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Abstract 
In our work, we proposed, a strictly justified, method for testing independence verification and created a 
corresponding algorithm. We applied this algorithm to different test suits and obtained rather expected 
results, which indirectly confirms the correctness of our method. As we mentioned above, the proposed 
methods have several advantages: require fewer sequences, than the method based on approximation 
with normal distribution,  may verify not only pairwise independence, in the most important 
cases, gives a more precise critical region, than the method based on Chebyshev inequality. 
Using this method, we show that statistical tests from the widely used suits are independent. In this 
connection, it is interesting to note that the older version of NIST tests (published in 1999), which consists 
of more tests than the recent version, turned out to be dependent. There are no explanations from the 
authors of the updated version, to why they removed some tests, but our very method explained this 
fairly. 
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1. Introduction 

A necessary (and most important) condition for solving problems in the field of information 
security is the use of sets of statistical tests developed separately for each type of problem. At the 
same time, it should be noted that although this topic is actively discussed in the world scientific 
literature (numerous references to scientific works of recent years will be given below), there is no 

purchasing some strategically important products from other countries has shown, it is better to 
have your own developments and products in strategically important areas, rather than depending 
on the decisions of partners about their deliveries. Thus, the importance of ensuring the 
development and application of domestic systems and means of cryptographic protection of 
information for the cyber security of state information resources and objects of critical information 
infrastructure is especially emphasized in the Cyber Security Strategy of Ukraine (2021-2025) 
project [1]. Considering the above, it can be immediately stated that the topic of statistical methods 
of monitoring the operation of crypto primitives is and will always remain relevant. 

Only in the last few years, many serious scientific works have been published on this topic. The 
best review and analysis of such works can be found in the recently published [2], which is a 
serious review and comparative work. It provides an overview of the main sets of statistical tests 
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that are currently used for the analysis of crypto primitives and the generation of key data, 
performs a comparative analysis of them, and provides recommendations for their application. 
From this work, as well as similar works [3-6] we can draw the following conclusions. 

1. Currently, for various tasks in the field of cryptology, only three main sets of statistical 
tests are used in the world, which have practically not changed over the past 10-20 years: 
NIST STS SP 800-22 (developed in the 2000s, the latest modification [7]); Diehard test set [8] 
and its minor and few modifications (e.g., [9]); a set of 5 easy-to-implement entropy tests 
ENT [10] and its modern modification ENT-string [11]. 

2. One of the main issues on the way to optimizing the process of verifying the cryptographic 
qualities of a crypto primitive is the optimization of the set of statistical tests itself, in 
particular, increasing its speed [4,5]. As shown by the work [5], the most effective way to 
optimize an arbitrary set is to eliminate the so-called "redundant" tests from it (this was the 
modification [7], where the redundant test was removed). The best way to solve such 
questions is to use the previously introduced notion of independence of statistical tests 
[12,13], which has proven itself well in practical applications. The approach proposed in 
our works to the issue of independence of tests is significantly more general than in the 
work [5], because, unlike this work, analyses the independence of tests in the aggregate, 
and not pairwise, as in [5]. 

3. Another important issue is the choice of a set of tests that is best suited for a specific task. 
So, for the testing of RNG/PRNG during admission to operation and first implementation, 
the largest and most "demanding" set is required; for quality control of key data  smaller, 
but one that prevents directed sorting of keys; for constant control of the allowed 
RNG/PRNG  significantly smaller than during admission. These questions are raised in [5-
6] with an indication of their importance, but a concrete answer to them is not provided. 

4. An important direction, which is not sufficiently covered in the scientific literature, is the 
use of statistical tests to check the independence of the sequence of internal states of a 
crypto primitive and its output sequences. Such a correlation significantly reduces the 
property of unpredictability of the original sequence and makes the algorithm vulnerable to 
statistical attacks. The method of conducting such a correlation analysis was proposed by 
us for the first time in [14], it can be expanded and generalized for wider use. 

