
123

Multi-Criteria Method for Comparing the Effectiveness of
Gradient Descent Modifications on Benchmark Functions

Viktor Morozov1,*, , Vladyslav Deineha1, and Danylo Kovalchuk1,

1 Taras Shevchenko National University of Kyiv, 24, Bohdan Gavrilishin Str., Kyiv, 04116, Ukraine

Abstract
In this article, an analysis of optimization methods, in particular, first-order methods, which are actively
used to minimize loss functions in various problems, is presented. Optimization is a key component in
both business and research, particularly in machine learning, where it plays a critical role in training
models and improving their performance. The main focus was on gradient descent and its modifications,
such as Momentum, Heavy Ball, and Nesterov.

First-order methods, such as Standard Gradient Descent, are effective due to their simplicity of
implementation, but can suffer from oscillation and slow convergence. Modifications, such as Momentum,
Heavy Ball, and Nesterov, can in some cases significantly improve the optimization process.

A review of the recent publications has confirmed the importance of using these methods to solve
applied problems requiring high accuracy and efficiency. Comparison of gradient descent modifications
showed that each method has its own characteristics, and the choice of the optimal approach depends on
the specifics of the case. In particular, the use of methods such as Nesterov Accelerated.

Gradient can significantly reduce the training time in real-world conditions.
In the practical part of this work, several optimization methods were tested on benchmark functions,
including Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale. The methods implemented included
Standard Gradient Descent, Momentum, Heavy Ball, and Nesterov. Applying the Analytic Hierarchy
Process enabled a thorough evaluation of each method based on key criteria: the number of iterations,
average time per iteration, total execution time, and the function value at the final iteration. This
structured approach allowed for a clearer, more precise comparison, aiding in the selection of the most
effective method for various optimization challenges. According to the experimental results, the Heavy
Ball method demonstrated the best results on most functions, while the Standard Gradient Descent and
other methods showed mixed results, depending on the properties of the functions.

Keywords
Optimization, Machine learning, Standard Gradient Descent, Momentum method, Heavy Ball method,
Nesterov method, Analytic Hierarchy Process
1

1. Introduction

Optimization is an important aspect in many fields, ranging from economics and engineering to
bioinformatics and artificial intelligence [1]. It allows to find the best solutions for complex
problems by minimizing or maximizing a certain function depending on the task at hand. In the
real world, the optimization process is used to find the most efficient ways to use resources,
improve technological processes, and solve optimal management problems [2]. Optimization plays
a particularly important role in machine learning, where it helps train models based on large
amounts of data. In the context of machine learning, optimization plays a key role in tuning the
parameters of models such as neural networks, regression models, support vector machines
(SVMs), etc. These models are used for forecasting, classification, decision making, etc. [3]. For
example, neural networks can be used to solve problems related to IT projects [4].

Information Technology and Implementation (IT&I-2024), November 20-21, 2024, Kyiv, Ukraine
 Corresponding author.
 These authors contributed equally.

 : viktor.morozov@knu.ua (V. Morozov); thedynkan@knu.ua (V. Deineha); goose@knu.ua (D. Kovalchuk)
 0000-0001-7946-0832 (V. Morozov); 0009-0008-3123-2302 (V. Deineha); 0009-0008-4127-3001 (D. Kovalchuk)

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0001-7946-0832
https://orcid.org/0009-0008-3123-2302
https://orcid.org/0009-0008-4127-3001

124

One of the key optimization tools in machine learning is gradient descent methods, which are
used to minimize loss functions. They allow quick and efficient training of machine learning
models by gradually reducing the error based on the calculation of gradients. Due to their
simplicity and efficiency, gradient descent methods have become the basis of many modern
optimization algorithms. However, for more complex or non-uniform loss functions, standard
gradient descent may not be fast enough or stable enough.

In this paper, several modifications of gradient descent, including Momentum, Heavy Ball, and
Nesterov, are reviewed and compared. These methods offer different approaches to speeding up
the optimization process and increasing its resistance to local minima. The main focus will be on
comparing their effectiveness in terms of the number of iterations, time to reach the minimum,
average time per iteration, and accuracy of the result.

2. Using optimization in machine learning

Machine learning is a vast field of study that includes data analysis and model building techniques
used to solve various problems, including time series forecasting [5]. Optimization in machine
learning is a key element that determines the efficiency and accuracy of models. The process of
training machine learning models is to find parameters that minimize the loss function, a
mathematical representation of the errors between predicted and actual values. The goal of
optimization is to find the model parameters that provide the best results on new, unknown data
[6].

