
29 
 

The Machine Learning Model Development Lifecycle for 
Prediction of Electrical Energy Market Volumes 
 
Anatoliy Doroshenko1,2,*, , Dmitry Zhora1, , and Oleksii Zhyrenkov1,  
 
1 Institute of Software Systems of the National Academy of Sciences of Ukraine, Glushkov Ave. 40, build. 5, Kyiv, 03187, 

Ukraine 
2 , Peremohy Ave. 37, Kyiv, 03056, 

Ukraine 
 

Abstract 
The development of production-ready software solution that employs artificial intelligence 
is a complex incremental process that requires competence in multiple areas like business domain, 
programming, statistics, machine learning, containers, networking and deployment. This is a challenge 
for commercial companies as specialists with diverse qualifications and skills are required. This article 
highlights the modern state of electrical energy markets in Ukraine, and provides the comparative 
analysis of regression algorithms used for market volume forecasting. The development process is 
demonstrated from technical perspective: the dataset is analyzed and augmented with additional 
information, the optimal set of input parameters is determined, the best machine learning model is trained 
and serialized to file, the docker image is built with software layer that preloads the serialized model, the 
docker contained is deployed to Kubernetes cluster for real-time access via REST protocol. 
 
Keywords 1 
Machine learning, regression algorithms, model serialization, docker container, Kubernetes, MLOps, 
BentoML, Yatai, inference platform, model deployment, electrical energy markets. 

1. Introduction 

The usage of machine learning techniques [1] de-facto became a standard for modern systems that 
need to provide a forecast, classify data records or implement an associative search. In the long 
term, this approach is expected to provide significant economic benefits. One of the popular and 
established machine learning libraries is scikit-learn [2]. The regression algorithms available in this 
library are used in current research to build the forecasting model for electrical energy markets. 

The increasing complexity of energy markets requires the advanced forecasting models to 
predict future trends accurately. These models are crucial for decision making, trading and 
planning in energy systems. However, the development of production-ready forecasting solution 
involves multiple stages -- each requiring the expertise in programming, mathematics, statistics, 
machine learning, containers, deployment systems and potentially in cloud technologies. 

In this article we showcase the end-to-end machine learning workflow for forecasting the trade 
volume of electrical energy markets utilizing popular regression algorithm and modern 
deployment infrastructure. The workflow employs BentoML orchestration platform for model 
packaging and API hosting, Docker for containerization and Kubernetes for autoscaling. The aim is 
to provide a practical guide that can be applied in real-world environment, emphasizing ease of 
use, modularity, scalability, and interoperability. 

 
 
Information Technology and Implementation (IT&I-2024), November 20-21, 2024, Kyiv, Ukraine 
∗ Corresponding author. 
† These authors contributed equally. 

 doroshenkoanatoliy2@gmail.com (A. Doroshenko); dmitry.zhora@gmx.com (D. Zhora); ozhyrenkov@gmail.com (O. Zhyrenkov) 
 0000-0002-8435-1451 (A. Doroshenko); 0009-0006-6073-7751 (D. Zhora); 0009-0007-3124-1359 (O. Zhyrenkov); 

 
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

  
 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-8435-1451
https://orcid.org/0009-0006-6073-7751
https://orcid.org/0009-0007-3124-1359


30 
 

2. Electrical energy markets dataset 

Historically, Ukraine was supporting only one market for electrical energy. This market of long-
term 
suppliers of electricity. On July 1st, 2019, Ukraine adopted the European model [3] that assumes the 
following four markets: bilateral, day-ahead, intraday, and balancing. Despite the electricity market 
models in Europe having some differences [4], this was a considerable progress in facilitating the 
electricity trading between countries. 
 

 
Figure 1: The time-series data representing four electricity markets (megawatt-hours). 

 
The bilateral market can be referenced also as a future or forward market. In Ukraine, as shown 

in Figure 1, the total amount of deals is recorded every hour. The markers are organized in a way 
to provide integrated access for all market participants and to balance energy price and volatility. 
For example, the bilateral market has lowest electricity price, high volume and low volatility. And 
vice-versa, the balancing market has highest average price, low volume and high volatility. 
 

 

Figure 2: The dependency of market volume on time (megawatt-hours). 



