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Abstract 
An underlying tenet within the zero-trust architecture is the statement of never trust, always verify, and 
therefore is strongly applicable for securing cloud environments that often lack defenses at the perimeter. 
The distributed nature of cloud infrastructures, the ability to dynamically scale resources, and complex 
access patterns render them particularly vulnerable to authorization attacks. In this paper we discuss how 
employing Zero Trust principles  including but not limited to continuous identity verification, least access 
to any resource, and micro-segmentation  can allow for better detection capabilities plant to authorization 
attacks in cloud environments. In this paper, we propose a framework utilizing real-time monitoring and 
other machine learning algorithms to detect abnormal behavior from this server which would suggest an 
attack of this nature is taking place. Our study shows that using Zero Trust strategy improves 
authentication threats detection and mitigation significantly via those simulations and empirical tests. 
These findings provide important information that can be used to strengthen cloud security frameworks 
and mitigate vulnerability to authorization attacks. 

Keywords  
Zero Trust Architecture, Authorization attacks, Cloud security, Anomaly detection, Identity verification, 
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1. Introduction 

Cloud services are revolutionizing the information technology arena as they offer scalable, stateless 
and on-demand access to a shared pool of configurable computing resources [1]. Cloud services allow 
organizations to improve operational effectiveness, cut costs, and speed up innovation [2]. As per 
Gartner, worldwide spending on public cloud services would grow to $332.3 billion by 2021 as the 
dependency on cloud solutions rises. While these implementations offer plenty of advantages, they 
also present unique security challenges for cloud computing. A key issue here is the occurrence of 
attacks on authorization, such as unauthorized access, and privilege escalation attacks that can take 
advantage of weaknesses in access control to obtain unauthorized access to resources [3]. These risks 
are augmented by the nature of cloud environments which are distributed and dynamic [4]. An 
example of this is the 2019 Capital One data breach which compromised the personal information of 
more than 100 million customers and was attributed to a misconfigured web application firewall in 
the cloud, demonstrating the implication of authorization vulnerabilities [5]. 
Traditional perimeter-based security frameworks are no longer enough to combat these threats. 
These models assume that a trusted internal network is separated from an untrusted external 
network, an assumption that falls apart in cloud environments wherein resources are accessed over 
the internet and from different locations [6]. Thus, to properly address authorization attacks in the 
cloud configuration, more reliable security circuits have to be established to ensure accuracy 
regarding the nature of the user. 
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1.1. Zero Trust architecture 

This brings us to ZTA or Zero Trust Architecture, a paradigm shift needed in in cybersecurity to 
overcome the limitations of the traditional security models. Based on the principle of outside-in 
security, Zero Trust ends the belief of trust in the network perimeter; the catch phrase "never trust 

 always verify" is rooted in this approach. This put the emphasis on verifying users and controlling 
access no matter where a user or network is located. 

And when you think about cloud security, Zero Trust becomes truly relevant. The dynamic and 
distributed nature of cloud environments is conducive to Zero Trust principles, which are 
fundamentally about enforcing least privilege access and continuous authentication [9]. NIST has 
defined a robust Zero Trust architecture in their Special Publication 800-207, which can be 
incorporated into cloud infrastructures to improve security posture [7]. 

To address authorization attacks, cloud adoption of the Zero Trust model must be implemented 
so that access to resources is determined by rigorous verification and real-time risk evaluations. This 
solution solves the problems of multi-tenancy and elastic provisioning of resources by applying 
adaptive and contextual policies. 

1.2. Objectives and contributions 

The objective of this paper is to implement Zero Trust principles in order to create a strong 
authorization attack detection solution in cloud environments. The specific objectives are: 

• To develop a mathematically rigorous model that allows one to combine Zero Trust 
principles for ongoing identity verification and access control in cloud-based environments. 

• Machine learning algorithms: modeling anomalous behaviors as a sign of authorization 
attacks. 

• To validate the proposed model with simulations and empirical analysis, so as to prove its 
relevance for improving detection mechanisms. 

This study makes the following contributions: 

• In this paper, we present a new model that combines Zero Trust principles with sophisticated 
mathematical models to enhance the detection of authorization attacks in cloud platforms. 

• Real-time anomaly detection by machine learning based detection algorithms 
• We evaluate the proposed solution and show how it outperforms traditional security models 

in detection accuracy and reduction of false positives. 

