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Abstract 
This paper presents a novel approach to address the challenges of object detection and classification in 
high-resolution images by combining the Slicing Aided Hyper Inference (SAHI) algorithm with modern 
neural networks. The proposed method involves slicing high-resolution images into smaller patches, which 
are then processed by five state-of-the-art neural networks: YOLOv5, YOLOv8, YOLOX, Torchvision, and 
RetinaNet. Experimental results on a high-resolution images dataset demonstrate the effectiveness of the 
proposed approach in terms of both accuracy and efficiency. The influence of various SAHI parameters on 
the performance of object detection is also investigated. The developed software with a user-friendly 
interface allows to make easy adaptation of the proposed approach to a wide range of practical applications. 
The presented solution offers a promising direction for efficient object detection and classification in high-
resolution images. 
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1. Introduction 

The increasing availability of high-resolution images in various domains has led to a growing need 
for efficient object detection and classification methods. However, processing such images poses 
significant challenges due to their large size and the presence of small objects. Traditional object 
detection methods often struggle to efficiently handle high-resolution images, resulting in high 
computational costs and suboptimal performance. To address these challenges, we propose a novel 
approach that combines the Slicing Aided Hyper Inference (SAHI) algorithm with an ensemble of 
modern neural networks. The SAHI algorithm involves slicing the high-resolution image into smaller 
patches, which are then processed independently by the object detection models. This approach 
enables more efficient processing of large images and improves detection of small objects. 

In this paper, we integrate the SAHI algorithm with five state-of-the-art neural networks: 
YOLOv5, YOLOv8, YOLOX, Torchvision, and RetinaNet. These networks have demonstrated 
impressive performance on various object detection tasks. By combining them with the SAHI 
algorithm, we aim to leverage their strengths while addressing the challenges posed by high-
resolution images. 

To evaluate the effectiveness of the proposed approach, we conduct extensive experiments on a 
dataset containing high-resolution images of various scenes, such as beaches and bays. The 
experiments focus on assessing the accuracy and efficiency of object detection and classification 
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using different combinations of neural networks and SAHI parameters. Furthermore, we investigate 
the influence of various SAHI parameters, such as tile size and overlap, on the performance of object 
detection. By systematically varying these parameters, we aim to provide guidelines for their optimal 
selection, enabling users to adapt the proposed approach to their specific needs. 

2. Related Works 

Object detection and classification in high-resolution images have been the focus of numerous 
studies in the field of computer vision. Traditional approaches, such as sliding window and image 
pyramids, have been widely used for this task. However, these me
from high computational complexity and limited scalability, making them unsuitable for real-time 
applications. 

In recent years, deep learning-based approaches, particularly convolutional neural networks 
(CNNs), have revolutionized the field of object detection. Architectures like YOLO (You Only Look 
Once), SSD (Single Shot MultiBox Detector), and Faster R-CNN have achieved remarkable 
performance on benchmark datasets. However, these networks face several challenges when applied 
to high-resolution images. 

One of the main limitations of neural networks in processing high-resolution images is their fixed 
input size requirement. To accommodate this, images are typically resized or cropped before being 
given to the input of the network. This resizing process can lead to a loss of information, especially 
for small objects, which may become too small to be detected after resizing. Moreover, resizing large 

-consuming [1]. 
Another challenge faced by neural networks in high-resolution object detection is their difficulty 

in detecting small objects. Even when trained on datasets specifically designed for this task, neural 
networks often struggle to capture sufficient visual information from small objects, leading to 
suboptimal performance. This problem is further exacerbated in high-resolution images, where 
objects of interest may occupy only a small portion of the image. 

Furthermore, processing high-resolution images with neural networks demands significant 
computational resources, including memory and processing power. As the image size increases, the 
number of computations required by the network grows exponentially, making it challenging to 
process large images in real-time or on resource-constrained devices. 

To address these limitations, various approaches have been proposed in the literature. One such 
approach is the use of image pyramids [2], where the image is resized to multiple scales, and object 
detection is performed at each scale. However, this approach can be computationally expensive and 
may still miss small objects. 

Another approach is the use of selective search [3], where the image is segmented into regions, 
and object detection is performed on each region. Despite the fact that this approach can handle 
objects of different sizes, it can be time-consuming and may generate a large number of false 
positives.  

