Nesterov method. The proposed method demonstrates that a combination of techniques, such as 
Taylor decomposition and conjugate directions, can significantly improve the convergence rate and 
efficiency of optimization algorithms. This is directly related to our topic, as our paper also 
discusses accelerated gradient descent methods and their modifications, analyzing their 
effectiveness for complex optimization problems. The methods considered in this paper, such as the 
Nesterov method, are relevant for large and complex optimization problems, as they provide faster 
convergence. This approach can be particularly useful in our study to compare gradient descent 
modifications used in complex machine learning systems. 

4. Standard Gradient Descent 

Standard gradient descent is one of the simplest and most common optimization methods. Its basic 
idea is to gradually update the model parameters based on the gradient of the loss function. The 
gradient indicates the direction in which the value of the loss function decreases the fastest. The 
goal is to find the minimum of the function by adjusting the model parameters in this direction. 

The main stages of Standard Gradient Descent: 
1. Gradient calculation. At each step of the method, the gradient of the loss function is 

calculated for all model parameters. The gradient is a vector of partial derivatives of the loss 
function for each parameter, which indicates the direction of the largest increase in the 
function. 

2. Parameter update. After calculating the gradient, the model parameters are updated 
according to the formula [14]: 

𝜃𝑛𝑒𝑤  =  𝜃𝑜𝑙𝑑  −  𝛼 ∗  𝛻𝐽(𝜃),       (1) 
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where θ  are the parameters of the model, α  is the learning rate, and ∇J(θ)  is the gradient of 
the loss function J(θ). 

3. Learning rate. This is a key parameter of the method. If the step is too small, the 
optimization process will be too slow, and if it is too 

 
4. Iterations. The process of updating the parameters is repeated many times until a stop is 

reached (by convergence criteria or after a specified number of iterations). 
 

Advantages of Standard Gradient Descent: 
• Easy to implement. Standard Gradient Descent is easy to implement because for each 

iteration only need to calculate the gradient and update the model parameters. 
• Efficiency for smooth functions. If the loss function is smooth and convex, the method can 

efficiently find the global minimum. 
Disadvantages of Standard Gradient Descent: 
• Problems with the choice of learning rate. An incorrect choice of learning rate can lead to 

very slow convergence or, conversely, to divergence. 
• Delay due to computation. Standard Gradient Descent requires calculating the gradient on 

all data at each step, which can be slow when working with large datasets. 
• Oscillations in areas of saddle points. In areas where the gradient is very small or varies 

without reaching it effectively. 
 

In the following parts of the article, look at the modifications of the gradient descent, such as 
Momentum, Heavy Ball and Nesterov, which were developed to overcome some of the 
shortcomings of the Standard Gradient Descent. 

5. Standard Gradient Descent 

The Momentum gradient descent method is an improved version of the Standard Gradient Descent 
method that helps speed up convergence and avoid problems associated with oscillations in the 

parameter update - the accumulated effect of previous gradients. This allows to maintain the 
direction of movement even if the gradients change slightly or oscillate. 

In classical gradient descent, each update of the model parameters depends only on the current 
gradient. In the Momentum method, inertia is added, which is accumulated based on previous 

gradients and smooth out oscillations when parameters fluctuate around the minimum. 
Momentum algorithm. At each step, the model parameters are updated using the following 

formulas [15]: 
1.  

𝑣𝑡  =  𝛽 ∗  𝑣𝑡− 1  +  (1 −  𝛽)  ∗  𝛻𝐽(𝜃),    (2) 
 
where vt  is the velocity at iteration t, β  is the coefficient of inertia, ∇J(θ)  is the gradient 
of the loss function at the current iteration. 