This research is unique in its approach of using Zero Trust to talk on the most prominent issue 
of authorization attacks in cloud environments, hence adding one more piece in the puzzle of Zero 
Trust for academia and also providing some critical insights for the industry too. These findings can 
help strengthen cloud security frameworks and mitigate vulnerabilities arising from attacks 
targeting authorization mechanisms. 

2. Background and related work 

2.1. Authorization Attacks in Cloud Environments 

Authorization attacks are a type of security breach in which an attacker defeats intended access 
control policies by obtaining access or escalating privileges within a system [9]. Such attacks in cloud 
environments can result in major data breaches, service disruptions and financial losses. 
Authorization Attacks Common examples include privilege escalation, session hijacking, and misuse 
of access controls due to misconfigurations. 
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Moreover, many cloud-specific attributes, such as the multi-tenancy of cloud architecture, 
dynamic resource allocation, and complex access patterns make the authorization attacks harder to 
detect in the cloud environment [10]. Because multi-tenancy allows several users/organizations to 
share the same physical resources, multi-tenancy increases the attack surface and possibilities for 
cross-tenant assaults [11]. One of the main features of cloud services is dynamic scaling, which 
means frequent alterations to the infrastructure that brings challenges to keeping security policies 
consistent. 

In addition, there are complex access control requirements due to the use of distributed systems 
and microservices in the cloud [13]. Conventional security measures might not efficiently track or 
regulate the complex interplays among services, users and resources [14]. These complexities give 
attackers the opportunities they need to find holes in security configurations or bypass 
authentication and authorization. 

In such environments, legitimate requests for access can be high-volume, and user behavior can 
vary widely, making it difficult to detect authorization attacks. The attacker has control over the 
normal user activity; therefore, normal-intended activity is similar to malicious user activity, which 
is hard for rule-based systems to identify legitimate activity from malicious activity [15]. In addition, 
due to the nature of the cloud as a service, latency requirements and performance are very important, 
which introduces limitations on the use of computing-intensive security measures. 

2.2. Zero Trust principles 

Zero Trust Architecture (ZTA) is a concept that works with a zero-trust approach - "never trust, 
always verify" - which removes any form of implicit trust. Key principles include: 

• Continuous Verification: all access requests are continuously verified based on real-time 
context including user identity and device health. 

• Least Privilege Access: users receive only the minimum level of access necessary, limiting 
potential harm to a compromised account. 

• Micro-Segmentation: resources are partitioned into fine-grained areas to protect them from 
a lateral movement of an attacker. 

For instance, Zero Trust was applied in the field of cybersecurity to provide better defense against 
sophisticated threats. One such example is Google's BeyondCorp [16], which relocates access control 
from the network perimeter to individual devices and users, with strict access control and continuous 
user authentication. 

For cloud environments, Zero Trust concepts help manage the resource and user distributed 
nature. The adoption of continuous verification and least privilege access reduces the risk of such 
attacks on authorization systems [17]. 

Here are some methods for detecting authorization layer attacks: 

• Rule-Based Systems: these systems employ predefined rules to identify unauthorized 
activities [18]. Known threats can be detected, unknown ones cannot [13]. 

• Anomaly Detection Techniques: they monitor user behavior to capture deviations from 
established baselines between users and normal behaviors [19]. Anomaly Detection 
Techniques: Machine learning algorithms which identify anomalies that might be evidence 
of future attacks. 

But there are limitations to these approaches. To overcome that rule-based systems are updated 
frequently and lead to high false positives [18]. Anomaly detection solutions tend to fall short in 
dynamic cloud settings, and struggle to differentiate between benign deviations and malevolent 
behaviors [12]. 
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They don't natively support Zero Trust principles, and as a result, existing mechanisms are often 
inadequate in cloud environments. Advanced detection methodologies must be paired with Zero 
Trust concepts to protect against these threats. 

3. Problem statement 

3.1. Traditional security models  the limitations 

Traditional security models, largely focused on perimeter defense mechanisms, are failing to meet 
the cloud environment security challenges [7][8]. These models seem to hinge on the notion of a 
well-defined network boundary that separates trusted internal networks from untrusted external 
networks. On the other hand, this clear distinction is blurred in cloud computing as it involves the 
distributed nature of resources, virtualization and remote access capabilities [11]. 