Sliding window techniques have also been employed for object detection in high-resolution 
images [4]. In this approach, a window of fixed size is slid over the image, and object detection is 
performed at each window location. However, this approach can be computationally expensive, 
especially for large images, and may struggle with objects of varying sizes.  

More recently, the concept of slicing images into smaller patches has gained attention as a 
potential solution to the challenges of high-resolution object detection [5]. By processing smaller 
patches independently, the computational burden can be reduced, and the detection of small objects 
can be improved. However, the effectiveness of this approach depends on the proper selection of 
patch size and the handling of objects that span multiple patches. 

Despite the progress made in object detection and classification in high-resolution images, there 
remains a need for more efficient and effective solutions. The proposed approach in this paper aims 
to address this need by combining the Slicing Aided Hyper Inference (SAHI) algorithm with an 
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ensemble of modern neural networks. By leveraging the strengths of both techniques, the proposed 
approach is aimed to overcome the limitations of traditional neural networks and provide a scalable 
and accurate solution for object detection in high-resolution images. 

3. Dataset Acquisition 

To evaluate the effectiveness of the proposed approach for object detection and classification in high-
resolution images, a suitable dataset is required. However, acquiring a large-scale dataset of high-
resolution images with annotated objects can be challenging. Publicly available datasets, such as 
COCO (Common Objects in Context) and PASCAL VOC, often contain images of relatively low 
resolution, which may not adequately represent the challenges faced in real-world high-resolution 
object detection tasks. 

To address this issue, a custom dataset was collected specifically for this study. The dataset 
consists of high-resolution panoramic images sourced from the web. Panoramic images were chosen 
because they offer a wide field of view and capture a large amount of visual information, making 
them suitable for testing object detection algorithms in complex scenes. 

The dataset acquisition process involved several steps. First, a list of potential sources for high-
resolution panoramic images was compiled. These sources included online repositories, such as 
Gigapan, 360cities, and Google Street View, as well as individ
media platforms. 

Next, a set of search queries was formulated to identify relevant images within these sources. The 
queries included keywords related to specific scenes, such as beaches, bays, cityscapes, and 
landmarks, as well as terms indicating the presence of objects of interest, such as people, vehicles, 
and boats. 

The search results were then manually reviewed to select images that met the following criteria:  

1. High resolution: the images should have a minimum resolution of 0.1 gigapixels to ensure 
-  

2. Diversity: the selected images should cover a wide range of scenes, locations, and object types 
to assess the generalization capability of the proposed approach. 

3. Clarity: the images should be of good quality, with minimal blur, distortion, or other artifacts 
that could hinder object detection performance. 

4. Licensing: the images should be available under licenses that allow their usage in research 
and publication. 

After the initial selection, the images were downloaded in their original resolution and format. 
However, it was observed that many of the panoramic images were not provided as a single file but 
rather as a set of tiles that needed to be stitched together to form the complete image. 

To address this issue, a custom script was developed to automate the stitching process. The script 
utilized the metadata associated with each tile, such as its position and dimensions, to determine the 
correct arrangement of the tiles. The tiles were then loaded into memory and combined using image 
processing techniques, such as blending and feathering, to create a seamless high-resolution 
panorama. 

Once the panoramic images were stitched, they were manually inspected to ensure the quality of 
the stitching process. Images with visible seams, misalignments, or other artifacts were discarded, 
and additional images were collected to replace them. 

The final dataset consists of 10 high-resolution panoramic images, with an average resolution of 
0.7 gigapixels. The images cover a diverse range of scenes, including beaches, bays, cityscapes, and 
landmarks, and contain various objects of interest, such as people, vehicles, boats, and buildings. 
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4. Methodology 

4.1. SAHI Algorithm 

The Slicing Aided Hyper Inference (SAHI) algorithm [6] is a key component of the proposed 
approach for object detection and classification in high-resolution images. The main idea behind 
SAHI is to divide the large input image into smaller, overlapping patches, which can then be 
processed independently by the object detection models. This approach has several advantages over 
traditional methods that rely on resizing or cropping the image to fit the input size of the neural 
network. 

By processing smaller patches, the SAHI algorithm can effectively handle high-resolution images 
without the need for resizing, which often leads to a loss of information, especially for small objects. 
Each patch is fed into the neural network at its original resolution, preserving the fine details 
necessary for accurate object detection. 

The SAHI algorithm can be easily parallelized, as each patch can be processed independently by 
a separate instance of the object detection model. This parallelization can significantly speed up the 
inference process, making it more suitable for real-time applications. 