 
2. After that, the model parameters are updated to reflect the velocity: 

 
𝜃𝑡 + 1  = 𝜃𝑡  −  𝛼 ∗  𝑣𝑡 ,     (3) 

 
where θt  are the current parameters of the model, α  is the learning rate, vt  is the 
velocity used to update the parameters. 
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Advantages of Momentum: 
• Accelerated convergence. The Momentum method allows to quickly approach the 

minimum in convex problems, especially in gentle sections of the function. Momentum 
accumulation allows not to slow down the movement in the direction where the gradient 
remains unchanged. 

• Reducing oscillations. One of the key problems with Standard Gradient Descent is the 
oscillation of parameters in directions where gradients often change sign. Momentum 
allows to smooth out these oscillations by accumulating inertia and avoid stopping at 
saddle points or surfaces with small gradients. 

• Better performance on curved surfaces. On difficult surfaces where the minimum is 
surrounded by deep valleys or hills, Momentum allows to continue in the selected direction 
even when the current gradient is too small or changes too quickly. 

 
Disadvantages of Momentum: 
• Setting up hyperparameters. For the method to work efficiently, it is necessary to properly 

value that is too small may not provide a sufficient acceleration effect. 
• 

become unstable, leading to divergence or oscillations around the minimum. 
 

Gradient descent with momentum is widely used in neural networks and large machine 
learning models. It helps to cope more efficiently with large parameter spaces and complex loss 
functions, making it one of the most popular optimization methods. Momentum is also the basis for 
many modern modifications, such as Nesterov Accelerated Gradient, which further improve 
optimization performance. 

The next step is to consider the Heavy Ball and Nesterov methods, which build on the ideas of 
Momentum, adding their own improvements for even greater optimization efficiency. 

6. Heavy Ball method 

The Heavy Ball method is one of the modifications of the gradient descent, which is based on 
similar principles as Momentum. The main idea is to add inertia to the process of updating 
parameters, which helps to speed up convergence and reduce oscillations. The name of the method 
comes from the physical analogy of moving a heavy ball on an inclined plane, where inertia helps 
to move in the direction of the minimum, overcoming obstacles such as local minima and plateaus. 

In this method, each new step takes into account not only the current gradient, but also the 

the minimum more efficiently. By analogy with physics, this is similar to how a heavy object 
continues to move under the influence of inertia even after the force (gradient) stops acting on it. 

The parameters in the Heavy Ball method are updated using the following formula [16]: 
 

𝑤𝑘 + 1  =  𝑤𝑘  − 𝛼𝑘 ∗ 𝛻𝑓(𝑤𝑘)  +  𝛽𝑘  ∗ (𝑤𝑘 − 𝑤𝑘 − 1),        (4) 
 
where wk + 1 - is the new value (updated parameter), wk - is the current value (current 
parameter), wk − 1 - is the previous value (previous parameter), αk- is the step (learning rate), βk 
-  is the momentum parameter, ∇f(wk) - is the gradient of the function f(w) at point wk. 

 
Advantages of Heavy Ball: 
• Speed up convergence. As in the Momentum method, inertia helps to move faster to the 

minimum, especially on flat parts of the function where Standard Gradient Descent can be 
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slow. The accumulation of speed helps to keep moving even when the gradient becomes 
small. 

• Oscillation smoothing. The Heavy Ball method smoothes out oscillations that can occur in 
conventional gradient descent, especially in cases with high curvature or highly elongated 
minima. 

• 
points where the gradient is very small, Heavy Ball keeps moving forward due to inertia. 

Disadvantages of Heavy Ball: 
• The need for careful tuning. The method requires the correct choice of both the learning 

too slow convergence. 
• 

minimum and start oscillating around it instead of achieving stable convergence. 
• Delays are possible in complex landscapes. Although the method works well on smooth 

functions, in very complex landscapes with numerous local minima, inertia can prevent the 
fastest possible finding of the global minimum. 