In most machine learning tasks, the goal is to minimize the loss function that represents the
model error on the training data. To achieve this, various optimization methods are used to
gradually adjust the model parameters to reduce the error. One of the most common optimization
methods in machine learning is gradient descent and its modifications. Gradient descent uses the
derivative of the loss function to determine the direction in which the parameters should be
adjusted to reduce the value of the function. Classical gradient descent, as well as its advanced
versions, such as Momentum, are among the tools used to optimize neural networks and many
other models. During optimization, the choice of hyperparameters, such as learning rate, number
of iterations, and other parameters that affect the speed and stability of the learning process, plays
an important role. Automated methods, such as grid search, help to automate this process.

Optimization challenges in machine learning:
• High dimensionality of the parameter space. In complex models, such as deep neural

networks, the number of parameters can reach millions or even billions. Optimization in
such a large space is computationally challenging, and therefore first-order methods are the
most appropriate due to their efficiency.

• The presence of local minima. In nonlinear models, local minima are often present, which
can prevent the global minimum of the loss function from being reached. Gradient descent
modifications can help solve this problem.

• Convergence speed. Optimization can be time-consuming for large models and data.
Therefore, optimizers that use acceleration, such as Nesterov Accelerated Gradient, can
significantly reduce model training time.

Thus, optimization is a fundamental component of machine learning that determines the
success of a model in solving real-world problems. Effective use of optimization methods allows to
create models capable of finding complex patterns in data and making accurate predictions.

3. Analysis of recent research and publications

This work [7] provides an overview of various gradient descent-based optimization algorithms and
explains their strengths and weaknesses. The author sought to provide practical intuitions for
understanding the behavior of these algorithms so that the user could apply them more effectively.
The article discusses three main variants of gradient descent, of which the most popular is the
mini-batch gradient descent method. The author also analyzes in detail the most common
algorithms for optimizing stochastic gradient descent, including Momentum, accelerated Nesterov

125

gradient, and other methods, including adaptive ones. In addition, various algorithms for
optimizing asynchronous SGD are investigated, as well as additional improvement strategies such
as data shuffling, curriculum learning, batch normalization, and early stopping. The main
conclusion of the article is that various variants and modifications of gradient descent can be
adapted for certain machine learning tasks depending on the specifics of the data and model
architecture. This review is useful for our article, as our paper also compares different
modifications of gradient descent, including Momentum and Nesterov. The importance of choosing
the right optimization strategy for a particular task is emphasized, which resonates with our
analysis of the effectiveness of these methods in different settings.

This [8] article is devoted to improving the method of gradient descent with momentum, which
is widely used to minimize loss functions in machine learning. The authors consider the method
with the so-called Nesterov acceleration, where the gradient is calculated not at the current
position in the parameter space, but at the expected position after one step. A new modification of

controlled by a new hyperparameter. The results show that the super-acceleration of the moment
method is useful not only for the idealized problem, but also for the MNIST classification task using
neural networks. An important conclusion is that this modification of the gradient descent with
moment improves the convergence speed and efficiency of minimizing loss functions, which is
especially relevant for large models in machine learning. In the context of our paper, this approach
is relevant because our analysis also includes modifications of gradient descent, such as the
momentum and Nesterov acceleration methods. The proposal to use the gradient from positions
several steps ahead may provide additional advantages over standard methods, making this
approach relevant to our study of optimization methods.

Work [9] is devoted to the use of the heavy ball moment to accelerate gradient descent in
optimization problems. The authors first explain the concept of pathological curvature arising in
different regions of a function and give an overview of standard gradient descent. They
demonstrate the problems associated with applying gradient descent to the function given as an
example. The main idea is that without a moment, the gradient descent may converge too slowly
due to the characteristics of the function. To solve this problem, the moment is used to adjust the
current step in the direction of the previous one, speeding up the convergence process. Using the
same example, the author shows that using the moment improves the learning process and
converges to the minimum much faster. This article is important for our topic because it
demonstrates the heavy ball method, which is also analyzed in our study.

Paper [10] presents a new optimization method based on control theory called Controlled
Gradient Descent (CGD). This approach is aimed at overcoming the shortcomings of optimization
algorithms, in particular, the problems associated with the choice of an appropriate geometric
structure. The effectiveness of CGD is demonstrated using various test functions, such as the
Rosenbrock benchmark function, as well as a non-planar objective function and a semi-convex
objective function, which are often encountered in machine learning problems. This approach is
suitable for solving large-scale problems and shows promise for further development of
optimization methods. The Rosenbrock function, which will also be used in our practical part of the
paper, is an important tool for demonstrating the effectiveness of the method.

Paper [11] is devoted to the use of stochastic gradient descent with momentum (SGDM) for
training deep neural networks (DNNs) and recurrent neural networks (RNNs), which was
previously considered a difficult task due to problems with optimizing such models. The authors
show that with proper initialization and careful use of parameters, both DNNs and RNNs can be
trained successfully, achieving results that were previously only possible with complex second-
order methods such as Hessian-Free (HF). An important aspect of the study is that improperly
initialized networks cannot be trained effectively using momentum, and that the absence or poor
tuning of momentum significantly reduces performance. The researchers also proved that a well-
tuned momentum can successfully solve problems in deep and recurrent network training tasks
that previously required the use of second-order methods. This is directly related to our topic, as
our work also considers various modifications of gradient descent, including moment and Nesterov
methods. The article emphasizes that even first-order methods, such as SGD with moment, can
achieve optimization performance similar to second-order methods, which is especially important

126

for training complex models. This study confirms the importance of careful tuning of the moment
parameters, emphasizing the benefits of the moment to speed up convergence and improve
optimization quality.