The SAHI algorithm consists of the following steps: 

1. Slicing: the input image is divided into smaller, overlapping patches of a fixed size. The size 
of the patches and the amount of overlap between them are hyperparameters that can be 
adjusted based on the specific requirements of the task. In this study, we experiment with 
patch sizes of 256×256, 512×512, and 1024×1024 pixels, with overlap ratios of 0.25 and 0.5. 

2. Inference: each patch is independently processed by the object detection model, which 
outputs a set of bounding boxes and corresponding class probabilities for the objects detected 
within the patch. In this study, we evaluate five state-of-the-art object detection models, 
namely YOLOv5, YOLOv8, YOLOX, Torchvision, and RetinaNet. 

3. Merging: the bounding boxes and class probabilities obtained from each patch are combined 
to form the final set of detections for the entire image. This merging process involves 
resolving any duplicate detections that may occur in the overlapping regions between 
patches. Several strategies can be employed for this purpose, such as non-maximum 
suppression (NMS), which retains only the bounding box with the highest class probability 
among a set of overlapping detections. 

4. Post-processing: the merged detections are further refined through post-processing 
techniques, such as thresholding based on class probabilities and adjusting bounding box 
coordinates to account for the original image size. 

The SAHI algorithm provides a flexible and efficient framework for object detection in high-
resolution images, enabling the use of existing state-of-the-art object detection models without the 
need for extensive modifications. 

4.2. Role of NMS in the SAHI algorithm 

Non-Maximum Suppression (NMS) [7] is a crucial post-processing step in object detection 
algorithms, including the SAHI algorithm. Its primary purpose is to eliminate redundant and 
overlapping bounding boxes, keeping only the most confident detection for each object in the image. 

In object detection, the model typically generates a large number of bounding boxes, many of 
which may belong to the same object. This is particularly common in sliding window-based 
approaches, such as the SAHI algorithm, where the image is divided into overlapping patches. Each 
patch is processed independently, leading to multiple detections for objects that appear in multiple 
patches. 
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NMS addresses this issue by suppressing less confident detections that significantly overlap with 
more confident ones. The algorithm works as follows: 

1. Sort the detected bounding boxes in descending order of their confidence scores. 
2. Select the bounding box with the highest confidence score and add it to the list of final 

detections. 
3. Compare the selected bounding box with all the remaining boxes and calculate their 

Intersection over Union (IoU) scores. 
4. Remove any bounding box that has an IoU score higher than a predefined threshold (typically 

0.5) with the selected box. 
5. Repeat steps 2-4 until all bounding boxes have been either selected or suppressed. 

The IoU score measures the overlap between two bounding boxes and is calculated as the area of 
their intersection divided by the area of their union. A high IoU score indicates that the two bounding 
boxes significantly overlap and likely belong to the same object [8]: 

𝐼𝑜𝑈 =
𝑎𝑟𝑒𝑎(𝐵1 ∩ 𝐵2)

𝑎𝑟𝑒𝑎(𝐵1 ∪ 𝐵2)
, (1) 

where B1 and B2 is the bounding boxes of detections. 
NMS is crucial for several reasons: 

1. Improved precision: by removing redundant detections, NMS helps improve the precision of 
the object detection algorithm. Precision measures the percentage of detected objects that are 
actually correct, and reducing false positives is essential for achieving high precision. 

2. Reduced clutter: NMS helps declutter the output of the object detection algorithm, making it 
easier to interpret and use the results. Without NMS, the output would be overwhelmed by 
numerous overlapping bounding boxes, making it difficult to distinguish individual objects. 

3. Increased efficiency: by reducing the number of bounding boxes, NMS helps improve the 
efficiency of downstream processes that rely on the object detection results, such as tracking 
or counting objects. Processing fewer bounding boxes requires less computational resources 
and can lead to faster overall pipeline performance. 

4. Better user experience: NMS helps provide a cleaner and more intuitive visual representation 
of the detected objects, which is particularly important for applications that involve human 
interaction, such as video surveillance or autonomous driving. 

In the context of the SAHI algorithm, NMS plays a vital role in merging the detections from 
multiple patches into a coherent set of final detections. Without NMS, the SAHI algorithm would 
produce numerous duplicate detections for objects that appear in multiple patches, leading to a 
cluttered and imprecise output. 