The Heavy Ball method is used in problems that require faster convergence than Standard 
Gradient Descent. It is suitable for problems with a large number of parameters, such as neural 
network optimization, especially in situations where the loss function has a complex shape with 
wide minima or plateaus. Heavy Ball is a good option for problems where the speed of convergence 
is important, but the stability of the optimization process cannot be sacrificed. 

In the next part, consider the Nesterov Accelerated Gradient method, which is another 
advanced version of the gradient descent, based on the ideas of momentum and inertia, but adds its 
own features for even greater efficiency. 

7. Heavy Ball method 

The Nesterov Accelerated Gradient (NAG) method is an advanced modification of the gradient 
descent based on the idea of Momentum, but with additional acceleration. The main innovation of 
the method is that it updates the parameters not only based on the current gradient, but also taking 
into account the predicted future state. This allows the model to take into account where it will 
move in advance and adjust the steps more accurately. 

Unlike the classical Momentum method, where the gradient is calculated based on current 
parameters, the Nesterov method calculates the gradient based on the future position. This allows 

 
In a physical analogy, this is similar to how a heavy ball (which moves due to inertia) would not 

adjust its movement. 
Model parameters in Nesterov method can be updated in the following steps [17]: 
 

𝑣𝑡  =  𝛽 ∗  𝑣𝑡 − 1  + (1 −  𝛽)  ∗  𝛻𝑓(𝜃𝑓𝑝),    (5) 
𝜃𝑡 + 1  =  𝜃𝑡  − 𝛼 ∗  𝑣𝑡 ,     (6) 

 
where θt  are the parameters at iteration t, vt  is the velocity at iteration t, α  is the 
learning rate, β  is the momentum term, ∇f(θfp)  is the gradient at the future position. 
Advantages of the Nesterov method: 
• Faster convergence. Since the method uses the predicted position to calculate the gradient, 

it makes better use of the information about the direction of movement, which contributes 
to faster convergence compared to the classic Momentum. 
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• Better adaptation to the function landscape. Nesterov method is more sensitive to changes 

to match the predicted position. This allows it to better cope with complex landscapes with 
numerous local minima. 

• Oscillation reduction. Similar to Momentum, Nesterov method helps reduce oscillations, 
especially in problems with large curvature or saddle points. However, due to the 

effectively. 
• Better stability in complex problems. Nesterov method is less prone to situations where 

stable in complex optimization problems. 
Disadvantages of the Nesterov method: 
• Complicated computation. Although the method provides better convergence, it requires 

additional computations to estimate the predicted position of the parameters. This can 
increase computational complexity, especially when working with large models. 

• Adjusting hyperparameters. As with Momentum, Nesterov method requires careful tuning 

discrepancies or slow convergence. 
The Nesterov Accelerated Gradient method is widely used in neural networks and complex 

machine learning models where loss functions have a rough or complex landscape. It can 
significantly speed up training, especially in problems where classical gradient descent methods 
face difficulties in stability and convergence speed. 

Nesterov method is one of the most popular optimization algorithms due to its ability to 
accelerate learning and efficient use of gradient direction information. It is often used in 
combination with other optimization methods to provide even more efficient and faster model 
training. 

8. Experimental research 

In the practical part of the paper, an experimental comparison of the mentioned optimization 
methods, such as Standard Gradient Descent, Momentum method, Heavy Ball method, and 
Nesterov method, was conducted on various mathematical functions. The main goal of the study 
was to investigate the effectiveness of these methods on complex functions using the Analytic 
Hierarchy Process. The evaluation of effectiveness was conducted based on several key criteria: the 
number of iterations, average time per iteration, total execution time, and the function value at the 
final iteration. The following functions were used for this purpose: 

• Himmelblau's function is a multimodal nonlinear function known for its four global minima 
[18]. 

• The Rosenbrock function is a standard test function for optimization, with a hard-to-find 
global minimum [19]. 

• The Rastrigin function is a strongly oscillating function with many local minima, which is 
used to test the stability of optimization methods [20]. 