From all of the above, it is clear that, on the one hand, the issue of creating an effective (from 
the point of view of quality and speed) set of statistical tests for evaluating the cryptographic 
qualities of RNG/PRNG and their individual sequences is very relevant and is widely studied in 
modern scientific publications of a high scientific level; on the other hand, there are still many 
unanswered questions; one of these issues is the verification of the independence of statistical tests 
and the recognition of "redundant" tests that increase the time of testing but practically do not 
affect its results. 

Intuition. For a better understanding of the problem statement, consider the following 
example. Let a certain package of statistical tests be used to check the cryptographic qualities of 
RNG/PRNG, well, for example, the NIST package consisting of 15 tests (not including subtests). 

-
consuming. Suppose that, while studying the results of testing a large set of sequences, we notice 
that one of the tests never makes independent decisions. Formally, this means the following: if we 
remove this test from the set, the set of sequences that passed all tests will not change. That is, if 
we create a new package, P2, by removing such a redundant test, then the set of sequences that 
pass all tests from set P1 coincides with the set of sequences that pass all tests from set P2. That is, 
by removing the test, we did not deteriorate the quality of testing, but significantly reduced its 
time. 
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Generalizing this example, we can consider a situation where the test "almost" does not make 
independent decisions. Or if some subset of tests from that set has tests that are redundant to that 
subset. 

It is impossible to "manually" go through all possible subsets and try to remove unnecessary 
tests from them. And here the methods of statistical analysis come to the rescue. Because all the 
situations described above are partial cases of what can be called the dependence of tests in the 
aggregate, and the tools of mathematical statistics can be used to detect such dependence. 

Our impact. The results obtained in this work improve the methods proposed in the 
works [12,13]. For example, in the work [12], a method for checking the independence of statistical 
tests was proposed, which uses the asymptotic approximation of the probability distribution of a 
certain sum of random variables by the standard normal distribution. The disadvantage of this 
method is that there is no estimate of the rate of convergence of the distribution to normal, except 
for the Barry-Essen formula [15], which is considered a rather rough estimate. Therefore, to 
guarantee the use of such an approximation, it is necessary to take a very large number of 
sequences  about 100,000, which requires a very long testing time and a large computing resource. 
And if, instead of approximation, Chebyshev's inequality is used, as done in the work [13], then the 
critical area is significantly narrowed, since this inequality is a rather rough estimate. Moreover, in 
some cases this method can even give trivial estimates and become unusable. In this paper, we 
propose another method using Chernov's inequality. It does not require as many sequences as the 
first named, and in some cases gives a more accurate critical region than the second. By comparing 
these two methods (based on the Chebyshev and Chernov inequalities), we will analyse in which 
cases which method gives more accurate estimates. 

2. Materials and Methods 

In what follows, we will use the terms Random Number Generator (RNG) and Pseudorandom 
Number Generator (PRNG) for such types of number generators, which use some physical source 
during their work (for RNG) and use only random seed and then works deterministically. Often, we 
will formulate statements of definitions, which may be applied to both these types. In such cases, 

 
Let us have some set T of statistical tests, 𝑇 = {𝑇1, … , 𝑇𝑚}, and some set of sequences, 𝑋 =

{𝑋(𝑗)}
𝑗=1

𝑛 , where 𝑋(𝑗) = {𝑥1
(𝑗)

, … , 𝑥𝑙
(𝑗)

} , 𝑗 = 1, 𝑛̅̅ ̅̅̅, is a binary sequence with the lengths l fit for this 
test suit, obtained from some (P)RNG G. 

For a test 𝑇𝑖 and some sequence 𝑋(𝑗), taken from the corresponding suits, we define the event 
𝜉𝑖

(𝑗)
= 𝐼{𝑠𝑒𝑞𝑢𝑎𝑛𝑐𝑒 𝑋(𝑗) 𝑝𝑎𝑠𝑠𝑒𝑑 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑇𝑖}. For some fixed 𝑇𝑖, we can consider the sequences 𝜉𝑖

(𝑗) 
as the realization of some random variable (RV) 𝜉𝑖 , which describes the behavior of the test 𝑇𝑖 on 
the sequence obtained from the generator G. 