31 
 

The large and complex electrical grids that belong to private or state enterprises still obey to the 
laws of physics. The amount of produced electrical energy is equal to amount of consumed energy, 
and this amount is exactly represented within the corresponding electricity market volume [5]. 
Also, if the amount of electrical energy traded and transmitted is measured on power substations 
then minor losses associated with electrical resistance can be disregarded. As a summary, for 
current application domain the following terms are equivalent: energy production, energy 
consumption and market volume. 

The dataset used for this research matches the time range from July 1st, 2020, to December 31st, 
2021. The corresponding market volume dynamics is shown above in figure 2. The volume of each 
of the four markets mentioned in the beginning of the section is calculated hourly in megawatts 
per hour. For comparison, some European markets record the trading data every 15 minutes. 

3. Usage of additional parameters 

It is common for real-world processes that the dynamics of monitored parameters is affected by 
other factors that are not available in the original dataset. In particular, the electricity production is 
influenced by outside temperature [6]. It was decided to add two temperature columns with hourly 
data representing the center of Ukraine and Kyiv, the corresponding chart is shown in figure 3. 

 

 
Figure 3: Dependency of outdoors temperature in Ukraine sampled hourly. 

 
It is natural to assume periodic patterns in the consumption of electrical energy. Eventually, 

they represent the activity of final consumers. In particular, the following cycle types are possible: 
daily, weekly, monthly, and yearly. The challenge is to provide the representation of time in a way 
that close moments in time would be interpreted as close by machine learning algorithm. 

The solution that is convenient from computational perspective [7] is to calculate sine and 
cosine functions when the corresponding argument represents the phase of the cycle. Obviously, 
the close values on the timescale are represented by close values of these periodic functions. 

The augmented spreadsheet is shown in Figure 4. Besides the original four columns with market 
volume data ten other columns were added. These periodic data series were calculated with the 
help of an algorithm written in Python. 

 



32 
 

 
Figure 4: Augmented market volume dataset with temperature and periodic data. 

4. Resampling of original data 

As original data record contains the figures representing the current hour it makes sense to add 
two types of columns in the dataset: the parameters that represent the history and parameters that 
represent the future to be forecasted. It was a heuristic decision to consider up to 24 hours in both 
directions. The special naming convention was applied for new parameters. For example, the name 
BilateralM1 designates the bilateral market volume that was an hour ago in relation to current 
record under consideration. Similarly, the name BilateralP1 indicated the bilateral market volume 
in one hour. This additional information is expected improve the forecast accuracy. 

The obtained dataset had 13'129 records. In particular, the first 24 data records and last 24 
records were deleted as after resampling they did not contain all necessary parameters. The dataset 
was split into training and testing parts, the proportion of 80% to 20% was used in this case. The 
random split functionality is provided by scikit-learn library. The datasets were saved into files, so 
that different machine learning algorithms considered later are evaluated with equal conditions. 

5. Model comparison metrics 

Three metrics were used in this work to compare input parameter sets and different regression 
algorithms: R2 score (determination coefficient), MAPE (mean absolute percentage error) and MAE 
(mean absolute error). From the computational perspective each metric measures the discrepancy 
between test set and forecasted data for selected output column representing one of electrical 
energy trading volumes. The R2 score was used to make a decision, although these metrics were 
mainly correlated. The nearest neighbors regression algorithm was used to check the performance 
of input parameters, it provides quite competitive results and has limited number of hyperparame-
ters to tune. Other algorithms available in scikit-learn library were evaluated as a next step. 

The complexity of machine learning algorithm within this library is hidden behind fit and 
predict methods that have the same signature across many regression and classification algorithms. 
So, it is relatively simple to reuse these methods and to substitute one algorithm instead of another. 

6. Feature selection approaches 

In general, it is possible to select the set of input parameters manually. This workflow assumes 
adding or removing one parameter at a time and evaluating the performance of resulting model. 
This process is time consuming as it has 2n combinations of parameters, here n represents the total 
number of possible inputs. The alternative is to use the automation facilities provided by machine 
learning library, in this case by scikit-learn. The following classes are worth mentioning: 
GridSearchCV, LassoCV and SelectFromModel. The latter option was used in current research. 