• The Ackley function is a nonlinear function with a large number of local minima, which 
poses difficulties for gradient methods [21]. 

• The Beale function is a three-dimensional function that has one global minimum and 
several local ones, representing a problem with high nonlinearity [22]. 

Each of the methods was applied to solving optimization problems. For each combination of 
method and function, the main criteria values were measured, and then the values were normalized 
using the minimax method. If the minimum and maximum values of the criteria coincided (which 
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could happen, for example, if the methods did not reach the minimum), the normalized values were 
set to 1. 

The criteria are as follows: 
• I  the number of iterations, 
• Tavg  the average time per iteration, 
• Ttotal  the total execution time, 
• f(xfinal)  the value of the function at the last iteration. 

 
Perform normalization of values: 
 

𝐼  = (𝐼 − 𝐼𝑚𝑖𝑛) / (𝐼𝑚𝑎𝑥  −  𝐼𝑚𝑖𝑛),                    (7) 
𝑇𝑎𝑣�̂�  = (𝑇𝑎𝑣𝑔 −  𝑇𝑎𝑣𝑔𝑚𝑖𝑛

) / (𝑇𝑎𝑣𝑔𝑚𝑎𝑥
 −  𝑇𝑎𝑣𝑔𝑚𝑖𝑛

),       (8) 
𝑇𝑡𝑜𝑡𝑎�̂�  = (𝑇𝑡𝑜𝑡𝑎𝑙 −  𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛

) / (𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑎𝑥
 −  𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛

),           (9) 
𝑓(𝑥𝑓𝑖𝑛𝑎𝑙)̂  = (𝑓𝑓𝑖𝑛𝑎𝑙 −  𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑖𝑛

) / (𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑎𝑥
 − 𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑖𝑛

).             (10) 
 
In the practical part of the study, the Analytic Hierarchy Process was applied to evaluate and 

compare the effectiveness of different optimization methods: Standard Gradient Descent, 
Momentum method, Heavy Ball method and Nesterov method. This approach has allowed to 
systematically consider optimization methods in terms of several criteria, which contributed to a 
more informed choice of the best method for specific problems. Stages of application of the analytic 
hierarchy process are presented below. 

Building a tree of alternatives: In the context of this stage, a hierarchical structure was formed, 
where at the top level was the overall objective of the study - to evaluate the effectiveness of 
optimization methods. Below it were the key criteria: number of iterations, average time per 
iteration, total execution time and function value at the last iteration. At the lowest level of the tree 
were the alternatives, which are optimization methods. 

Constructing a matrix of pairwise comparisons of criteria: A matrix of pairwise comparisons of 
criteria was created for further analysis. Each criterion was ranked relative to the others in terms 
of its importance for achieving the overall objective. This allowed the priorities of the criteria to be 
fixed and their weight to be taken into account in subsequent calculations. 

 

Figure 1: Example of an alternatives tree 

Construction of matrices of pairwise comparisons of alternatives: Next, a matrix of pairwise 
comparisons of alternatives was constructed for each criterion. In this matrix, the optimization 
methods were evaluated using normalized values of the criteria. This approach allowed each 
method to be compared in the context of all criteria. 
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Table 1 
Table of pairwise comparisons of criteria 

 
Matrix Analysis: In this step, the matrices obtained were analyzed, resulting in a vector of 

criteria weights and vectors of alternative weights for each criterion. 
Determination of weights of alternatives: Based on the weights obtained in the previous step, 

the final weights of the alternatives in terms of achieving the objective were determined. For this 
purpose, a calculation was made using the following formula [23]: 

 
𝑊𝑘  =  ∑𝑖

𝑛(𝑤𝑖 ∗  𝑝𝑖𝑘) ,               (11) 
 
where Wk  total weight of method k, wi  weight of the i-th criterion,  pik  priority of 
method k by criterion i, n - total number of criteria. 
 