 
Definition 1. G), if 𝜉𝐴, 

𝜉𝐵 are statistically independent. 
In other words, the independence of the test means that the result of the application of the test 

 
Note that, according to Definition 1, the conclusion of tests independence may be different for 

different generators. In what follows, we also assume that the (P)RNG that we use is perfect, i.e. 
indistinguishable from the true random generator. There exists a lot of such generators, for 
example, BBS [16], or standardized generators, described in [17] and [18]. The case of the creation 
of tests suit, which are independent w.r.t. perfect generators, is of the most interest because only 
perfect generators are used in cryptographic applications. Two perfect generators are 
undistinguished, so the tests which are independent w.r.t one of such generators are independent 
w.r.t. to any other. 
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Similarly, we can define a mutual tests independence. 
Definition 2. Tests from suite 𝑇 = {𝑇1, … , 𝑇𝑚} are called independent (w.r.t. some fixed 

generator G) if the corresponding RVs are mutually independent. 
Let m be the number of tests in a suite, 𝛼𝑖, 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅  be the significance levels of the relevant 

test; n 𝐻0 be a hypothesis 
that all tests from the suit are mutually independent; 𝛽 be the probability to reject 𝐻0 under the 
condition that it is correct. The alternative hypothesis is complicated and may be formulated as 

 
In what follows, we will use Chernoff bound to find the edges of critical region. There exist a lot 

of different versions of Chernoff inequality, among which we choose the one in the form given in 
Corollary 5 of [19]. 

 

Chernoff inequality [19]. 
Let 𝑋1, … , 𝑋𝑚 be independent random variables, which take binary values. Define 

𝑋 = ∑ 𝑋𝑖
𝑛
𝑖=1  and set 𝐸𝑋 = 𝜇. 

Then for arbitrary 𝛿 ∈ (0,1) the next inequality holds: 

( )
2

32P X e
 

  


−

−     . 
The proof of the next Proposition is based on Chernoff inequality. 
 
Proposition 1. 
Let statistical tests 𝑇1, … , 𝑇𝑚 are independent. Define 𝜉 the RV, equal to the number of 

sequences from the set {𝑋(𝑗)}
𝑗=1

𝑛 , which passed all the tests, for some preset significance level 𝛼 

(the same for all tests). Then, for arbitrary 𝛽 ∈ (0,1), the next equality holds: 

( )P     −   
, 

where 𝛿𝛽 = √
3

𝜇
∙ 𝑙𝑛

2

𝛽
 and 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚. 

Proof. 
Introduce RVs 

𝜉𝑖
(𝑗)

= {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑎𝑠𝑠𝑒𝑠 𝑇𝑖;

0, 𝑒𝑙𝑠𝑒.
 

 
Next, define RV 

𝜉𝑖
(𝑗)

= {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑗 − 𝑡ℎ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑎𝑠𝑠𝑒𝑠 𝑎𝑙𝑙 𝑡𝑒𝑠𝑡𝑠;

0, 𝑒𝑙𝑠𝑒.
 

Note that 𝜉(𝑗) ∈ {0,1}. Using this fact and independence of RVs 𝜉𝑖
(𝑗), we get 

( ) ( ) ( )
1

1
m

mj j
i

i
E E  

=

= = −
, 

( ) ( ) ( )( )1 1 1m mjVar  = −  − −
. 