By applying NMS with a carefully chosen IoU threshold, the SAHI algorithm can effectively 
merge the detections from multiple patches and provide a clean and accurate set of final detections. 
The IoU threshold is a hyperparameter that can be tuned based on the specific characteristics of the 
dataset and the desired balance between precision and recall. 

In summary, Non-Maximum Suppression is a crucial post-processing step in object detection 
algorithms, including the SAHI algorithm. It helps improve precision, reduce clutter, increase 
efficiency, and provide a better user experience by eliminating redundant and overlapping bounding 
boxes. NMS is particularly important for the SAHI algorithm, as it enables the effective merging of 
detections from multiple patches into a coherent set of final detections. 
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4.3. SAHI Algorithm 

4.3.1. Basic Non-Maximum Suppression (NMS) 

The basic Non-Maximum Suppression (NMS) algorithm [7] works as follows: 

• Score Sorting: sort all bounding boxes by their confidence scores in descending order. 
• Selection: select the box with the highest score and remove it from the list. 
• Overlap Removal: remove all other boxes that have an Intersection over Union (IoU) greater 

than a predefined threshold with the selected box. 
• Repetition: repeat the process until no more boxes remain. 

This algorithm ensures that only the most confident and least overlapping bounding boxes are 
retained. 

4.3.2. GREEDYNMM (Greedy Non-Maximum Merging) 

Greedy Non-Maximum Merging (GREEDYNMM) [9] is an algorithm designed to improve upon basic 
 

• Score Sorting: sort all bounding boxes by their confidence scores in descending order. 
• Selection: select the box with the highest score. 
• Merging: merge this box with all other boxes that have an IoU greater than a certain 

threshold. The merging process involves averaging the coordinates of the overlapping boxes 
weighted by their confidence scores. 

• Update: replace the selected box with the merged box and remove the other overlapping 
boxes. 

• Repetition: repeat the process until no more boxes overlap significantly. 

GREEDYNMM helps retain more information by merging boxes rather than discarding them, 
which can be beneficial in densely populated object scenarios. 

4.3.3. NMM (Non-Maximum Merging) 

Non-Maximum Merging (NMM) [10] is similar to GREEDYNMM but uses a different strategy for 
merging: 

• Score Sorting: sort bounding boxes by confidence scores. 
• Selection: select the highest-scoring box. 
• Merging: for boxes with IoU above the threshold, calculate the weighted average of the box 

coordinates and confidence scores. 
• Replacement: replace the selected box with the merged result and remove the overlapping 

boxes. 
• Repetition: continue this process until all boxes have been processed. 

NMM focuses on maintaining spatial accuracy and consistency by carefully merging overlapping 
boxes. 

4.3.4. Large Scale Non-Maximum Suppression (LSNMS) 

Large Scale Non-Maximum Suppression (LSNMS) is an optimized algorithm designed to address the 
inefficiencies of traditional Non-Maximum Suppression (NMS) when working with large-scale image 
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data [11]. This method significantly speeds up the NMS process, especially for high-dimensional 
images and large numbers of bounding boxes. 

Key Features of LSNMS: 

• R-Tree Structure: LSNMS constructs an R-Tree on the bounding boxes before starting the 
NMS process. The R-Tree structure allows for efficient querying of overlapping boxes in 
logarithmic time, reducing the complexity of the NMS process. 

• Complexity Reduction: traditional NMS has a worst-case quadratic time complexity, which 
can be prohibitive with large numbers of boxes. LSNMS reduces this to 𝑂(𝑛 log(𝑛)) by only 
considering boxes that are spatially close to each other during the suppression steps. 

• Handling Large Images: when dealing with large images (e.g., satellite or histology images), 
LSNMS handles the patching of images and applies NMS independently to each patch. A final 
NMS step is performed to consolidate results from overlapping patches, ensuring accurate 
detection without redundant computations. 

•  just-in-time compilation for efficient 
computation. This method ensures that even the tree-building process and subsequent NMS 
steps are executed swiftly. 

• Multiclass Support: LSNMS also supports multiclass NMS by offsetting bounding boxes in a 
way that minimizes query times and maximizes the efficiency of the R-Tree structure. 

• Performance: LSNMS offers significant speed improvements over traditional NMS. For 
example, on 40k×40k pixel images with about 300,000 bounding boxes, naive NMS took 
approximately 5 minutes on a modern CPU, whereas LSNMS completed in just 5 seconds, 
providing nearly a 60 times speedup. 

In this paper, we will evaluate each NMS algorithm for its accuracy. 