The periodic parameters like SinDay were not added to the history as such parameters precisely 
indicate the moment in time, the history would provide just redundant information in this case. For 
every hour we have 4 parameters representing the electrical energy market volumes and 2 
parameters representing the temperature. Thus, overall we have 6 * 24 = 144 input parameters to 
select from. The final and locally optimal set of input features obtained with SelectFromModel class 



33 
 

contained 60 entries out of 144 [6]. The R2 score was improved slightly and still was around 96% 
for the nearest neighbors algorithm. The positive outcome in this case is that model was somewhat 
simplified. The high dimensionality of input space is typically considered a problem. Thus, the 
removal of noisy parameters in majority of cases should be a positive step. 

7. Prediction error distribution 

 
Figure 5: Forecasting error for one day ahead, bilateral market volume. 

The bilateral market was selected as an example to demonstrate the error distribution. Its 
market volume prediction error on the test set is shown in figures 5 and 6. For convenience of 
representation the test set was sorted by original market volume. The predicted values are shown 
on the first chart with dots. The histogram allows to estimate the probability density of error 
distribution. It is unusual that obtained prediction error is not quite gaussian. In particular, this is 
the case for bilateral and intraday market volumes. 

8. Selection of regression algorithm 

Up to this point, only one algorithm was considered  the nearest neighbors regressor. Clearly, 
it makes sense to evaluate the performance of other algorithms on the same set of input 
parameters. The output parameters were selected for one day ahead forecasting: BilateralP24, 
DayAheadP24, IntradayP24 and BalancingP24. The prediction accuracy results are provided in 
tables 1-3 below. In particular, the comparison with the following established forecasting 
instruments is available: multi-layer perceptron Error! Reference source not found., support v
ector machine Error! Reference source not found., and linear regression Error! Reference 
source not found.. It is worth noting that some algorithms do not natively support multi-output 
configuration, so it was needed to use the class MultiOutputRegressor to overcome this problem 
and cover four output parameters with one machine learning model. 



34 
 

 
Figure 6: Residuals histogram for one day forecasting, bilateral market volume. 

 
Table 1 
R2 scores obtained for regression algorithms on the testing dataset 

Regression Algorithm Bilateral DayAhead Intraday Balancing 
Histogram Gradient Boosting 0.987344 0.972738 0.878364 0.919632 

Ada Boost Regressor 0.980086 0.961343 0.851729 0.903254 
Gradient Boosting Regressor 0.978789 0.963179 0.846663 0.901125 

Extra Trees Regressor 0.974619 0.959632 0.864845 0.898156 
Nearest Neighbors Regressor 0.967512 0.948956 0.860665 0.875551 

Random Forest Regressor 0.966803 0.947184 0.831671 0.873048 
Support Vector Machine 0.938416 0.907901 0.782819 0.785732 

Multi-Layer Perceptron (QNO) 0.935896 0.904092 0.754444 0.791107 
Multi-Layer Perceptron (SGD) 0.934140 0.908779 0.773580 0.815628 

Elastic Net Regressor 0.929248 0.903003 0.755470 0.779082 
Linear Regression 0.929214 0.902979 0.755526 0.779067 

Bayes Ridge Regressor 0.925025 0.892584 0.741958 0.778845 
 
For all three metrics considered in this work the winner algorithm is HistoramGradientBoosting 

regressor. It is one of the fastest methods as it is employing vector quantization technique to 
reduce the training set size. Another benefit is that it can natively process the datasets with 
missing values. The training phase for this algorithm and current dataset takes about 20 seconds, 
the inference or prediction phase takes less than a second. In general, the ensemble algorithms 
perform much better for this specific forecasting task. 

Two types of multi-layer perceptron were tried on a dataset. Here QNO stands for quasi-
Newton optimizer and SGD stands for stochastic gradient descend. In the first case the synaptic 
weights of neural network are determined as analytic solution to optimization task when the 
second-order approximation is calculated for the error function. In the second case the minimum 
(local or global) is determined with iterative descend process. It appears that for this task the 4-
layer architecture performs better than 3 or 5-layer. 
Table 2 



35 
 

Mean absolute percentage errors for selected regression algorithms 
Regression Algorithm Bilateral DayAhead Intraday Balancing 