Finally, define the RV 

( )

1

n
j

j
 

=

=
, 

equal to the number of sequences passed all tests. 
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Note that 𝜇 = 𝐸𝜉 = 𝑛 ∙ (1 − 𝛼)𝑚 and 𝑉𝑎𝑟𝜉 = 𝑛 ∙ (1 − 𝛼)𝑚 ∙ (1 − 𝑛 ∙ (1 − 𝛼)𝑚). 
Then apply Chernoff inequality to RV 𝜉 and define 𝛿 in a such way that the right part of the 

equality be equal to A; obtain the inequality 

( );P           −  +    , 

for 𝛿𝛽 = √
3

𝜇
∙ 𝑙𝑛

2

𝛽
 and 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚. 

The Proposition is proved. 
 
Based on Proposal 1, we can create the next algorithm for tests mutually independence. 
 

Chernoff inequality. 
Input: number of tests m; 
             number of tests n; 
             set of tests 𝑇 = {𝑇1, … , 𝑇𝑚}; 
             set of sequences {𝑋(𝑗)}

𝑗=1

𝑛 ; 

             significance level α for testing sequences; 
             significance level β for verifying hypothesis 𝐻0. 

Step 1. Calculate and 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚 and 𝛿𝛽 = √
3

𝜇
∙ 𝑙𝑛

2

𝛽
. 

Step 2. Calculate 𝐶 = 𝛿𝛽 ∙ 𝜇. 
Step 3. Applying tests from the suit to input sequences, find the number k of sequences, which 

passed all tests. 
Step 4. Calculate credential interval as 

( ) ( )1 2, ,I I C C = − + . 
Step 5. If 𝑘 ∈ (𝐼1, 𝐼2), then 𝐻0 is accepted, otherwise it is rejected. 
Output:  
 
Example 1. Verification tests independence for NIST using PRNG defined in [20] and in 

Appendix A in DSTU 9041:2020 [18]. 
The input data were chosen as: 

• the number of the sequences is n = 300; 
• the significance level (for each test) is α = 0.01; 
• the number of tests in the suit is m = 41 (counting all subtests); 
• the significance level for hypothesis 𝐻0 verification is β = 0.0001. 

For this data, according to the Algorithm 1, we calculate the credential interval: 
( ) ( )1 2, 121.9, 275.5I I = . 

The number of sequences, which passed all tests, is 239. We can conclude that the tests from the 
suit are mutually independent. 

If we reduce the critical region, setting β = 0.01, we get the credential interval 
( ) ( )1 2, 143, 255I I = . 

It is essentially smaller than the previous one, but even for such a significance level tests may be 
considered mutually independent. 

 
Example 2.  
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Verification tests independence for the set of 6 simple tests described in [13]. These tests are: 
- frequency monobit text; 
- frequency bigram test; 
- number of series test; 
- the maximal series length test; 
- the sum of places of symbols test; 
- inverse test. 
 
The input data were chosen as: 

• the number of the sequences is n = 300; 
• the significance levels (the same level for all tests) are: α = 0.001; α = 0.005; α = 0.01; α = 

0.05; 
• the number of tests in the suit is m = 6 (counting all subtests); 
• the significance level for hypothesis 𝐻0 verification is β = 0.01. 

For this data, according to the Algorithm 1, we obtained the next results. 
1. For α = 0.001. 
In this case 298.2 =  and 68.9  = , so the credential interval is 

( ) ( )1 2, 229.3, 300I I = . 
The number of sequences, which passed all tests, is 300. We can conclude that the tests from the 

suit are mutually independent. 
 
2. For α = 0.005. 
In this case 291.1 =  and 68  = , so the credential interval is 

( ) ( )1 2, 223.1, 300I I = . 
The number of sequences, which passed all tests, is 298. We can conclude that the tests from the 

suit are mutually independent. 
 
3. For α = 0.01. 
In this case 282.4 =  and 67  = , so the credential interval is 

( ) ( )1 2, 215.4, 300I I = . 
The number of sequences, which passed all tests, is 295. We can conclude that the tests from the 

suit are mutually independent. 
 