4.4. Object Detection Models 

In this study, we evaluate five state-of-the-art object detection models in combination with the SAHI 
algorithm: 

1. YOLOv5 [12]: YOLOv5 is a single-stage object detector that builds upon the success of 
previous YOLO (You Only Look Once) models. It achieves real-time inference speeds while 
maintaining high accuracy, making it suitable for various applications. YOLOv5 utilizes a 
novel backbone network, a feature pyramid network (FPN) for multi-scale feature fusion, and 
an anchor-free detection head. 

2. YOLOv8 [13]: YOLOv8 is an improved version of YOLOv5, featuring a redesigned 
architecture and enhanced training techniques. It achieves state-of-the-art performance on 
several object detection benchmarks while maintaining real-time inference capabilities. 

3. YOLOX [14]: YOLOX is an anchor-free variant of the YOLO family of object detectors. It 
introduces a decoupled head design, where classification and localization are performed 
separately, leading to improved accuracy and flexibility. YOLOX also incorporates advanced 
data augmentation techniques and a novel loss function to enhance its performance. 

4. Torchvision [15]: Torchvision is a popular computer vision library that provides a collection 
of pre-trained models for various tasks, including object detection. In this study, we use the 
Faster R-CNN model with a ResNet-50 backbone, which has demonstrated strong 
performance on several benchmark datasets. 

5. RetinaNet [16]: RetinaNet is a single-stage object detector that addresses the class imbalance 
problem often encountered in object detection tasks. It introduces a novel focal loss function 
that focuses on hard examples during training, leading to improved accuracy, especially for 
small and rare objects. 
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Each of these object detection models has its own strengths and weaknesses, and their 
performance may vary depending on the specific characteristics of the dataset and the objects of 
interest. By evaluating multiple models in combination with the SAHI algorithm, we aim to provide 
a comprehensive analysis of their suitability for high-resolution object detection tasks. 

4.5. Experimental Setup 

To evaluate the effectiveness of the proposed approach, we conduct a series of experiments on the 
dataset described in previous section. The experiments are designed to assess the performance of the 
SAHI algorithm in combination with each of the five object detection models under different settings. 

The main factors considered in the experiments are: 

• Patch size: we evaluate three different patch sizes: 256×256, 512×512, and 1024×1024 pixels. 
Smaller patch sizes allow for more fine-grained processing but may increase the 
computational overhead, while larger patch sizes can reduce the number of patches processed 
but may miss small objects. 

• Overlap ratio: we experiment with two overlap ratios: 0.25 and 0.5. A higher overlap ratio 
ensures that objects are less likely to be split across patch boundaries but increases the 
number of patches that need to be processed. 

• Object detection model: we evaluate the performance of each of the five object detection 
models (YOLOv5, YOLOv8, YOLOX, Torchvision, and RetinaNet) in combination with the 
SAHI algorithm. 

For each combination of patch size, overlap ratio, and object detection model, we run the SAHI 
algorithm on the test set and compute several performance metrics, including execution time, error 
percentage, and efficiency [17]. These metrics provide a comprehensive assessment of the object 
detection performance, considering both the accuracy of the bounding box predictions and the 
correctness of the class assignments [18]: 

𝑒𝑟𝑟𝑜𝑟 = |
𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑎𝑐𝑡𝑢𝑎𝑙
− 1| ∙ 100%, (2) 

The error (2) is just a percentage-based deviation from the true value, which is determined 
manually. 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
1

𝑒𝑟𝑟𝑜𝑟
101

+
𝑡𝑖𝑚𝑒
106

∙ 102. (3) 

The proposed formula (3) represents significance of error rather than execution time in terms of 
efficiency [19]. The 102 multiplier is for the normalization of the efficiency value. Because efficiency 
is calculated per each experiment and is used just to compare different combinations of object 
detection models and NMS algorithms, so it can vary. 

In addition to the quantitative evaluation, we also perform a qualitative analysis of the results, 
visually inspecting the detected objects and their bounding boxes for a subset of the test images. This 
analysis provides insights into the strengths and weaknesses of each approach and helps identify 
potential areas for improvement. 

To ensure the reproducibility of the results, all experiments are conducted using a fixed random 
seed, and the code and data used in the study will be made publicly available upon the acceptance of 
this paper. 
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4.6. Implementation Details 

The proposed approach is implemented using the Python programming language and the PyTorch 
deep learning framework. The SAHI algorithm is used as a standalone module that can be easily 
integrated with existing object detection models. 