Thus, the final weight Wk was calculated for each method, where a higher value indicates a 

better result. After completing the calculations, visualization of the trajectories along which the 
methods moved to the minimum of each function was performed, which allowed to get a visual 
representation of the behavior of different optimization methods in each case. This information is 
presented below in the form of tables and figures. 

Table 2 
Comparison of optimization methods on the Himmelblau function 

 Iterations Avg Iteration 
Time (s) 

Total Time 
(s) 

Functio
n Value Weight 

Standard 
Gradient Descent 1 0 1 1 0.065604 

Momentum 0.443787 0.121821 0.488829 0.16422 0.264477 
Heavy Ball 0 1 0 0 0.528656 
Nesterov 0.579882 0.885641 0.813413 0.28423 0.141263 
 

 

Figure 2: Paths taken by different optimization methods on the Himmelblau function 

 Iterations Avg Iteration 
Time (s) Total Time (s) Function Value 

Iterations 1 3 0.166667 0.125 
Avg Iteration 
Time (s) 0.333333 1 0.142857 0.111111 

Total Time (s) 6 7 1 0.5 
Function Value 8 9 2 1 
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Table 3 
Comparison of optimization methods on the Rosenbrock function 

 

 

Figure 3: Paths taken by different optimization methods on the Rosenbrock function 

Table 4 
Comparison of optimization methods on the Rastrigin function 

 Iterations Avg Iteration 
Time (s) Total Time (s) Function 

Value Weight 

Standard Gradient 
Descent 0 1 0 0 0.498951 

Momentum 0.912088 0 0.765187 1 0.078360 
Heavy Ball 1 0.082426 1 0.018886 0.244642 
Nesterov 0.648352 0.124508 0.521598 0.341416 0.178047 

 

 

Figure 4: Paths taken by different optimization methods on the Rastrigin function 

 Iterations Avg Iteration 
Time (s) 

Total Time 
(s) 

Functio
n Value Weight 

Standard 
Gradient 
Descent 

1 0 0.669161 1 0.138973 

Momentum 0.987661 0.578796 0.935468 0.99283 0.088688 
Heavy Ball 0 0.657975 0 0 0.699239 
Nesterov 0.994011 1 1 0.99358 0.073100 
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Table 5 
Comparison of optimization methods on the Ackley function 

 Iterations Avg Iteration 
Time (s) Total Time (s) Function 

Value Weight 

Standard 
Gradient 
Descent 

1 0 0 0.142444 0.357109 

Momentum 1 0.359053 0.356137 0.03951 0.292598 
Heavy Ball 1 0.319435 0.395656 1 0.112995 
Nesterov 1 1 1 0 0.237298 

 
 

 

Figure 5: The paths taken by different optimization methods on the Ackley function 

Table 6 
Comparison of optimization methods on the Beale function 

 Iterations 
Avg Iteration 

Time (s) Total Time (s) 
Function 

Value Weight 
Standard 
Gradient 
Descent 

1 0 0.676134 1 0.132482 

Momentum 0.997308 0.778712 0.876355 0.99611 0.086562 
Heavy Ball 0 0.679081 0 0 0.707523 
Nesterov 0.997667 1 1 0.996426 0.073433 
 
Based on these tables, several conclusions can be made about the results of the optimization 

methods applied to the Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale functions. Analyze 
each method on different functions. 

• Himmelblau function: The Heavy Ball method has the highest weight of 0.528656, 
indicating its superiority in terms of performance on this function. The Standard Gradient 
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Descent has the lowest weight of 0.065604, showing weaker results compared to the other 
methods. 

 

 

Figure 6: Paths taken by different optimization methods on the Beale function 

• Rosenbrock function: Heavy Ball again shows the best result with the highest weight of 
0.699239, demonstrating its stability and efficiency in achieving optimal values. Other 
methods, such as Momentum 0.085858 and Nesterov 0.073100, show lower weights, 
indicating their less efficient performance on this function. 