4. For α = 0.05. 
In this case 221 =  and 59.3  = , so the credential interval is 

( ) ( )1 2, 161.7, 280I I = . 
The number of sequences, which passed all tests, is 249. We can conclude that the tests from the 

suit are mutually independent. 
 
As we see, tests may be considered as independent even for relatively large value of . Indeed, 

the number of tests is relatively small, and in such cases tests usually are independent. So in these 
examples we obtained expected results, which indirectly confirms the correctness of the method 
and corresponding algorithm. 
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Now we are going to show that the proposed method of test independence verification may give 
tighter credential intervals, than a similar method based on Chebyshev inequality [13]. 

 
 
Proposition 2. 
In our designations, if  𝛽 ≤ 0.05 and the values α and m are such that (1 − 𝛼)𝑚 < 0.442, then 

the critical region, obtained using Chernoff inequality, is larger, than using Chebyshev one. 
Proof. 
According to Proposition 1, the hypothesis 𝐻0 is accepted if 

( )1 1,k С С  − + , 

where 𝐶1 = 𝛿 ∙ 𝜇, 𝜇 = 𝑛 ∙ (1 − 𝛼)𝑚, and 𝛿𝛽 = √
3

𝜇
∙ 𝑙𝑛

2

𝛽
. 

We may rewrite 𝐶1 as 

1
3 2 2ln 3 lnС  
  

=   =  

. 
If we use Chebyshev inequality instead of Chernoff inequality, we get the other credential 

interval: 
( )2 2,k С С  − + , 

where (using (1)) 

( ) ( )( )
2

1 1 1 1m mnVar nC


  

  

 
 −   −  − −
 = = =

. 
In these designations to prove that critical region with 𝐶1 is larger than with 𝐶2 is the same as 

to prove that 𝐶1 < 𝐶2, or that the next inequality holds: 

( )( )1 123 ln
m



 

− −
 

. 
First, note that for 𝑥 ≥ 𝑒 the function ln 𝑥

𝑥
 decreases if x increases. Then, for 𝑒 ≤ 𝑎 ≤ 𝑥 (for some 

𝑎 ∈ 𝑅) we have ln 𝑥

𝑥
≤

ln 𝑎

𝑎
. 

In our conditions, 𝛽 ≤ 0.05, then for 𝑥 =
2

𝛽
≥ 40 we have: 

2ln
ln40 0.0932 40





 

 
and 

2 2 0.5583 ln 3 0.093
  

    =

. 
On the other hand, 
 

( )( ) ( )1 1 1 1
0.558

m
  


  

− − − −
 =  

, 
according to the proposition assumption, and the Proposition is proved. 

 
Example 3: the conditions of the Proposition 2 hold in such cases: 
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•  𝛽 ≤ 0.05,  𝛼 = 0.05, 𝑚 = 16; 
•  𝛽 ≤ 0.001, 𝛼 ≥ 0.01, 𝑚 ≥ 4. 

As common recommendations, we may say that the method based on Chernoff inequality 
works better for the cases when we have a small value of  and/or relatively large (w.r.t. )  and/or 
large number m of tests. Note that in the overwhelming majority of applications, the value of  is 
chosen as 0.001 or even smaller, which is just the case for applying the proposed method. But in 
case when the number of tests is relatively small (less than 10, for example), and at the same time 
the value of  is not large than 0.01, the method which uses Chebyshev inequality is more 
preferable. 

Conclusions 

Tests independence is a very important and useful property. First, by avoiding using redundant 
tests, we may significantly reduce testing time, so may create key data for users more efficiently. 
Secondly, if the tests being applied are independent, we may, with some insignificant error, predict, 
what proportion of sequences will be rejected, and, therefore, understand how many sequences we 
need to generate to have the required volume of key data. For example, if we need to have 1000 key 
sequences, and know that the tests which are used are independent, then, if the significance level is 

, the proportion of rejected sequences is, on average, 𝑟 = 1 − (1 − 𝛼)𝑚, where m is the number 
of tests. Then to get k sequences for key data, we need to generate about 𝑘

(1−𝛼)𝑚 sequences. 