Firewalls, intrusion detection systems, and network segmentation are the core elements of 
perimeter-based security [13]. While proven to be effective in on-premises infrastructures, such 
approaches do not suffice in cloud for the following reasons: 

• Dynamic Resource Provisioning: the dynamic allocation of the resources of cloud services 
leads to constant changes in the network topology [12]. These changes are not necessarily 
static, with traditional security measures delivering only static protection that fails to adapt 
in real-time. 

• Multi-tenancy: the sharing of physical resources among multiple tenants amplifies the attack 
surface and potential for cross-tenant attacks [10]. 

• Remote Access: cloud users access services from multiple locations and devices, where 
enforcing network perimeter security is impractical [14]. 

• Complex access patterns: The cloud being associated with microservices and in turn APIs are 
not accounted for in any traditional models, and such access patterns are very complex. 

Table 1 
Comparison of Traditional Security Models and Cloud Security Requirements 

Aspect Traditional Security Models Cloud Security Requirements 

Network Boundary Clear internal vs. external Blurred due to distributed resources 

Resource 
Provisioning 

Static Dynamic and scalable 

Access Patterns Predictable Complex and varied 
User Location Fixed, within organization Remote and varied 
Multi-Tenancy Not applicable Inherent characteristic 

Table 1 presents limitations that underscore the inadequacy of conventional security solutions in 
overcoming cloud-specific challenges [11]. This exposes organizations to higher risks of 
authorization attacks that can go unnoticed beyond perimeter defenses [12][13]. 

3.2. Security with Zero Trust-based approach 

The limitations of these traditional models reveal an urgent need for a security framework that is 
able to adjust to the dynamic and distributed nature of cloud computing. A Zero Trust Architecture 
(ZTA) provides such a framework by completely re-imagining the management of access and trust 
[7][15]. 

The limitations identified by are mitigated with Zero Trust principles: 

• No Implicit Trust: since every access request is verified regardless of its origin, Zero Trust 
eliminates dependence on network perimeter. 
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• Real-time verification with Continuous Authentication and Authorization: Security policies 
withstand the impact of network conditions or user contexts. 

• Fine-Grained Access Control: making use of least privilege access minimizes the effect of 
compromised credentials [15]. 

• Micro-Segmentation: splitting the network into smaller, controllable sections limits lateral 
movement by an adversary [16]. 

Zero Trust integrates additionally into cloud security, improving detection and protection against 
authorization attacks by: 

• Better Insight: ongoing monitoring helps in having a better understanding of user actions 
and access patterns. 

• Adaptive Policies: security policies can be adapted dynamically depending on contextual 
information [17]. 

• Improved Anomaly Detection: using Zero Trust and advanced analytics together enables 
detecting unauthorized access attempts [18]. 

• A Zero Trust-based Solution  proceeding on this, if organizations implement Zero Trust-
based solution, they will develop a far more resilient security posture better fit for the realities 
of cloud environments. 

4. Mathematical model and theoretical framework 

4.1. System model 

We formalize these components of the cloud environment relevant to our model in the following 
section. Users, resources, access requests, and security policies make up the system and are critical 
to establishing which assets the user can reach as well as enforcing Zero Trust. 

Let: 

• 𝑈 = {𝑢1, 𝑢2, … , 𝑢𝑛} be the set of users. 
• 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑚} be the resource pool (e.g., data, applications, services). 
• 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑘} be the collection of permissible actions (e.g., read, write, execute). 
• 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑝} be the set of sessions. 

An access request is defined as a tuple: 

𝑞 = (𝑢, 𝑟, 𝑎, 𝑠) (1) 
where 𝑢 ∈ 𝑈, 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐴, and 𝑠 ∈ 𝑆. 
Governable actions are dictated by security policies, and we define an authorization function 

Auth(𝑢, 𝑟, 𝑎)that returns true (Authorized) if user 𝑢 is authorized to perform action 𝑎 on resource 𝑟, 
and false (Unauthorized) otherwise. 

4.2. Mathematical formulation 

4.2.1. Identity verification model 

To determine continuous verification, we associate each user 𝑢with a class of identity attributes 𝐼𝑢 =

{𝑖1, 𝑖2, … , 𝑖𝑙}, which may include credentials, biometric data, device IDs, and behavioral patterns. 
We introduce a verification function 𝑉(𝑢, 𝑡) which at time returns a confidence score 𝑐 ∈ [0,1] 

at time 𝑡: 

𝑉(𝑢, 𝑡) = 𝑃(𝐼𝑢(𝑡) ∨ Legitimate User) (2) 



186 
 

where this function gives the probability of the identity attributes 𝐼𝑢(𝑡) that is observed at time 𝑡 
belong to the legitimate user 𝑢. Techniques like probabilistic models or machine learning classifiers 
(e.g. Support Vector Machines, Neural Networks) are employed to calculate 𝑉(𝑢, 𝑡). 