Histogram Gradient Boosting 0.009708 0.035550 0.306800 3.414739 
Ada Boost Regressor 0.010436 0.039889 0.299648 3.703527 

Gradient Boosting Regressor 0.011671 0.041963 0.331089 4.306912 
Extra Trees Regressor 0.013403 0.044706 0.397157 3.687793 

Nearest Neighbors Regressor 0.014842 0.047414 0.312221 4.160123 
Random Forest Regressor 0.015383 0.050163 0.444903 4.214244 
Support Vector Machine 0.020497 0.065063 0.446288 5.010112 

Multi-Layer Perceptron (QNO) 0.022011 0.068955 0.484654 4.251736 
Multi-Layer Perceptron (SGD) 0.023281 0.067661 0.497681 4.585881 

Elastic Net Regressor 0.021644 0.067856 0.460139 5.917427 
Linear Regression 0.021679 0.067995 0.460715 5.929356 

Bayes Ridge Regressor 0.022225 0.069814 0.501726 5.903614 
 
It makes sense to explain the high mean absolute percentage error for the balancing column in 

table 2. This is not a mistake, these values appear be high because the balancing market volume 
often crosses zero line as presented in figure 2. The calculations according to MAPE formula above 
assume the division by these small values. It is better to interpret this situation that MAPE metric is 
simply not adequate with respect to balancing column. 
 
Table 3 
Mean absolute errors for selected algorithms in megawatt-hours 

Regression Algorithm Bilateral DayAhead Intraday Balancing 
Histogram Gradient Boosting 114.528 136.017 107.623 287.495 

Ada Boost Regressor 122.856 151.671 107.042 308.036 
Gradient Boosting Regressor 137.181 161.254 119.274 324.798 

Extra Trees Regressor 156.724 165.609 118.335 320.904 
Nearest Neighbors Regressor 175.124 183.691 112.622 344.727 

Random Forest Regressor 180.816 187.724 131.586 360.659 
Support Vector Machine 239.541 247.547 150.333 475.954 

Multi-Layer Perceptron (QNO) 257.264 260.785 159.517 481.078 
Multi-Layer Perceptron (SGD) 270.583 256.261 157.399 445.710 

Elastic Net Regressor 253.327 259.857 155.518 487.916 
Linear Regression 253.691 260.242 155.743 488.161 

Bayes Ridge Regressor 260.956 269.083 160.748 487.498 

9. Machine learning operations 

The modern landscape of Machine Learning Operations (MLOps) emphasizes the integration of 
machine learning models into production environment, ensuring that they deliver consistent and 
reliable results. MLOps encompasses a set of practices that aim to automate and improve the 
deployment, monitoring, and management of ML models. The key principles include collaboration 
between data scientists and operations teams, continuous integration and deployment (CI/CD), and 
the use of standardized tools for model serving and monitoring. 

Various ML inference tools have emerged to facilitate these processes, including TensorFlow 
Serving, MLflow, and BentoML [11]. Each tool offers unique features tailored to different aspects of 
the ML lifecycle. The table 4 highlights core features and helps to understand the use cases from 
the architecture perspective. 

Among these tools, BentoML stands out for its robust architecture designed specifically for 
model packaging and deployment. The logic behind BentoML revolves around creating a "Bento" 



36 
 

service that encapsulates the trained model alongside with its dependencies. This service can be 
easily deployed as REST API or gRPC endpoint, allowing for direct integration into applications. 

The key insights are as following: 

1. Deployment Approach: BentoML uses containerization to simplify the deployment, while other 
platforms like Kubeflow and TFX use Kubernetes [12] for orchestration purposes. SageMaker 
offers a managed service approach when multiple user-friendly options are available. 

2. Supported Libraries: BentoML supports wide range of tools including TensorFlow, PyTorch, and 
Scikit-learn, making it versatile for different types of ML projects. In contrast, cloud tools like 
SageMaker support various frameworks, but do not explicitly mention them. TFX platform is 
designed specifically for TensorFlow [17], and this may limit its applicability in projects that use 
other ML libraries. 

3. Scalability: Both Kubeflow and TFX platforms provide exceptional scalability options due to 
their Kubernetes-based architecture, making them suitable for large-scale ML operations [15]. 
It's worth noting that scalability comes with increased complexity in setup and maintenance. 