Note that in the NIST document [7] one can find some considerations about the importance of 

considered as sounded: it consists of calculating P-values for each pair test/sequence, then creating 
a matrix of these P-values (one row corresponds to one test) and checking the linear independence 
of the rows. This approach has no justification, and it seems very unlikely that for dependent tests 
such rows will be linearly dependent. 

In our work, we proposed, a strictly justified, method for testing independence verification and 
created a corresponding algorithm. We applied this algorithm to different test suits and obtained 
rather expected results, which indirectly confirms the correctness of our method. As we mentioned 
above, the proposed methods have several advantages: 

• require fewer sequences, than the method based on approximation with normal 
distribution [12]; 

• may verify not only pairwise independence, as methods, proposed in [21] and based on 
some ideas from [22]; 

• in the most important cases, gives a more precise critical region, than the method based 
on Chebyshev inequality [13]. 

Using this method, we show that statistical tests from the widely used suits are independent. In 
this connection, it is interesting to note that the older version of NIST tests (published in 1999), 
which consists of more tests than the recent version, turned out to be dependent. There are no 
explanations from the authors of the updated version, to why they removed some tests, but our 
very method explained this fairly. 

Also note that we could not obtain the corresponding numerical examples for DIEHARD 
suit [9]. The matter is that the tests in this suit are created in other way, which gives no 
opportunity to get one result for one sequence. For such suit the method of results processing 
should be completely different. 

As we mentioned in Definition 1, the notion of test independence may depend on the type of 
generator, more precisely  on the type and properties of probability distribution on its outputs. 
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Though we develop the methodic for most common use case, such as perfect generator testing, the 
similar approaches may be developed for other cases of output distribution. Generally speaking, for 
different types of output distributions we may obtain different sets of independent tests. But our 
experimental results, which we provided for generators with different types of output distributions 
(we did not include extend version of such investigation because of volume restriction) shows that 
two test suits, described above, turned out to be independent for several non-perfect types of 
generators, which output distribution was artificially biased from equiprobable. Of course, such 

independence, but show that the test suit may be the same for different cases of generators.  
The other interesting question, directly connected with the topic of presented research, is the 

next: when the test suit turned out to contain dependent tests, what tests should be considered as 
redundant and removed from the suit? Informally speaking, our answer is: such tests, that make 

passing all tests will not change essentially, so the mutual first type error will remain the same too. 
Usually, the number of the tests in suit allows to check all tests decisions and to remove redundant 

 

Acknowledgements 
The results of this work were obtained within the project 2023.04/0020 Development of methods 
and layout of the "DEMETRA" ARM for constant and periodic control of the functioning of 
cryptographic applications using statistical methods. 

Declaration on Generative AI 
The author(s) have not employed any Generative AI tools. 

References 
[1] Cabinet of Ministers of Ukraine. (2021). Cybersecurity Strategy of Ukraine. Secure Cyberspace 

is the Key to the Successful Development of the Country. [Online]. Retrieved from 
https://zakon.rada.gov.ua/laws/show/447/2021#n12 

[2] E. Almaraz Luengo, Statistical tests suites analysis methods. Cryptographic recommendations, 
Cryptologia 48(3) (2023) 219 251. doi:10.1080/01611194.2022.2155093.  

[3] E. Almaraz Luengo, J. Román Villaizán, Cryptographically Secured Pseudo-Random Number 
Generators: Analysis and Testing with NIST Statistical Test Suite, Mathematics 11(23):4812 
(2023). doi:10.3390/math11234812 

[4] 
Chakraborty, V. Matyas, P. Schaumont, (Eds.), Security, Privacy, and Applied Cryptography 
Engineering. SPACE 2014, volume 8804 of Lecture Notes in Computer Science, Springer, 
Cham, 2014, pp. 272 284. doi:10.1007/978-3-319-12060-7_18.  