Article [12] is devoted to the use of artificial intelligence (AI) and transfer learning techniques
to automate e-waste sorting in smart cities. The authors emphasize the importance of digitalization
in the context of the circular economy and consider automated e-waste processing as one of the
key steps towards sustainable development. The study uses the AlexNet model with the transfer
learning technique. Particular attention is paid to tuning the gradient descent optimizer and
selecting the learning rate, which is directly related to our topic, since various modifications of
gradient descent are also analyzed. The results show that using SGDM with a properly tuned
learning rate yields an accuracy of almost 98%, which emphasizes the effectiveness of this
approach. The paper also addresses overfitting issues and applies data augmentation techniques to
improve model generalization, which is also useful for our study. This study demonstrates that the
use of optimization algorithms such as gradient descent can improve the efficiency and accuracy of
processing systems, contributing to the development of circular smart cities.

In this article [13], a new method of accelerated gradient descent is proposed that combines
Taylor expansion and conjugate direction with the Nesterov accelerated gradient method. The goal
was to increase the speed of convergence of optimization processes on the example of optimizing
the thickness of an oil film to minimize the friction coefficient on a textured surface. Nesterov
method is known for its faster convergence than standard first-order methods, but the authors
improved it by including additional terms through the Taylor expansion, which allows for a more
accurate approximation of the solution. The use of conjugate directions makes the method more
efficient for large-scale problems, where it has advantages over the gradient descent method and is
less memory intensive than Newton's method. The results of numerical experiments conducted
using the finite element method in FreeFEM++ show that the proposed method has faster
convergence than the Nesterov method and is capable of finding deeper solutions. Moreover, the
method is easy to implement and suitable for large-scale continuous optimization problems. The
useful conclusions relate to the improvement of gradient descent methods, in particular the
Nesterov method. The proposed method demonstrates that a combination of techniques, such as
Taylor decomposition and conjugate directions, can significantly improve the convergence rate and
efficiency of optimization algorithms. This is directly related to our topic, as our paper also
discusses accelerated gradient descent methods and their modifications, analyzing their
effectiveness for complex optimization problems. The methods considered in this paper, such as the
Nesterov method, are relevant for large and complex optimization problems, as they provide faster
convergence. This approach can be particularly useful in our study to compare gradient descent
modifications used in complex machine learning systems.

4. Standard Gradient Descent

Standard gradient descent is one of the simplest and most common optimization methods. Its basic
idea is to gradually update the model parameters based on the gradient of the loss function. The
gradient indicates the direction in which the value of the loss function decreases the fastest. The
goal is to find the minimum of the function by adjusting the model parameters in this direction.

The main stages of Standard Gradient Descent:
1. Gradient calculation. At each step of the method, the gradient of the loss function is

calculated for all model parameters. The gradient is a vector of partial derivatives of the loss
function for each parameter, which indicates the direction of the largest increase in the
function.

2. Parameter update. After calculating the gradient, the model parameters are updated
according to the formula [14]:

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼 ∗ 𝛻𝐽(𝜃), (1)

127

where θ are the parameters of the model, α is the learning rate, and ∇J(θ) is the gradient of
the loss function J(θ).

3. Learning rate. This is a key parameter of the method. If the step is too small, the
optimization process will be too slow, and if it is too

4. Iterations. The process of updating the parameters is repeated many times until a stop is

reached (by convergence criteria or after a specified number of iterations).

Advantages of Standard Gradient Descent:
• Easy to implement. Standard Gradient Descent is easy to implement because for each

iteration only need to calculate the gradient and update the model parameters.
• Efficiency for smooth functions. If the loss function is smooth and convex, the method can

efficiently find the global minimum.
Disadvantages of Standard Gradient Descent:
• Problems with the choice of learning rate. An incorrect choice of learning rate can lead to

very slow convergence or, conversely, to divergence.
• Delay due to computation. Standard Gradient Descent requires calculating the gradient on

all data at each step, which can be slow when working with large datasets.
• Oscillations in areas of saddle points. In areas where the gradient is very small or varies

without reaching it effectively.

In the following parts of the article, look at the modifications of the gradient descent, such as
Momentum, Heavy Ball and Nesterov, which were developed to overcome some of the
shortcomings of the Standard Gradient Descent.