4. Ease of Use: BentoML is noted for its user-friendly API, which is beneficial for developers 
looking for simplicity. In comparison, Kubeflow platform has a steeper learning curve due to its 
comprehensive features. This trade-off between ease of use and feature richness is a crucial 
consideration for teams choosing an MLOps tool. 

5. Focus Areas: Each tool has its unique attention points. BentoML is primarily aimed at model 
serving and deployment, while MLflow emphasizes on tracking and registry capabilities [16]. 
Kubeflow covers the entire MLOps lifecycle, making it a more holistic solution [15]. The choice 
of tool often depends on the specific needs of the project and the existing infrastructure. 

 
The core architecture consists of several components: the Model Registry for managing model 

versions, the API Server for serving predictions, and Docker module for containerization support. 
This modular design enables seamless scaling and management of machine learning models in 
production. Additionally, BentoML's architecture includes features for model versioning, allowing 
for easy rollback and A/B testing of different model versions. 
 
Table 4 
Machine learning platforms and model deployment characteristics 

Inference 
Platform 

Deployment 
Approach 

Supported 
Libraries Scalability Ease of Use Focus 

BentoML Containers TensorFlow, PyTorch, 
scikit-learn High User-friendly 

API 

Model serving 
and 

deployment 

Mlflow Serverless, 
Containers TensorFlow, PyTorch High Moderate 

complexity 
Tracking and 

Registry 

Kubeflow Kubernetes TensorFlow, PyTorch, 
MXNet Very High Steep learning 

curve 
Full MLOps 

Lifecycle 

SageMaker Managed 
Service Various High User-friendly 

Model building 
and 

deployment 

TFX Kubernetes 
Managed TensorFlow Very High Moderate 

complexity 
End-to-end ML 

pipeline 
 

10.  BentoML architecture overview 

The logic behind BentoML architecture is centered on simplifying the deployment process while 
maintaining many flexibility options. By packaging models into a single service unit, BentoML 
reduces the complexity associated with deployment of machine learning models. The service can 



37 
 

be defined using simple Python decorators, allowing the data scientists to focus on model 
development rather than deployment intricacies. 

When users train a model using popular ML libraries such as TensorFlow or PyTorch, they can 
create a Bento Service by defining an inference function and specifying input/output types. This 
service can then be serialized and stored in the Model Registry for future use. The Model Registry 
not only stores the model but also maintains metadata about the model's performance, training 
data, and hyperparameters, facilitating reproducibility and traceability. 

The BentoML architecture consists of several key components [11]: 

1. Bento Service: The fundamental unit in BentoML is Bento Service, which encapsulates a trained 
ML model along with its inference logic and dependencies. Such service can be easily deployed 
as a REST API or even gRPC endpoint. The Bento Service also includes pre-processing and post-
processing logic, ensuring that data transforms are consistent between training and inference. 

2. Model Registry: BentoML includes a Model Registry that manages different versions of models. 
This feature allows teams to track model lineage and facilitates rollback to previous versions if 
necessary. The registry also supports tagging and metadata management, thus simplifying the 
identification of models for specific use cases or experiments. 

3. API Server: The server exposes the model's inference capabilities through standardized HTTP 
endpoints, making it accessible for client applications. It handles request parsing, input 
validation and error handling, providing a robust interface for model serving. 

4. Containerization: BentoML supports containerization through Docker, enabling users to create 
portable images that encapsulate the entire environment required to run the model. This 
includes not just the model itself, but also all dependencies, ensuring consistency and reliability 
across different deployment environments. 

5. Deployment Options: The users can deploy their Bento Services on various platforms, including 
cloud services like AWS, Azure or Google Cloud. In addition, this can be done on Kubernetes 
clusters using the orchestration tools like Yatai. As an expandable and versatile tool BentoML 
supports edge deployment for IoT devices and mobile applications. 

6. Monitoring and Logging: BentoML integrates with popular monitoring instruments to provide 
the insights into model performance, HTTP request latency and resource utilization. This com-
ponent is crucial for maintaining model health and detecting drifts in production environment. 

7. Adaptive Batching: To optimize the performance BentoML implements adaptive micro-batching 
that dynamically adjusts batch sizes depending on incoming request patterns and available 
computing resources. This feature significantly improves throughput for high-volume services. 