[5] E. A. Luengo, B.A. Olivares, L. J. G. Villalba, J. Hernandez-Castro, Further analysis of the 
statistical independence of the NIST SP 800-22 randomness tests, Applied Mathematics and 
Computation 459 128222 (2023). doi:10.1016/J.AMC.2023.128222  

[6] E.A. Luengo, L.J.G. Villalba, Recommendations on Statistical Randomness Test Batteries for 
Cryptographic Purposes, ACM Comput. Surv. 54, 4, Article 80 (2021). pp.1-34. 
doi:10.1145/3447773  

[7] L.E. Bassham III, A.L. Rukhin, J. Soto, J.R. Nechvatal, M.E. Smid, E.B. Barker and others, A 
statistical test suite for random and pseudorandom number generators for cryptographic 
applications, NIST Special Publication 800-22, Revision 1a, (2010). URL: 
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf 

https://zakon.rada.gov.ua/laws/show/447/2021#n12
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf


216 
 

[8] G. Marsaglia, The Marsaglia random number CDROM including the diehard battery of tests of 
randomness, (2008). http://www. stat. fsu. edu/pub/diehard/.  

[9] R.G. Brown, D. Eddelbuettel, D. Bauer, Dieharder. Duke University Physics Department 
Durham NC 27708-0305 (2018). 

[10] J. Walker, A pseudorandom number sequence test program, (2008). 
https://www.fourmilab.ch/random/  

[11] E. Almaraz Luengo, B. Alaña Olivares, L.J. García Villalba, J. Hernandez-Castro, D. 
HurleySmith, StringENT test suite: ENT battery revisited for efficient P value computation, 
Journal of Cryptographic Engineering 13(2) (2023) 235-249. doi:10.1007/s13389-023-00313-5 

[12] L. Kovalchuk, V. Bezditnyi, A statistical tests independence checking intended for 
cryptographic properties of RNG estimation, Ukrainian Information Security Research Journal 
2 (29) (2006) 18-23.  

[13] R. Kochana, L. Kovalchuk, O. Korchenko, N. Kuchynska, Statistical Tests Independence 
Verification Methods, Procedia Computer Science Volume 192 (2021). 2678-2688. 
doi:10.1016/j.procs.2021.09.038.  

[14] L.V. Kovalchuk, I.V. Koriakov, A.N. Alekseychuk, Krip: High-Speed Hardware-Oriented 
Stream Cipher Based on a Non-Autonomous Nonlinear Shift Register, Cybernetics and 
Systems Analysis 59(1) (2023). 16-26. doi:10.1007/s10559-023-00538-6 

[15] W. Feller. An introduction to probability theory and its applications, Vol. 2 (Vol. 81). John 
Wiley & Sons. (1991). 

[16] V. Pareek, An overview of cryptographically secure pseudorandom number generators and 
BBS." International Journal of Computer Applications (IJCA)(0975 8887) (2014). 

[17] Information technologies. Cryptographic protection of information. A digital signature based 
on elliptic curves. Formation and verification, DSTU 4145-2002. 

[18] Information technologies. Cryptographic protection information. Short message encryption 
algorithm based on Edwards twisted elliptic curves, DSTU 9041:2020. 

[19] M. Goemans, Chernoff bounds, and some applications, 18.310 lecture notes February 21, 2015. 
URL: https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf 

[20] Information technologies. Cryptographic protection of information. Algorithm of symmetric 
block transformation, DSTU 7624:2014. 

[21] Kovalchuk L., Davydenko A., Bespalov O. New statistical criteria for checking independence 
of bit random variables and sequences. In Advances in Information-Control Systems and 
Technologies, ODESA, 2024, p. 344-362. ISBN 978-617-7857-33-3. 

[22] T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd Edition, Wiley, (2003) 
380-410.  

https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

	1. Introduction
	2. Materials and Methods
	Conclusions
	Acknowledgements
	Declaration on Generative AI
	References