As an example, we can model the distribution of identity attributes using a gaussian mixture 
model (GMM): 

𝑃(𝐼𝑢(𝑡)) = ∑ 𝜋𝑗 𝑁(𝐼𝑢(𝑡); 𝜇𝑗 , 𝛴𝑗) (3) 

where 𝐾 is the number of Gaussian components, 𝜋𝑗 are the mixture weights, and 𝑁 denotes the 
Gaussian distribution with mean 𝜇𝑗 and covariance 𝛴𝑗. 

4.2.2. Access control policies 

We use an Attribute Based Access Control (ABAC) model [17] in that, in general, access decision is 
made based on attributes of the users, resources and the environment. 

Let: 

• Attr𝑢 be the attribute set of a user 𝑢. 
• Attr𝑟 be the resource attributes set 𝑟. 
• Attr𝑒 be the collection of environmental attributes (time, location, device, etc.) 

An access control policy 𝑃 is a rule defined as: 

𝑃: (Attr𝑢, Attr𝑟, Attr𝑒) → {Permit,Deny} (4) 
The access request 𝑞 is evaluated by the policy decision function PDP(𝑞) which applies the policy 

𝑃: 

PDP(𝑞) = 𝑃(Attr𝑢, Attr𝑟, Attr𝑒) (5) 
We follow the least privilege principle and give users only access the minimal necessary access 

rights. Formally, for each user 𝑢, we define their permission set Perm𝑢: 

Perm𝑢 = {(𝑟, 𝑎) ∨ Auth(𝑢, 𝑟, 𝑎) = true} (6) 

4.2.3. Anomaly detection algorithms 

Some of them involve machine learning algorithms that model legitimate access patterns so that odd 
behavior can be detected. 
Feature vector construction. We construct a feature vector 𝑥 ∈ 𝑅𝑑 for each access request 𝑞: 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑑] (7) 
where features may include: 

• Temporal Features: access time, access frequency. 
• Spatial Features: IP address, geolocation. 
• Behavioral Features  patterns of access sequences, resource usage, etc. 
• Device Attributes: hashed device ID, hashed operating system. 

Anomaly detection model. We use an anomaly detection function 

𝑓: 𝑅𝑑 → {0,1} (8) 
where 0 means normal behavior and 1 means anomaly. 
Possible algorithms include: 
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• OC SVM (One-Class Support Vector Machine): it learns a boundary among normal data. 
• Autoencoders: Neural networks are trained to reconstruct input data, where the 

reconstruction error indicating anomalies. 
• Isolation Forest:  Finds anomalies based on how well you can isolate data points. 

The anomaly score 𝐴𝑠(𝑥) is calculated, with higher values indicating greater deviation from 
normal behavior. 

4.2.4. Risk scoring mechanism 

We introduce a risk score 𝑅(𝑞) for each access request 𝑞, combining identity check and outlier 
detection: 

𝑅(𝑞) = 𝛼(1 − 𝑉(𝑢, 𝑡)) + 𝛽𝐴𝑠(𝑥) (9) 
where: 

• 𝑉(𝑢, 𝑡) refers to the identity verification confidence score. 
• 𝐴𝑠(𝑥) and is the normalized anomaly score 𝐴𝑠(𝑥) ∈ [0,1]. 
• 𝛼, 𝛽 are weighting factors 𝛼 + 𝛽 = 1. 

It assigns a risk score 𝑅(𝑞) ∈ [0,1] that quantifies the probability that the access request is 
unauthorized. If it is exceeded, access request 𝑅(𝑞) is denied by a predefined threshold 𝜃: 

𝐼𝑓𝑅(𝑞) > 𝜃, 𝑡ℎ𝑒𝑛PDP(𝑞) = Deny (10) 
Otherwise, the access request will go to the authorization function Auth(𝑢, 𝑟, 𝑎). 

4.3. Integration of Zero Trust principles 

The described mathematical model represents the Zero Trust principles the following methods: 

• Continuous verification, the identity verification function continuously evaluates the user 
identity and their real-time traits to ensure that trust is not assumed [8]. 