The following entity diagram illustrates the architecture described above: 

 

Figure 7: The conceptual scheme of BentoML architecture and principles. 



38 
 

This architecture provides a comprehensive solution for model deployment, addressing the key 
challenges in MLOps such as versioning, scalability, and integration with existing infrastructure. 
By abstracting away many of the complexities of deployment, BentoML allows data scientists and 
engineers to focus on model development and improvement, ultimately accelerating the lifecycle. 

11.  Deployment on the scale with Yatai 

Yatai, an advanced platform developed by BentoML is designed for seamless model deployment on 
Kubernetes. Its architecture integrates basic principles of scalability, modularity and flexibility, 
making it highly efficient for managing complex machine learning workloads in production [18]. 
Yatai leverages Kubernetes autoscaling capabilities to dynamically allocate resources, ensuring that 
models run efficiently in many diverse computational environments, for example when GPUs are 
used for inference, and CPUs  just for preprocessing. 

One of the fundamental architectural principles of Yatai is its support for microservice-based 
deployments [13]. Each model component is containerized, thus enabling modular deployment and 
maintenance. This microservice architecture allows for independent scaling of different parts of the 
system, optimizing the resource usage depending on workload intensity. For instance, inference 
workloads may scale on demand with GPU-based microservices, while preprocessing tasks can still 
rely on CPU-based services. 
 

 
Figure 8: The logic and component relationships of Yatai deployment. 

Another significant principle is its support for version control and model lifecycle management. 
Yatai stores different versions of machine learning models, ensuring seamless rollbacks or updates, 
making it easier to manage the production environments. These versioning capabilities are tightly 
integrated with BentoML framework for model hosting. Apparently, this feature streamlines the 
continuous integration and continuous deployment (CI/CD) workflows. Yatai incorporates many 
observability features, offering detailed logging, monitoring and tracing capabilities to ensure that 
models perform as expected in production [18]. This includes: 

• Real-time performance metrics 
• Resource utilization tracking 
• Automated alerting for anomalies 
• A/B testing capabilities for model comparison 



39 
 

In addition, the Yatai architecture supports advanced techniques like adaptive micro-batching. 
This approach improves throughput by batching the requests dynamically depending on system 
load. This feature is particularly useful for models serving the real-time predictions as it balances 
response time with computational efficiency. Yatai provides built-in tools for rolling deployments, 
so that updates can be pushed without the downtime. Also, it provides integration with cloud 
platforms, offering flexible infrastructure support. Here are some additional features covered: 

• Canary deployments for gradual rollouts and zero-downtime updates 
• Blue-green deployments for capability to revert the version 
• Traffic splitting for controlled experiments 

By leveraging Kubernetes orchestration and BentoML model serving capabilities Yatai makes 
the deployment of machine learning models simple, scalable and more efficient. Its architecture is 
purpose-built to handle the complexity of machine learning workflows while maintaining high 
operational efficiency, especially in production environments. 
 

 
Figure 9: The example of new deployment creation step in Yatai. 

12.  Prediction model deployment 

As a first step, we need to load the trained model serialized in .onnx format into local models 
registry. In order to simplify the parameter configuration the Config class has been introduced. 
This class can store various settings such as model path, API endpoints and environment variables. 

 
onnx_model = onnx.load("models/split-histo.onnx") 

bento_model = bentoml.models.get(CONFIG.MODEL) 

bentoml.onnx.save_model(CONFIG.MODEL, onnx_model) 
 

It's important to note that the choice of ONNX (Open Neural Network Exchange) format allows 
the interoperability between different deep learning frameworks, enhancing the model portability. 