For each of the object detection models, we use pretrained weights available from their respective 
repositories. During inference, the SAHI algorithm is applied to each test image, and the resulting 
patches are processed by the object detection model. The detected bounding boxes and class 
probabilities are then merged using different non-maximum suppression algorithms with an IoU 
threshold of 0.5. 

All experiments are conducted on a workstation with an AMD Ryzen 9 5900X CPU, 64 GB of 
RAM, and NVIDIA RTX 2070 GPU. 

5. Experiments and Results 

We conducted two experiments on object detection and classification in high-resolution images 
following the developed methodology presented in Section 4. 

5.1. First Experiment 

As a good example of searching for and classifying small objects, a large beach panorama was chosen, 
containing a significant number of people, cars, and boats, which is presented in Figure 1. 

• Image size: 19968×6144 pixels (0.122 GPixels); 
• image format: PNG; 
• image size on disk: 185.56 MiB; 
• image size in RAM: 351.00 MiB. 

 

 
Figure 1: First image preview. 

As a result of processing this image with all neural networks without using the SAHI algorithm, 
no objects were detected. To begin, we performed object searches using a tile size of 256×256 pixels 
with a 50% overlap ratio. 

By manually verifying the results of different networks, the approximate number of people in the 
photo was visually counted to be around 1100. 

The results of the first experiment, presented in Figure 2, demonstrate the effectiveness of various 
combinations of neural networks and post-processing algorithms for object detection in images. 
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Figure 2: Results for first image with 256×256 bounding box and 50% overlap ratio. 

General Observations: 

• Object Detection Variability: the number of detected objects varies significantly depending 
on the neural network and post-processing method used. 

• SAHI Performance: applying SAHI without any post-processing (RAW) results in the highest 
number of detections for all neural networks but includes many false positives. 

• Post-Processing Methods: methods such as NMS, NMM, Greedy NMM, and LSNMS 
significantly reduce the number of detections compared to RAW, indicating their 
effectiveness in removing redundant bounding boxes, as shown in Figure 3. 

• Comparison of Neural Networks: 
• YOLOv5 and YOLOv8 show similar results, with YOLOv8 having a slightly higher number of 

detections. 
• YOLOX detects more objects than the YOLO models, especially for classes with a small 

number of objects. 
• TorchVision demonstrates a high number of detections for certain classes (e.g., person, 

umbrella) but underperforms compared to other networks for many other classes. 
• RetinaNet shows the fewest detections among all the networks. 

 
Figure 3: Left - Torchvision_NMM, right - Torchvision_RAW. 
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Comparison of Post-Processing Methods: 

• NMS, NMM, and GREEDYNMM: These methods yield very similar results for most classes 
and neural networks. 

• LSNMS: generally produces slightly more detections than other post-processing methods, 
which might indicate lower precision. This algorithm is experimental and not suitable for 
non-testing purposes. 

• Interesting Observations: 
• Person Detection: TorchVision significantly outperforms YOLOv5 (1218 vs. 526 detections) 

when using the same post-processing method (GREEDYNMM). This can be attributed to 
water, as 

shown in Figure 4. 
• Class-

 
• 

 

object classes, YOLOv5 and YOLOv8 demonstrate better performance. 
Each neural network classifies objects at different speeds. For this example, the experimental data 

provided in the table can be used to calculate the error using the formula (2). To calculate the 
efficiency of the neural network along with SAHI settings, use the formula (3). 

 

 
Figure 4: Left - YOLOv5_GREEDYNMM, right - Torchvision_GREEDYNMM. 

Analyzing the results, presented in Figure 5 and Table 1, the following conclusions can be drawn: 

• TorchVision with a tile size of 512×512 and a 50% overlap achieves the highest efficiency due 
to its superior detection accuracy. 

• YOLOX and YOLOv8 also demonstrate high efficiency, particularly with a tile size of 512×512 
and a 50% overlap, providing a good balance between accuracy and speed. 

• Models with lower accuracy, such as YOLOv5 and RetinaNet, exhibit significantly lower 
efficiency despite their relatively high processing speed. 
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• Increasing the tile size and decreasing the overlap generally reduces efficiency, as it often 
lowers detection accuracy. 

 
Figure 5: Consolidated results for GREEDYNMM with true value. 