5. Standard Gradient Descent

The Momentum gradient descent method is an improved version of the Standard Gradient Descent
method that helps speed up convergence and avoid problems associated with oscillations in the

parameter update - the accumulated effect of previous gradients. This allows to maintain the
direction of movement even if the gradients change slightly or oscillate.

In classical gradient descent, each update of the model parameters depends only on the current
gradient. In the Momentum method, inertia is added, which is accumulated based on previous

gradients and smooth out oscillations when parameters fluctuate around the minimum.
Momentum algorithm. At each step, the model parameters are updated using the following

formulas [15]:
1.

𝑣𝑡 = 𝛽 ∗ 𝑣𝑡− 1 + (1 − 𝛽) ∗ 𝛻𝐽(𝜃), (2)

where vt is the velocity at iteration t, β is the coefficient of inertia, ∇J(θ) is the gradient
of the loss function at the current iteration.

2. After that, the model parameters are updated to reflect the velocity:

𝜃𝑡 + 1 = 𝜃𝑡 − 𝛼 ∗ 𝑣𝑡 , (3)

where θt are the current parameters of the model, α is the learning rate, vt is the
velocity used to update the parameters.

128

Advantages of Momentum:
• Accelerated convergence. The Momentum method allows to quickly approach the

minimum in convex problems, especially in gentle sections of the function. Momentum
accumulation allows not to slow down the movement in the direction where the gradient
remains unchanged.

• Reducing oscillations. One of the key problems with Standard Gradient Descent is the
oscillation of parameters in directions where gradients often change sign. Momentum
allows to smooth out these oscillations by accumulating inertia and avoid stopping at
saddle points or surfaces with small gradients.

• Better performance on curved surfaces. On difficult surfaces where the minimum is
surrounded by deep valleys or hills, Momentum allows to continue in the selected direction
even when the current gradient is too small or changes too quickly.

Disadvantages of Momentum:
• Setting up hyperparameters. For the method to work efficiently, it is necessary to properly

value that is too small may not provide a sufficient acceleration effect.
•

become unstable, leading to divergence or oscillations around the minimum.

Gradient descent with momentum is widely used in neural networks and large machine
learning models. It helps to cope more efficiently with large parameter spaces and complex loss
functions, making it one of the most popular optimization methods. Momentum is also the basis for
many modern modifications, such as Nesterov Accelerated Gradient, which further improve
optimization performance.

The next step is to consider the Heavy Ball and Nesterov methods, which build on the ideas of
Momentum, adding their own improvements for even greater optimization efficiency.

6. Heavy Ball method

The Heavy Ball method is one of the modifications of the gradient descent, which is based on
similar principles as Momentum. The main idea is to add inertia to the process of updating
parameters, which helps to speed up convergence and reduce oscillations. The name of the method
comes from the physical analogy of moving a heavy ball on an inclined plane, where inertia helps
to move in the direction of the minimum, overcoming obstacles such as local minima and plateaus.

In this method, each new step takes into account not only the current gradient, but also the

the minimum more efficiently. By analogy with physics, this is similar to how a heavy object
continues to move under the influence of inertia even after the force (gradient) stops acting on it.

The parameters in the Heavy Ball method are updated using the following formula [16]:

𝑤𝑘 + 1 = 𝑤𝑘 − 𝛼𝑘 ∗ 𝛻𝑓(𝑤𝑘) + 𝛽𝑘 ∗ (𝑤𝑘 − 𝑤𝑘 − 1), (4)

where wk + 1 - is the new value (updated parameter), wk - is the current value (current
parameter), wk − 1 - is the previous value (previous parameter), αk- is the step (learning rate), βk
- is the momentum parameter, ∇f(wk) - is the gradient of the function f(w) at point wk.

Advantages of Heavy Ball:
• Speed up convergence. As in the Momentum method, inertia helps to move faster to the

minimum, especially on flat parts of the function where Standard Gradient Descent can be

129

slow. The accumulation of speed helps to keep moving even when the gradient becomes
small.

• Oscillation smoothing. The Heavy Ball method smoothes out oscillations that can occur in
conventional gradient descent, especially in cases with high curvature or highly elongated
minima.

•
points where the gradient is very small, Heavy Ball keeps moving forward due to inertia.

Disadvantages of Heavy Ball:
• The need for careful tuning. The method requires the correct choice of both the learning

too slow convergence.
•

minimum and start oscillating around it instead of achieving stable convergence.
• Delays are possible in complex landscapes. Although the method works well on smooth

functions, in very complex landscapes with numerous local minima, inertia can prevent the
fastest possible finding of the global minimum.

The Heavy Ball method is used in problems that require faster convergence than Standard
Gradient Descent. It is suitable for problems with a large number of parameters, such as neural
network optimization, especially in situations where the loss function has a complex shape with
wide minima or plateaus. Heavy Ball is a good option for problems where the speed of convergence
is important, but the stability of the optimization process cannot be sacrificed.