40 
 

As a next step in BentoML architecture, we need to define a service class and deploy it to runners. 
This approach encapsulates the model and its inference logic into a deployable unit. 
 

self._runner = bentoml.onnx.get(model).to_runner() 

self._service = bentoml.Service(service, runners=[self._runner]) 

self._service.api(input=NumpyNdarray(), output=JSON())(self.predict) 

 
The use of runners allows for efficient resource allocation and parallel processing of requests, 

which is crucial for handling high-volume prediction tasks. In order to handle the forecasting 
requests in real-time a RESTful API service can be developed using Python-based technology 
FastAPI. This framework is chosen for its simplicity and speed, making it ideal for serving machine 
learning models in production. FastAPI offers remarkable performance due to its asynchronous 
features and effective request management. The documentation is generated automatically, which 
reduces the development time and increases API comprehension. The API is expected to receive 
POST requests with relevant market data from the client application, it interacts with preloaded 
forecasting model and returns the predictions in real-time. 
 

app = FastAPI() 

app.include_router(dummy_router) 

predictor = Predictor(CONFIG.SERVICE, CONFIG.MODEL) 

predictor._service.mount_asgi_app(app) 

svc = predictor._service # Entry point for the bentofile 

 
The service is configured to handle multiple concurrent requests, providing energy traders and 

market analysts with near-instantaneous predictions. The asynchronous nature of FastAPI request 
handling loop ensures that the service can handle high demands of live market environments. Also, 
the API can be extended to include: 

• Input validation to ensure data quality 
• Rate limiting to prevent service abuse 
• Authentication and authorization for secure access 
• Caching mechanisms for frequently requested predictions 

The key element within BentoML development lifecycle is bentofile.yaml  a configuration file 
defining packaging methods and input service. It also allows to reference the aforementioned svc 
object and requirements.txt file with all libraries required by running process. 
 

service: "main:svc" 

[...] 

 
The bentofile.yaml can be customized further to include: 

• Environment variables for different deployment stages 
• Resource requirements (CPU, memory, GPU) 
• Health check endpoints 
• Logging and monitoring configurations 

The uniform service deployment procedure for different environments can be easily achieved 
when Bento service is encapsulated in a Docker container. So, the next stage in the deployment 
pipeline is service containerization. Docker ensures that dependencies like system libraries and 
environment variables are bundled together, providing consistency between development, testing, 
and production environments. The BentoML build command allows to create the docker image and 
push it to local docker registry. This containerized inference model can be used in a simple docker-
compose.yml to define the local deployment environment. 



41 
 

 
version: "3.9" 
services: 
  energizer: 
    image: split-histo:latest 
    ports: 
      - 3000:3000 
    restart: on-failure 
    networks: 
      - energizer 
networks: 
  energizer: 
    name: energizer 

This docker-compose setup can be enhanced with: 

• Volume mounts for persistent storage 
• Environment-specific configurations 
• Integration with monitoring services 
• Load balancing for high-availability setups 

Once the container image is created in registry, it can be deployed into Kubernetes cluster 
using the orchestration platform Yatai. Kubernetes manages the deployment, autoscaling and 
maintenance of the containers, it ensures that they remain available and responsive. This setup 
allows the model to handle real-time requests with low latency, making it suitable for high-
frequency market predictions. The Kubernetes deployment can be further optimized by the 
following steps: 

• Implementation of horizontal pod autoscaling that can be based on CPU or memory usage 
• Configuration of network policies for enhanced security 
• Definition of persistent volumes for model storage and caching 
• Integration with cloud-native monitoring and logging solutions 

As a summary, the electrical energy market forecasting model can be efficiently deployed, 
scaled and managed when following the workflow described above. This architecture can provide 
reliable and timely predictions that can support trade decisions in the volatile energy market 
landscape. 

13. Conclusion 

It was demonstrated in this article that development of production quality forecasting solution 
requires multiple steps: data preprocessing and augmentation, selection of input parameters, 
selection of machine learning algorithm, hyperparameter optimization, model training and 
serialization, adding of REST API layer, creation of docker image, networking and autoscaling 
configuration, deployment of the service into Kubernetes cluster. Apparently, this list is not 
comprehensive. 

While some tools like scikit-learn library and BentoML platform used in this research are 
Python-based, many other tools are cross-platform, this includes Docker and Kubernetes. It is 
important to note that major software vendors take the interoperability and reliability quite 
seriously and invest considerable resources into platform-independent solutions like ONNX 
standard. For instance the winner algorithm HistogramGradientBoosting implemented in Python 
has equivalent implementation in .NET called LightGBM. It is advantageous to be able to develop 
the model in one programming language and deploy to environment that is matching better the 
skill set of infrastructure team. 