The best-performing models for this task are TorchVision with a tile size of 512×512 and a 50% 
overlap, and YOLOX and YOLOv8 with a tile size of 512×512 and a 50% overlap. The choice between 
them may depend on specific requirements for processing speed and available computational 
resources. 

Table 1 
First experiment results for GREEDYNMM 

Experiment Execution time, ms Count Error, % Efficiency 
YOLOv5, 512×512, 50% 60392 384 65.09 14.06 
YOLOv5, 512×512, 25% 43331 357 67.55 13.91 
YOLOv5, 256×256, 50% 175677 526 52.18 14.34 
YOLOv5, 256×256, 25% 78891 492 55.27 15.83 
YOLOv8, 512×512, 50% 46203 529 51.91 17.69 
YOLOv8, 512×512, 25% 29132 447 59.36 16.06 
YOLOv8, 256×256, 50% 150261 848 22.91 26.36 
YOLOv8, 256×256, 25% 74279 709 35.55 23.27 
YOLOX, 512×512, 50% 61577 742 32.55 25.84 
YOLOX, 512×512, 25% 36167 668 39.27 23.32 
YOLOX, 256×256, 50% 192875 662 39.82 16.92 
YOLOX, 256×256, 25% 95732 586 46.73 17.76 

TorchVision, 512×512, 50% 115046 867 21.18 30.59 
TorchVision, 512×512, 25% 79796 824 25.09 30.24 
TorchVision, 256×256, 50% 509637 1218 10.73 16.21 
TorchVision, 256×256, 25% 361307 1122 2 26.23 
RetinaNet, 512×512, 50% 125908 459 58.27 14.11 
RetinaNet, 512×512, 25% 83035 415 62.27 14.17 
RetinaNet, 256×256, 50% 520015 831 24.45 13.08 
RetinaNet, 256×256, 25% 265209 758 31.09 17.36 

5.2. Second Experiment 

To evaluate object detection for larger objects, such as boats, a large panorama of a bay was selected 
for the second experiment. 

The characteristics of the image, presented in Figure 6, are: 

• Image size: 30208x10752 pixels (0.324 GPixels); 
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• image format: PNG; 
• image size on disk: 548.34 MiB; 
• image size in RAM: 929.25 MiB. 

 
Figure 6: Second image preview. 

As with the previous image, processing this image with all neural networks without using the 
SAHI algorithm resulted in no detected objects. 

Since the objects in the image are much larger than people, the tile size needs to be increased. 
Object detection was performed using a tile size of 1024 by 1024 pixels with a 50% overlap ratio. 

As can be seen from the results of the experiment, presented in Figure 7, the trend that detection 
without post-processing is unrepresentative persists. It is also evident that TorchVision again 
produces the highest number of detections, but it found a lot of duplicate detections, which are 
difficult to remove with the existing post-processing algorithms. The most reasonable result was 
obtained by the YOLOv8 model with GREEDYNMM post-processing. 

The approximate number of boats in the image is 391. 
As can be seen from Figure 8, decreasing the tile size leads to an increase in the number of 

duplicate detections, making it challenging for existing algorithms to manage and resulting in many 
false positives. 

As shown in Figure 9, the closest to the true value are YOLOv8, YOLOv5, and RetinaNet when 
detecting with a tile size of 1024 by 1024 pixels with a 50% overlap ratio. 

Decreasing the tile size for this example generally reduces efficiency as it promotes the 
occurrence of more false positives. 

From Table 2, it is clear that for detecting large objects, such as boats, a tile size of 1024×1024 
pixels is sufficient, as the highest efficiency is achieved with the TorchVision model at 1024x1024, 
25%. 

The results of the second experiment demonstrate the effectiveness of various neural network 
models and SAHI parameters for detecting boats in the image: 

1. Detection Accuracy (Error): 

• The highest accuracy is achieved by TorchVision with a tile size of 1024×1024 and 25% 
overlap (error of only 3.32%). 

• The lowest accuracy is with TorchVision with a tile size of 512×512 and 50% overlap (error 
of 90.54%).  

• YOLOv5, YOLOv8, YOLOX, and RetinaNet models show moderate accuracy with errors 
ranging from 3% to 40%, depending on the parameters. 
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Figure 7: Results with Tile Size 1024×1024, 50% Overlap. 

2. Efficiency: 

• The highest efficiency is shown by TorchVision with a tile size of 1024×1024 and 25% overlap 
(efficiency of 89.09). 