In the next part, consider the Nesterov Accelerated Gradient method, which is another
advanced version of the gradient descent, based on the ideas of momentum and inertia, but adds its
own features for even greater efficiency.

7. Heavy Ball method

The Nesterov Accelerated Gradient (NAG) method is an advanced modification of the gradient
descent based on the idea of Momentum, but with additional acceleration. The main innovation of
the method is that it updates the parameters not only based on the current gradient, but also taking
into account the predicted future state. This allows the model to take into account where it will
move in advance and adjust the steps more accurately.

Unlike the classical Momentum method, where the gradient is calculated based on current
parameters, the Nesterov method calculates the gradient based on the future position. This allows

In a physical analogy, this is similar to how a heavy ball (which moves due to inertia) would not

adjust its movement.
Model parameters in Nesterov method can be updated in the following steps [17]:

𝑣𝑡 = 𝛽 ∗ 𝑣𝑡 − 1 + (1 − 𝛽) ∗ 𝛻𝑓(𝜃𝑓𝑝), (5)
𝜃𝑡 + 1 = 𝜃𝑡 − 𝛼 ∗ 𝑣𝑡 , (6)

where θt are the parameters at iteration t, vt is the velocity at iteration t, α is the
learning rate, β is the momentum term, ∇f(θfp) is the gradient at the future position.
Advantages of the Nesterov method:
• Faster convergence. Since the method uses the predicted position to calculate the gradient,

it makes better use of the information about the direction of movement, which contributes
to faster convergence compared to the classic Momentum.

130

• Better adaptation to the function landscape. Nesterov method is more sensitive to changes

to match the predicted position. This allows it to better cope with complex landscapes with
numerous local minima.

• Oscillation reduction. Similar to Momentum, Nesterov method helps reduce oscillations,
especially in problems with large curvature or saddle points. However, due to the

effectively.
• Better stability in complex problems. Nesterov method is less prone to situations where

stable in complex optimization problems.
Disadvantages of the Nesterov method:
• Complicated computation. Although the method provides better convergence, it requires

additional computations to estimate the predicted position of the parameters. This can
increase computational complexity, especially when working with large models.

• Adjusting hyperparameters. As with Momentum, Nesterov method requires careful tuning

discrepancies or slow convergence.
The Nesterov Accelerated Gradient method is widely used in neural networks and complex

machine learning models where loss functions have a rough or complex landscape. It can
significantly speed up training, especially in problems where classical gradient descent methods
face difficulties in stability and convergence speed.

Nesterov method is one of the most popular optimization algorithms due to its ability to
accelerate learning and efficient use of gradient direction information. It is often used in
combination with other optimization methods to provide even more efficient and faster model
training.

8. Experimental research

In the practical part of the paper, an experimental comparison of the mentioned optimization
methods, such as Standard Gradient Descent, Momentum method, Heavy Ball method, and
Nesterov method, was conducted on various mathematical functions. The main goal of the study
was to investigate the effectiveness of these methods on complex functions using the Analytic
Hierarchy Process. The evaluation of effectiveness was conducted based on several key criteria: the
number of iterations, average time per iteration, total execution time, and the function value at the
final iteration. The following functions were used for this purpose:

• Himmelblau's function is a multimodal nonlinear function known for its four global minima
[18].

• The Rosenbrock function is a standard test function for optimization, with a hard-to-find
global minimum [19].

• The Rastrigin function is a strongly oscillating function with many local minima, which is
used to test the stability of optimization methods [20].

• The Ackley function is a nonlinear function with a large number of local minima, which
poses difficulties for gradient methods [21].

• The Beale function is a three-dimensional function that has one global minimum and
several local ones, representing a problem with high nonlinearity [22].

Each of the methods was applied to solving optimization problems. For each combination of
method and function, the main criteria values were measured, and then the values were normalized
using the minimax method. If the minimum and maximum values of the criteria coincided (which

131

could happen, for example, if the methods did not reach the minimum), the normalized values were
set to 1.

The criteria are as follows:
• I the number of iterations,
• Tavg the average time per iteration,
• Ttotal the total execution time,
• f(xfinal) the value of the function at the last iteration.

Perform normalization of values:

𝐼 = (𝐼 − 𝐼𝑚𝑖𝑛) / (𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛), (7)
𝑇𝑎𝑣�̂� = (𝑇𝑎𝑣𝑔 − 𝑇𝑎𝑣𝑔𝑚𝑖𝑛

) / (𝑇𝑎𝑣𝑔𝑚𝑎𝑥
 − 𝑇𝑎𝑣𝑔𝑚𝑖𝑛

), (8)
𝑇𝑡𝑜𝑡𝑎�̂� = (𝑇𝑡𝑜𝑡𝑎𝑙 − 𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛

) / (𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑎𝑥
 − 𝑇𝑡𝑜𝑡𝑎𝑙𝑚𝑖𝑛

), (9)
𝑓(𝑥𝑓𝑖𝑛𝑎𝑙)̂ = (𝑓𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑖𝑛

) / (𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑎𝑥
 − 𝑓𝑓𝑖𝑛𝑎𝑙𝑚𝑖𝑛

). (10)

In the practical part of the study, the Analytic Hierarchy Process was applied to evaluate and

compare the effectiveness of different optimization methods: Standard Gradient Descent,
Momentum method, Heavy Ball method and Nesterov method. This approach has allowed to
systematically consider optimization methods in terms of several criteria, which contributed to a
more informed choice of the best method for specific problems. Stages of application of the analytic
hierarchy process are presented below.