• Rastrigin function: Standard Gradient Descent has the highest weight of 0.498951, 
indicating its performance on this function, while Momentum has the lowest weight of 
0.078360, showing weaker performance compared to other methods. 

• Ackley function: On this function, Standard Gradient Descent has the highest weight of 
0.357109, indicating its effectiveness, Momentum and Nesterov also show good results, 
while the Heavy Ball method has the lowest weight of 0.112995, showing relatively weak 
results on this function.  

• Beale function: On this function, the Heavy Ball method showed the highest weight of 
0.707523, demonstrating high performance. The other methods performed less efficiently 
compared to Heavy Ball. 

The analysis showed that the considered optimization methods demonstrate different efficiency 
on various test functions.  

The Heavy Ball method consistently performs well on most functions. Its high accuracy and low 
execution time results in high weight values, which makes it one of the most efficient methods for 
most of the tasks considered. 

Standard gradient descent shows a significant variation in results. On some functions (Rastrigin 
and Ackley functions), this method works very effectively, while on others (e.g., Himmelblau), its 
results are significantly inferior to other methods. 

The Momentum and Nesterov methods show both bad and average results depending on the 
function. In some cases (Rosenbrock, Rastrigin and Beale functions), these methods show low 
weight values, but in other cases (Himmelblau and Ackley functions) they can be more effective. 

efficiency, taking into account several important aspects at the same time: the number of iterations, 
the average time of the iteration, the total time of execution of the method, and the accuracy of 
finding the minimum. This made it possible to clearly assess the advantages and disadvantages of 
each method in different conditions and compare them. 
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In general, the results of the study demonstrate that the choice of optimization method depends 
on the specific task and function. The Heavy Ball method showed the best overall results, while 
other methods, such as Standard Gradient Descent, can be effective in certain conditions. 

9. Conclusions 

In this article, the topic of optimization was analyzed, in particular, first-order methods, which 
are widely used to minimize loss functions in various problems. Optimization is an important 
aspect in both business and research, especially in machine learning, where it plays a key role in 
training models and improving their accuracy. One of the main approaches - gradient descent - 
was considered, as well as its main modifications, including Momentum, Heavy Ball, and Nesterov 
methods. 

First-order methods, such as Standard Gradient Descent, have a number of advantages due to 
their simplicity and efficiency, but often face problems related to, for example, oscillations. 
Advanced modifications, such as Momentum, Heavy Ball, and Nesterov, may be better suited for 
specific tasks. 

In addition, a review of the recent publications on the application of these methods in machine 
learning and other fields was conducted. The review confirmed the importance of using first-order 
optimization methods to solve applied problems requiring high accuracy and speed of model 
training. 

In general, the comparison of different modifications of gradient descent showed that each 
method has its own strengths and weaknesses, and the choice of the optimal approach depends on 
the specific conditions of the problem. The use of more sophisticated methods, such as Nesterov 
Accelerated Gradient, can significantly improve results, reduce learning time, and increase the 
stability of optimization in real-world projects. 

In the practical part of the work, several optimization methods were compared on classical test 
functions, such as Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale. The methods of Standard 
Gradient Descent, Momentum, Heavy Ball, and Nesterov were implemented. Using the Analytic 
Hierarchy Process allowed a complex evaluation of each method by a number of significant 
criteria: number of iterations, average time per iteration, total execution time, and function value at 
the last iteration. This approach provided a structured comparison, which facilitated a more 
accurate selection of the best method for different optimization problems. According to the 
evaluation results, the Heavy Ball method showed the best performance on most functions, while 
the Standard Gradient Descent and other methods had mixed results depending on the specifics of 
the functions. 

Declaration on Generative AI 

The authors did not use Generative AI tools in preparing the content, analyzing the data or 
creating the figures presented in the paper. All ideas, conclusions and figures are based on standard 
research and analysis methods. 
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