The forecasting algorithm could still be placed into simple application that can be launched 
even from the console. What are the benefits of employing complex technology stack that is 
proposed in the article? The first aspect is the ability to get the forecast on a remote device, this 
can be another computer, mobile device or a web page. Also, the prediction can be customized for 



42 
 

specific end user. Another important aspect is scalability. The business requirements for the 
current task are limited to forecasting the trade volume once an hour, but this is just an example. 
Once the forecasting algorithm is available it is beneficial to leverage it within the enterprise. So, 
autoscaling and resiliency become important features affecting the company's financial goals. 

Another consideration is design and development of such custom forecasting solution. From the 
perspective of agile project planning the top-down decomposition of implementation tasks is much 
more productive than starting a development process with unknown stages and many technical 
challenges. It is helpful when the artifacts that should be passed in technological chain from one 
stage to another are known and well specified. This information helps to separate implementation 
tasks and allows to speed up project development with parallel streams. 

Acknowledgements 
The authors are grateful to the scientists of G. E. Pukhov Institute of Energy Modeling for 
providing the hourly data on electricity markets in Ukraine. 

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 

References 
[1] C. Shah, A Hands-On Introduction to Machine Learning, 1st. ed., Cambridge University Press, 

Cambridge, 2023. 
[2] Scikit-learn: Machine Learning in Python. URL: https://scikit-learn.org/stable/. 
[3] A new model of the electricity market has been launched in Ukraine. URL: 

https://expro.com.ua/en/tidings/a-new-model-of-the-electricity-market-has-been-launched-in-
ukraine. 

[4] Ilyash, T. Salashenko, Does the Ukrainian electricity 
market correspond to the European model?, Utilities Policy 79 (2022), 1 14. doi: 
10.1016/j.jup.2022.101436. 

[5] A. Doroshenko, D. Zhora, O. Savchuk, O. Yatsenko, Application of machine learning 
techniques for forecasting electricity generation and consumption in Ukraine, in: Proceedings 
of IT&I 2023, 2023, pp. 136 146. URL: https://ceur-ws.org/Vol-3624/Paper_12.pdf. 

[6] A. Doroshenko, D. Zhora, V. Haidukevych, Y. Haidukevych, O. Yatsenko, Forecasting 
Electrical Energy Consumption for 24 Hours Ahead at Country Scale, in: Proceedings of 
UkrPROG 2024, 2024. 

[7] E. Levinson. Three Approaches to Encoding Time Information as Features for ML Models. 
Nvidia Developer Technical Blog, 2022. https://developer.nvidia.com/blog/three-approaches-
to-encoding-time-information-as-features-for-ml-models/. 

[8] S. Haykin, Neural networks: a comprehensive foundation, Prentice Hall, 1998. 
[9] V. N. Vapnik, Statistical learning theory, Wiley, 1998. 
[10] C. M. Bishop, Pattern recognition and machine learning (Information Science and Statistics), 

Springer, 2006. https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-
Pattern-Recognition-and-Machine-Learning-2006.pdf 

[11] Introduction to BentoML. https://docs.bentoml.com/en/latest/get-started/introduction.html. 
[12] Kubernetes Cluster Architecture. https://kubernetes.io/docs/concepts/architecture/. 
[13] Yatai tool: https://bentoml.com/blog/yatai-10-model-deployment-on-kubernetes-made-easy/. 
[14] N. Klingler. ONNX (Open Neural Network Exchange) Explained: A New Paradigm in AI 

Interoperability, 2023. https://viso.ai/computer-vision/onnx-explained/. 
[15] Kubeflow architecture and principles: https://www.kubeflow.org/docs/started/architecture/. 
[16] MLFlow introduction: https://mlflow.org/docs/latest/getting-started/index.html. 
[17] TFX Guide: https://www.tensorflow.org/tfx/guide. 
[18] Yatai key principles: https://docs.yatai.io/en/latest/concepts/architecture.html. 


	1. Introduction
	2. Electrical energy markets dataset
	3. Usage of additional parameters
	4. Resampling of original data
	5. Model comparison metrics
	6. Feature selection approaches
	7. Prediction error distribution
	8. Selection of regression algorithm
	9. Machine learning operations
	10.  BentoML architecture overview
	11.  Deployment on the scale with Yatai
	12.  Prediction model deployment
	13. Conclusion
	Acknowledgements
	Declaration on Generative AI
	References