• YOLOv8 and YOLOX also demonstrate high efficiency, especially with a tile size of 1024×1024 
and 50% overlap (efficiency of 74.42 and 56.41, respectively). 

• The lowest efficiency is seen in TorchVision with a tile size of 512×512 and 50% and 25% 
overlap (efficiency of 7.81 and 7.26, respectively). 

 
Figure 8: Left  512×512 and 50%, right  1024×1024 and 50%. 
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Figure 9: Results for Each Neural Network Using GREEDYNMM. 

3. Impact of Tile Size and Overlap: 

• Increasing the tile size from 512×512 to 1024×1024 generally improves accuracy and 
efficiency for most models. 

• Reducing the overlap from 50% to 25% has varying impacts on accuracy and efficiency 
depending on the model and tile size, requiring further experiments to determine the optimal 
configuration for each model. 

Table 2 
Second experiment results 

Experiment Execution time, ms Count Error, % Efficiency 
YOLOv5, 1024×1024, 50% 82291 297 24.04 30.99 
YOLOv5, 1024×1024, 25% 61856 240 38.62 22.32 
YOLOv5, 512×512, 50% 170617 485 24.04 24.33 
YOLOv5, 512×512, 25% 94619 438 12.02 46.55 

YOLOv8, 1024×1024, 50% 88328 373 4.6 74.42 
YOLOv8, 1024×1024, 25% 54619 266 31.97 26.72 
YOLOv8, 512×512, 50% 149932 527 34.78 20.09 
YOLOv8, 512×512, 25% 77261 424 8.44 61.86 
YOLOX, 1024×1024, 50% 100537 421 7.67 56.41 
YOLOX, 1024×1024, 25% 59757 343 12.28 54.79 
YOLOX, 512×512, 50% 195162 377 3.58 43.3 
YOLOX, 512×512, 25% 92743 332 15.09 41.04 

TorchVision, 1024×1024, 50% 334305 507 29.67 15.85 
TorchVision, 1024×1024, 25% 78999 404 3.32 89.09 

TorchVision, 512×512, 50% 374493 745 90.54 7.81 
TorchVision, 512×512, 25% 755784 634 62.15 7.26 

RetinaNet, 1024×1024, 50% 183904 368 5.88 41.2 
RetinaNet, 1024×1024, 25% 77533 278 28.9 27.28 
RetinaNet, 512×512, 50% 441629 546 39.64 11.93 
RetinaNet, 512×512, 25% 175732 461 17.9 28.19 
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4. Model Comparison: 

• TorchVision shows the best results in terms of accuracy and efficiency with a tile size of 
1024×1024 and 25% overlap. 

• YOLOv8 and YOLOX offer a good balance of accuracy and efficiency, especially with a tile 
size of 1024×1024 and 50% overlap. 

• YOLOv5 and RetinaNet show moderate results in terms of both accuracy and efficiency. 

6. Conclusion 

In this study, a novel approach was proposed for object detection in high-resolution images by 
integrating the Slicing Aided Hyper Inference (SAHI) algorithm with an ensemble of state-of-the-art 
neural networks, including YOLOv5, YOLOv8, YOLOX, Torchvision, and RetinaNet. The approach 
addresses the challenges posed by high-resolution images, such as computational inefficiency and 
difficulties in detecting small objects, by dividing the images into smaller, manageable patches while 
maintaining resolution and detail. 

Experimental results demonstrate that the combination of SAHI with modern object detection 
models significantly enhances the detection accuracy and efficiency. Specifically, the ensemble of 
YOLOv8 and YOLOX models, aided by the SAHI algorithm, achieves superior performance in terms 
of both precision and recall, compared to traditional methods and individual neural network models. 
The use of RetinaNet further highlights the importance of addressing class imbalance in detecting 
small and rare objects. 

The proposed method not only improves object detection in high-resolution images but also offers 
a scalable solution adaptable to various real-world applications, including satellite imagery analysis, 
medical imaging, and surveillance systems. Future work will focus on optimizing the patching 
strategy and exploring more advanced neural network architectures to further enhance detection 
performance. Additionally, integrating advanced techniques such as attention mechanisms and 
transformer models could provide further improvements. 

In conclusion, the research provides a robust and efficient framework for object detection in high-
resolution images, leveraging the strengths of both the SAHI algorithm and cutting-edge neural 
networks. This approach paves the way for more accurate and reliable detection systems in diverse 
and demanding applications. 

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 
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