Building a tree of alternatives: In the context of this stage, a hierarchical structure was formed,
where at the top level was the overall objective of the study - to evaluate the effectiveness of
optimization methods. Below it were the key criteria: number of iterations, average time per
iteration, total execution time and function value at the last iteration. At the lowest level of the tree
were the alternatives, which are optimization methods.

Constructing a matrix of pairwise comparisons of criteria: A matrix of pairwise comparisons of
criteria was created for further analysis. Each criterion was ranked relative to the others in terms
of its importance for achieving the overall objective. This allowed the priorities of the criteria to be
fixed and their weight to be taken into account in subsequent calculations.

Figure 1: Example of an alternatives tree

Construction of matrices of pairwise comparisons of alternatives: Next, a matrix of pairwise
comparisons of alternatives was constructed for each criterion. In this matrix, the optimization
methods were evaluated using normalized values of the criteria. This approach allowed each
method to be compared in the context of all criteria.

132

Table 1
Table of pairwise comparisons of criteria

Matrix Analysis: In this step, the matrices obtained were analyzed, resulting in a vector of

criteria weights and vectors of alternative weights for each criterion.
Determination of weights of alternatives: Based on the weights obtained in the previous step,

the final weights of the alternatives in terms of achieving the objective were determined. For this
purpose, a calculation was made using the following formula [23]:

𝑊𝑘 = ∑𝑖

𝑛(𝑤𝑖 ∗ 𝑝𝑖𝑘) , (11)

where Wk total weight of method k, wi weight of the i-th criterion, pik priority of
method k by criterion i, n - total number of criteria.

Thus, the final weight Wk was calculated for each method, where a higher value indicates a

better result. After completing the calculations, visualization of the trajectories along which the
methods moved to the minimum of each function was performed, which allowed to get a visual
representation of the behavior of different optimization methods in each case. This information is
presented below in the form of tables and figures.

Table 2
Comparison of optimization methods on the Himmelblau function

 Iterations Avg Iteration
Time (s)

Total Time
(s)

Functio
n Value Weight

Standard
Gradient Descent 1 0 1 1 0.065604

Momentum 0.443787 0.121821 0.488829 0.16422 0.264477
Heavy Ball 0 1 0 0 0.528656
Nesterov 0.579882 0.885641 0.813413 0.28423 0.141263

Figure 2: Paths taken by different optimization methods on the Himmelblau function

 Iterations Avg Iteration
Time (s) Total Time (s) Function Value

Iterations 1 3 0.166667 0.125
Avg Iteration
Time (s) 0.333333 1 0.142857 0.111111

Total Time (s) 6 7 1 0.5
Function Value 8 9 2 1

133

Table 3
Comparison of optimization methods on the Rosenbrock function

Figure 3: Paths taken by different optimization methods on the Rosenbrock function

Table 4
Comparison of optimization methods on the Rastrigin function

 Iterations Avg Iteration
Time (s) Total Time (s) Function

Value Weight

Standard Gradient
Descent 0 1 0 0 0.498951

Momentum 0.912088 0 0.765187 1 0.078360
Heavy Ball 1 0.082426 1 0.018886 0.244642
Nesterov 0.648352 0.124508 0.521598 0.341416 0.178047

Figure 4: Paths taken by different optimization methods on the Rastrigin function

 Iterations Avg Iteration
Time (s)

Total Time
(s)

Functio
n Value Weight

Standard
Gradient
Descent

1 0 0.669161 1 0.138973

Momentum 0.987661 0.578796 0.935468 0.99283 0.088688
Heavy Ball 0 0.657975 0 0 0.699239
Nesterov 0.994011 1 1 0.99358 0.073100

134

Table 5
Comparison of optimization methods on the Ackley function

 Iterations Avg Iteration
Time (s) Total Time (s) Function

Value Weight

Standard
Gradient
Descent

1 0 0 0.142444 0.357109

Momentum 1 0.359053 0.356137 0.03951 0.292598
Heavy Ball 1 0.319435 0.395656 1 0.112995
Nesterov 1 1 1 0 0.237298

Figure 5: The paths taken by different optimization methods on the Ackley function

Table 6
Comparison of optimization methods on the Beale function

 Iterations
Avg Iteration

Time (s) Total Time (s)
Function

Value Weight
Standard
Gradient
Descent

1 0 0.676134 1 0.132482

Momentum 0.997308 0.778712 0.876355 0.99611 0.086562
Heavy Ball 0 0.679081 0 0 0.707523
Nesterov 0.997667 1 1 0.996426 0.073433

Based on these tables, several conclusions can be made about the results of the optimization

methods applied to the Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale functions. Analyze
each method on different functions.