• Least Privilege Access: minimal permission sets Perm𝑢 defined deliver tight access control 
in accordance with Zero Trust [15]. 

• Anomaly Detection: machine learning algorithms identify abnormal access patterns, 
contributing to the dynamic assessment of risk [18]. 

• Adaptive Policies: the risk score 𝑅(𝑞) helps guide policies to adapt based on contextual 
information and current threat levels [17]. 

Process flow consists of: 

• User 𝑢 requesting action 𝑎 on resource 𝑟 during session 𝑠. 
• And in terms of Identity Verification: compute 𝑉(𝑢, 𝑡) to assess confidence in the user's 

identity. 
• Feature Extraction: creating feature vector 𝑥 from the access request and contextual data. 
• Anomaly Detection: compute anomaly score 𝐴𝑠(𝑥). 
• Risk Assessment: calculate the risk score 𝑅(𝑞) based on the defined weighting. 
• Policy Decision: evaluate PDP(𝑞) based on 𝑅(𝑞) and access control policies. 
• Authorization Check: if PDP(𝑞) = Permit, then goto Auth(𝑢, 𝑟, 𝑎); else, reject. 

Zero Trust is an approach of validating all access requests without implicit trust and all accesses 
are validated against some rigorous protocols. This enables us to propose a general and solid solution 
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for detecting authorization-based attacks in cloud environment by mathematically formalizing the 
constituents. 

5. Methodology 

5.1. Experimental design 

We created an experiment to assess the effectiveness of the suggested Zero Trust-based detection 
model in detecting authorization attacks in a cloud environment. There were user operations and 
malicious operations made by a real attack to simulate a real cloud-computing environment. 

The phases during experimenting include: 

1. Data Gathering and Data Preprocessing 
2. Implementing a Detection Model 
3. Baseline Model Setup 
4. Performance Evaluation 

5.2. Data Acquisition and Preprocessing 

5.2.1. Data sources 

We leveraged both real-world and synthetic datasets for a comprehensive evaluation: 

• Production Data: anonymized access logs from a cloud service provider which includes logs 
on user requests on cloud resources for a duration of 6 months. 

• Synthetic Data: through a simulation tool for known attack scenarios (Varied Security 
Implications of Authorization Attacks), from privilege escalation to access without 
authorization. 

5.2.2. Data preprocessing 

The required datasets were preprocessed in order to get them ready for analysis: 

• Data Cleaning: removed the incomplete, duplicate or inconsistent entries to enhance data 
quality. 

• Normalization: used min-max scaling for numerical features for uniformity. 
• Categorical Encoding: categorical features (such as user roles, and user actions) were one-

hot encoded. 
• Feature Selection: the multiple features have been obtained through domain knowledge and 

statistical significance, such as user ID, resource ID, action type, timestamp, IP address, and 
device information. 

5.3. Implementation details 

5.3.1. Tools and technologies 

The following were implemented using the following tools and technologies: 

• Language: Python 3.8. 
• Libraries For Processing Data: Pandas, NumPy. 
• Machine Learning Libraries: Scikit-learn, TensorFlow. 
• Database: Provides PostgreSQL for storing and querying large datasets. 
• Computing Environment: the experiments have been run in a workstation including an Intel 

Core i7 as processor, 16 GB of RAM and an NVIDIA GeForce GTX 1060 as GPU. 
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5.3.2. Model implementation 

This work used the theoretical model introduced in Section 4 as follows: 

• Identity Verification Module: accreting the identity verification confidence score based on 
Gaussian Mixture Models (GMM) to calculate the identity verification confidence score 
𝑉(𝑢, 𝑡). 

• Anomaly Detection Module: used One-Class Support Vector Machines (OC-SVM) and 
Autoencoder neural networks to calculate the anomaly score 𝐴𝑠(𝑥). 

• Risk Scoring Mechanism: developed a method to generate a risk score 𝑅(𝑞), which is the 
result of the outputs from identity verification and anomaly detection modules. 

• Access Control Policies: wrote ABAC policies and used a policy engine to allow or deny all 
requests based on attributes of the requester user, requested resource and the environment 
in which the request was made. 

5.3.3. System integration 

It combined the code into a complete application to be deployed on a production system that handles 
access to services and applies risk-based access control in real-time according to the Zero Trust 
paradigm of continuous verification and least privilege access to data. 