• Himmelblau function: The Heavy Ball method has the highest weight of 0.528656,
indicating its superiority in terms of performance on this function. The Standard Gradient

135

Descent has the lowest weight of 0.065604, showing weaker results compared to the other
methods.

Figure 6: Paths taken by different optimization methods on the Beale function

• Rosenbrock function: Heavy Ball again shows the best result with the highest weight of
0.699239, demonstrating its stability and efficiency in achieving optimal values. Other
methods, such as Momentum 0.085858 and Nesterov 0.073100, show lower weights,
indicating their less efficient performance on this function.

• Rastrigin function: Standard Gradient Descent has the highest weight of 0.498951,
indicating its performance on this function, while Momentum has the lowest weight of
0.078360, showing weaker performance compared to other methods.

• Ackley function: On this function, Standard Gradient Descent has the highest weight of
0.357109, indicating its effectiveness, Momentum and Nesterov also show good results,
while the Heavy Ball method has the lowest weight of 0.112995, showing relatively weak
results on this function.

• Beale function: On this function, the Heavy Ball method showed the highest weight of
0.707523, demonstrating high performance. The other methods performed less efficiently
compared to Heavy Ball.

The analysis showed that the considered optimization methods demonstrate different efficiency
on various test functions.

The Heavy Ball method consistently performs well on most functions. Its high accuracy and low
execution time results in high weight values, which makes it one of the most efficient methods for
most of the tasks considered.

Standard gradient descent shows a significant variation in results. On some functions (Rastrigin
and Ackley functions), this method works very effectively, while on others (e.g., Himmelblau), its
results are significantly inferior to other methods.

The Momentum and Nesterov methods show both bad and average results depending on the
function. In some cases (Rosenbrock, Rastrigin and Beale functions), these methods show low
weight values, but in other cases (Himmelblau and Ackley functions) they can be more effective.

efficiency, taking into account several important aspects at the same time: the number of iterations,
the average time of the iteration, the total time of execution of the method, and the accuracy of
finding the minimum. This made it possible to clearly assess the advantages and disadvantages of
each method in different conditions and compare them.

136

In general, the results of the study demonstrate that the choice of optimization method depends
on the specific task and function. The Heavy Ball method showed the best overall results, while
other methods, such as Standard Gradient Descent, can be effective in certain conditions.

9. Conclusions

In this article, the topic of optimization was analyzed, in particular, first-order methods, which
are widely used to minimize loss functions in various problems. Optimization is an important
aspect in both business and research, especially in machine learning, where it plays a key role in
training models and improving their accuracy. One of the main approaches - gradient descent -
was considered, as well as its main modifications, including Momentum, Heavy Ball, and Nesterov
methods.

First-order methods, such as Standard Gradient Descent, have a number of advantages due to
their simplicity and efficiency, but often face problems related to, for example, oscillations.
Advanced modifications, such as Momentum, Heavy Ball, and Nesterov, may be better suited for
specific tasks.

In addition, a review of the recent publications on the application of these methods in machine
learning and other fields was conducted. The review confirmed the importance of using first-order
optimization methods to solve applied problems requiring high accuracy and speed of model
training.

In general, the comparison of different modifications of gradient descent showed that each
method has its own strengths and weaknesses, and the choice of the optimal approach depends on
the specific conditions of the problem. The use of more sophisticated methods, such as Nesterov
Accelerated Gradient, can significantly improve results, reduce learning time, and increase the
stability of optimization in real-world projects.

In the practical part of the work, several optimization methods were compared on classical test
functions, such as Himmelblau, Rosenbrock, Rastrigin, Ackley, and Beale. The methods of Standard
Gradient Descent, Momentum, Heavy Ball, and Nesterov were implemented. Using the Analytic
Hierarchy Process allowed a complex evaluation of each method by a number of significant
criteria: number of iterations, average time per iteration, total execution time, and function value at
the last iteration. This approach provided a structured comparison, which facilitated a more
accurate selection of the best method for different optimization problems. According to the
evaluation results, the Heavy Ball method showed the best performance on most functions, while
the Standard Gradient Descent and other methods had mixed results depending on the specifics of
the functions.

Declaration on Generative AI

The authors did not use Generative AI tools in preparing the content, analyzing the data or
creating the figures presented in the paper. All ideas, conclusions and figures are based on standard
research and analysis methods.