5.4. Experimental procedures 

5.4.1. Training and validation 

• Training Phase: this is the stage of training the identity verification and anomaly detection 
takes the input the preprocessed data containing legit access logs. 

• Validation Phase  hyperparameters were optimized based on a validation set to improve 
model performance and avoid overfitting. 

5.4.2. Testing 

• Test Dataset: a set of legitimate access requests mixed with simulated authorization attacks. 
• Attack Simulation: malicious behavior was injected in to the test dataset to simulate different 

attack vectors that embodied: 
a. Privilege Escalation: attempting to access resources beyond their privileges. 
b. Session Hijacking: access requests using stolen session tokens. 
c. Abnormal Access: Access patterns that are out of the ordinary (e.g. access at odd 

hours, or from atypical locations). 

5.4.3. Execution 

• The integrated system processed the test dataset, and each access request was tested against 
the detection model. 

• Outcome (allow or deny) and risk scores were logged for analysis. 

5.5. Evaluation metrics 

To evaluate model performance, we used the following metrics: 

• True Positive Rate (Recall): identifies the actual attacks versus the ones detected.  
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Recall =
True Positives

True Positives + False Negatives
 

(11) 

• False Positive Rate  The rate at which legitimate requests are flagged as attacks. 

False Positive Rate =
False Positives

False Positives + True Negatives
 

(12) 

• Precision: The fraction of attacks discovered that were actual attacks 

False Positive Rate =
False Positives

False Positives + True Negatives
 

(13) 

• F1-Score: The harmonic means of precision and recall which gives a balance between the 
two. 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 

(14) 

• AUC-ROC: Area Under the Receiver Operating Characteristic Curve; a metric of the model's 
ability to distinguish legitimate requests from malicious requests. 

• Computational Efficiency: Evaluating the average time needed to process each access request 
offers insight into the model's performance applicable to real-time applications. 

5.6. Baseline comparison 

To put the proposed model performance fit into context, we applied the following baseline detection 
methods: 

• Rule-Based System: a deployment that would rely on static rules and thresholds that are set 
in advance and that are the industry norm for the legacy security. 

• Statistical Anomaly Detection: uses statistical methods to find outliers based on difference 
between features mean & standard deviation. 

Performances of the baseline models were extracted after processing the same test dataset and 
comparison with the proposed model was made. 

5.7. Statistical analysis 

Statistical Tests: the significance of the results of the study was verified through statistical tests: 

• Confidence Intervals: calculated 95% confidence intervals for evaluation metrics to assess 
their stability. 

• Hypothesis Testing: run t-tests to determine whether improvements in accuracy over 
baseline models were statistically significant. 

5.8.  Ethical considerations 

• Data Privacy: we will anonymize personal identifiers according to data protection regulations 
(GDPR) and secure all data at rest. 

• Responsible Use: the synthetic attack data are only generated for research and doesn t have 
security impact. 
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6. Results 

In this section, the results of the experiments performed to assess the proposed detection model based 
on the concept of Zero Trust are detailed. These results show the ability of the model to accurately 
detect the authorization attacks in cloud settings with a low false positive rate. 

6.1. Detection performance 

6.1.1. Overall performance metrics 

A dataset of legitimate access requests and simulated authorization attacks was used to test the 
proposed model. The following metrics were considered: 

• Sensitivity (Recall, True Positive Rate): 96.7% 
• False Positive Rate: 2.5% 
• Precision: 95.2% 
• F1-Score: 95.9% 
• AUC-ROC: 0.982 

It shows that a very high portion of the authorization attacks (high recall) were correctly 
identified as such, while precision, which measures how much of what the model has found is 
malicious actually the case, was at the same time also high so the model was working well to separate 
benign from malicious behavior. 

6.1.2. ROC curve analysis 

 
Figure 1 shows the Receiver Operating Characteristic (ROC) curve: a plot between true positive rate 
and false positive rate. An AUC of 0.982 suggests good discriminative ability. below them. 



192 
 

 
Figure 1: ROC Curve of Proposed Model 

6.1.3. Computational efficiency 

The average processing time of each access request is 0.012(s) which demonstrates the model is 
qualified to utilize in real-time detection in the cloud environment and does not introduce too much 
computation overhead. 

6.2. Comparative analysis 

To put the proposed model performance in context, we compared it to classical detection approaches, 
namely to a rule-based system and to a statistical anomaly detection approach. 

6.2.1. Baseline models performance 

Rule-Based System: 

• True Positive Rate: 78.4% 
• False Positive Rate: 9.8% 
• Precision: 80.6% 
• F1-Score: 79.5% 
• AUC-ROC: 0.857 

Statistical Anomaly Detection: 

• True Positive Rate: 85.9% 
• False Positive Rate: 7.2% 
• Precision: 87.4% 
• F1-Score: 86.6% 
• AUC-ROC: 0.905 

6.2.2. Performance comparison 

Summary statistics of the comparative performance are reported in Table 2. 

Table 2 
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Comparison of Performances of the Detection Methods 

Metric Proposed 
Model 

Rule-Based 
System 

Statistical Anomaly 
Detection 

True Positive Rate 96.7% 78.4% 85.9% 
False Positive Rate 2.5% 9.8% 7.2% 

Precision 95.2% 80.6% 87.4% 
F1-Score 95.9% 79.5% 86.6% 

AUC-ROC 0.982 0.857 0.905 
Processing Time 

(sec) 
0.012 0.008 0.011 

The proposed model was superior to baseline methods by all evaluation metrics, with lower false 
positive rates and higher detection power. 

6.2.3. Statistical Significance 

Statistical analysis: A paired t-test was performed to analyze the significance of the improvements. 
The differences in F1-Scores between the proposed model and the statistical anomaly detection 
method were statistically significant (p < 0.01). 

6.3. Case studies 

To demonstrate the practical effectiveness of the proposed model, we illustrate several examples of 
successful detection of authorization attacks. 

6.3.1. Case study 1: unauthorized access attempt 

An end-user account made a request for an admin manipulation of a sensitive asset. The confidence 
score for identity verification was high 𝑉(𝑢, 𝑡) = 0.95, indicating the user's credentials were 
accepted. The anomaly detection module however detected identified the action as inconsistent with 

normal behavior, assigned a high anomaly score 𝐴𝑠(𝑥) = 0.9. The risk score calculated 
was 𝑅(𝑞) = 0.475, which is greater than 𝜃 = 0.4, so the access was denied. 

6.3.2. Case study 2: detecting insider threats 

An insider with a planned exit date accessed sensitive information on an outside date and from an 
anomalous location. The risk score 𝑅(𝑞) = 0.475 calculated from the identity verification score 
𝑉(𝑢, 𝑡) = 0.85 and the anomaly score was 𝐴𝑠(𝑥) = 0.8, so the access request was blocked and an 
alert was created. 

6.3.3. Case study 3: false positive analysis 

A legitimate user was denied access when connecting from a new device while traveling. The identity 
verification score was low 𝑉(𝑢, 𝑡) = 0.6, and the anomaly score was high 𝐴𝑠(𝑥) = 0.85, resulting in 
a risk score of 𝑅(𝑞) = 0.625. These false-positives highlight the need for mechanisms to handle such 
scenarios, such as step-up authentication or user notifications. 

6.4. Discussion 

The findings imply that applying Zero-Trust principles at the mathematical modeling level can 
potentially augment the discovery rate of authorization attacks in the cloud. A good true positive 
rate means that the model is doing a good job of identifying malicious activities, and a low false 
positive means that it is not disturbing legitimate users too much. 

The better performance over baseline methods comes from: 
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• Dynamic Identity Verification: probabilistic identification enables real-time assessment of 
user legitimacy outside of static credentials. 

• Using OC-SVM and Autoencoders for Anomaly Detection with Machine Learning Machine 
learning, by default, is better at detecting small discrepancies from normal behavior which a 
rules-based system may miss 

• Risk-Based Access Decisions: The risk scoring mechanism is combined which correlates to 
risk-based access control decisions where it adheres with Zero Trust principle of "never trust, 
always verify." 

The computational speed signifies that the model is suitable to be deployed in a real cloud 
environment, to grant access in a code-turned-real-time manner. 

6.5. Limitations 

Though the model displays good performance, the following limitations were experienced: 

• Data Quality Dependency: the model performance depends on the quality and 
representativeness of the training data. It may be difficult to find abnormalities not included 
in the training set. 

• User Experience Impact: as legitimate users may exhibit atypical behavior work is needed on 
a verification mechanism so that these users are not locked out of the system thereby causing 
frustration. 

• Scalability: the ability of the system to maintain performance in large-scale cloud computing 
environments will need further consideration as it performed adequately for the testing 
environment used. 
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