References

[1] Daoud, M.S., Shehab, M., Al-Mimi, H.M. et al. Gradient-Based Optimizer (GBO): A Review,
Theory, Variants, and Applications. Arch Computat Methods Eng 30, 2431 2449 (2023).
https://doi.org/10.1007/s11831-022-09872-y

[2] -Based Optimizer for
Scheduling Deadline-Constrained Workfl

[3] Mustapha, Aatila & Lachgar, Mohamed & Ali, Kartit. (2020). An Overview of Gradient Descent
Algorithm Optimization in Machine Learning: Application in the Ophthalmology Field.
10.1007/978-3-030-45183-7_27.

137

[4] Morozov, V., Kalnichenko, O. (2020). The method of interaction modeling on basis of deep
-projects. International Journal of Computing 19(1),

88 96.
[5] Morozov, V., Deineha, V., Khlevnyi, A., (2023), Research on the Use of Machine Learning

Methods for Forecasting Time Series when Making Management Decisions in IT Projects
Under Martial Law, CEUR Workshop Proceedings, 3624, pp. 192 204.

[6] How Machines Learn: The Power of Gradient Descent URL:
https://towardsai.net/p/artificial-intelligence/how-machines-learn-the-power-of-gradient-
descent

[7]
Available: http://arxiv.org/pdf/1609.04747v2

[8] Nakerst, G., Brennan, J., & Haque, M. (2020). Gradient descent with momentum to accelerate
or to super-accelerate? https://doi.org/10.48550/ARXIV.2001.06472

[9] Gradient Descent and Momentum: The Heavy Ball Method URL:
https://boostedml.com/2020/07/gradient-descent-and-momentum-the-heavy-ball-method.html

[10] Revati Gunjal, Syed Shadab Nayyer, S.R. Wagh, N.M. Singh, Controlled gradient descent: A
control theoretical perspective for optimization, Results in Control and Optimization, Volume
15,2024,100417,ISSN 2666-7207,https://doi.org/10.1016/j.rico.2024.100417.

[11] Sutskever, I. & Martens, J. & Dahl, G. & Hinton, G.. (2013). On the importance of initialization
and momentum in deep learning. 30th International Conference on Machine Learning, ICML
2013.

[12] Nermeen Abou Baker, Paul Szabo-Müller, Uwe Handmann, Year: 2021, Transfer learning-
based method for automated e-waste recycling in smart cities, SC, EAI, DOI: 10.4108/eai.16-4-
2021.169337

[13] Hiroaki ARATA, Masayuki KISHIDA, Takahiko KURAHASHI, Texture shape optimization
analysis using a new acceleration gradient method based on the Taylor expansion and
conjugate direction, Journal of Fluid Science and Technology, 2022, Volume 17, Issue 4, Pages
JFST0011, Released on J-STAGE November 15, 2022, Online ISSN 1880-5558,
https://doi.org/10.1299/jfst.2022jfst0011,
https://www.jstage.jst.go.jp/article/jfst/17/4/17_2022jfst0011/_article/-char/en

[14] A Simple Guide to Gradient Descent Algorithm URL:
https://medium.com/@datasciencewizards/a-simple-guide-to-gradient-descent-algorithm-
60cbb66a0df9

[15] Gradient Descent With Momentum URL: https://towardsdatascience.com/gradient-descent-
with-momentum-59420f626c8f

[16] Bottou, L., Curtis, F. E., & Nocedal, J. (2018). Optimization Methods for Large-Scale Machine
Learning. In SIAM Review (Vol. 60, Issue 2, pp. 223 311). Society for Industrial & Applied
Mathematics (SIAM). https://doi.org/10.1137/16m1080173

[17] Neural Networks Optimization Algorithms URL: https://www.restack.io/p/neural-networks-
answer-optimization-algorithms-cat-ai

[18] Himmelblau Function URL: https://www.indusmic.com/post/himmelblau-function
[19] Rosenbrock Function URL: https://www.sfu.ca/~ssurjano/rosen.html
[20] Rastrigin Function URL: https://www.sfu.ca/~ssurjano/rastr.html
[21] Ackley Function URL: https://www.sfu.ca/~ssurjano/ackley.html
[22] Beale Function URL: https://www.sfu.ca/~ssurjano/beale.html
[23] Stofkova, J.; Krejnus, M.; Stofkova, K.R.; Malega, P.; Binasova, V. Use of the Analytic Hierarchy

Process and Selected Methods in the Managerial Decision-Making Process in the Context of
Sustainable Development. Sustainability 2022, 14, 11546. https://doi.org/10.3390/su141811546

https://doi.org/10.3390/su141811546

	1. Introduction
	2. Using optimization in machine learning
	3. Analysis of recent research and publications
	4. Standard Gradient Descent
	5. Standard Gradient Descent
	6. Heavy Ball method
	7. Heavy Ball method
	8. Experimental research
	9. Conclusions
	Declaration on Generative AI
	References

