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Abstract 
The paradigm of constructive-synthesizing modelling is based on the idea of the world as a collection of 
different structures. The development of constructive-synthesizing modelling provides an opportunity to 
automate the formation of structures. Automation possibilities depend on the degree of formalization and 
the quality of the corresponding models. In this work, the formalization of constructive-synthesizing 
models is enriched by the ontological representation of knowledge. This approach is demonstrated in the 
formation and display of geometric fractals. The developed models are implemented by software tools using 
Java and Apache Jena framework. It is possible to change the basic elements of fractals based on their 
ontological representation.  
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1. Introduction 

One of the important stages of the software life cycle is design, namely, the development of a 
program model. 

If software engineers, customers and users participate in the development of the model, then the 
models can be represented using standardized languages, such as XML, Entity Relationship Diagram 
(ERD), and others. They differ in the semantic richness. So far, several attempts have been made to 
analyze and organize them [16], [18]. Some of them have a long history of development and 
implementation e.g. UML. Their main advantage for domain experts is ease of use. But they always 
have to be combined with a software code or an expert, as they are not expressive enough to 
represent the semantics of the subject area. 

Ontology is an explicit specification of conceptualization [13]. Ways of representing ontologies 
are languages OWL, RDF and SHACL. As their basis is description logic, it becomes possible to 
represent a greater number of rules and restrictions of the domain in the model itself, and not in the 
software code implementing it. There are light- and heavyweight ontologies. A lightweight ontology 
is a vocabulary that does not include rules and restrictions [9], that is, it does not make use of all the 
capabilities of ontological languages. 

The authors previously modelled fractals using databases [20]. The application of ontologies is 
being researched for fractal modelling to clearly distinguish conceptual modelling and automation 
in software development. 

 

Information Technology and Implementation (IT&I-2024), November 20-21, 2024, Kyiv, Ukraine 

Corresponding author. 
 These authors contributed equally. 

 olena.kuropiatnyk@ust.edu.ua (O. Kuropiatnyk); v.i.shynkarenko@ust.edu.ua (V. Shynkarenko); 
onto@common.railml.org (L. Zhuchyi); lyakhova.mariya@gmail.com (M. Lyakhova) 

 0000-0003-2286-884X (O. Kuropiatnyk); 0000-0001-8738-7225 (V. Shynkarenko); 0000-0002-9209-7262 (L. Zhuchyi); 
0009-0002-3997-3304 (M. Lyakhova) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:v.i.shynkarenko@ust.edu.ua
mailto:onto@common.railml.org
mailto:lyakhova.mariya@gmail.com
https://orcid.org/0000-0003-2286-884X
https://orcid.org/0000-0001-8738-7225
https://orcid.org/0000-0002-9209-7262
https://orcid.org/0009-0002-3997-3304


420 
 

In this research the ontology is developed using the OWL Full language profile since the set of 
properties of data and objects overlap in the ontology. 

2. Analysis of the application of ontologies in the modelling of fractals 

We will adhere to the definition of a fractal as a set that has the property of self-similarity. These 
structures are used e.g. to develop maps in computer games [10] and to optimize storage and queries 
to big data [27], namely indexing, in which multidimensional data is transformed into one-
dimensional data  

Many tools designed for developing computer games use fractals to form fragments of 
background textures of the Earth's surface and the plant world. This allows for significant reducing 
the amount of data to be stored while increasing the realism of images. 

To use fractals in software development, there is a need to somehow represent them. One such 
method is L-systems in JSXGRaph [11]  a Javascript library for rendering various functions, 
geometries and fractals in a web browser. 

 The JSXGRaph library is currently actively used, for example, in statistical analysis [14], to 
visualize diagrams. The JSXGRaph graph is displayed on the screen using XML (HTML DOM). 

XML is also used for serialization domain-specific language the Fractal Architecture Description 
Language (Fractal ADL) in the context of representing fractals [1]. Fractal ADL is the representation 
language of the Fractal component model (a domain-independent model of operating systems, 
graphical interfaces, etc.). The property of self-similarity is understood as "reflexive containment 
relationships" of system components [6]. The systems and their components are represented the 
same way at any level of abstraction [7]. The Fractal ADL language was developed 20 years ago but 
is still used in software development [15]. 

To represent the restrictions for Fractal ADL, add-ons are developed [8]: Fpath is a language of 
requests that can be used to check the reconfiguration of the computer system architecture, for 
example, the exclusion of cyclic dependence (a system component cannot include itself). 

From the point of view of semantic richness, the next logical step after XML is UML and ontology 
models. Ontologies are actively used in the domains of transport, medicine, construction, etc. 
However, the formalization of fractal models using ontologies is an underexplored area. A simple 
example of using ontologies is the representation of fractals in RDF or JSON format. Here, RDF also 
allows checking by the Shapes Constraint Language (SHACL) the data for compliance with the 
developed Halcyon model  pathology imaging analysis and feature management system [4], as well 
as reusing well established ontologies like Annotations ontology [26]. 

Components of the "Fractal" system [1] can be combined with others, for example, components 
of the user interface and functions. In [3], this is implemented using the OWL ConcurTaskTrees 
ontology and SPARQL queries. 

The GeoHilbert RDF dictionary [23], based on the GML, was developed to model spatial 
properties. Based on facts, queries are optimized using the same methods as in [27]. However, RDF 
vocabularies are lightweight ontologies and do not make use of description logic. 

The presented analysis shows that fractal structures are used in information systems and software 
i.e. representation models (languages) are being developed for fractals. It was determined that there 
is a need for methods of representing constraints for fractal systems. A logical way to represent 
constraints is an ontology. But at the moment, they are not fully used in the domain of fractal 
systems. 

One of the examples of the use of description logic in the domain related to fractal structures is 
the Collections ontology of data structures [5]. It makes full use of ontologies but includes concepts 
to represent simpler structures. In this work, a formal model of more complex fractal structures is 
developed. 

In the end, it is worth mentioning that usually, developers are dissatisfied with OWL Full 
ontologies and try to "fix" them [24], i.e. convert them to OWL DL. This kind of correction 
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automation is implemented in e.g. Protégé reasoner Pellet [19]. However, some ontologies are 
intentionally developed specifically in the OWL Full profile [12], [17], [2]. 

3. Purpose 

The purpose of the work is to improve constructive-synthesizing modelling by increasing 
formalization (enrichment of semantics) with the formal representation of knowledge by ontological 
means as soon as the more formalized the model, the more suitable it is for automating software 
development. 

The work lays the foundation for such automation using the example of formal models of 
geometric fractals. 

4. Constructive-synthesizing modelling of fractals 

To formalize the process of forming fractals, we will use the apparatus of constructive-synthesizing 
modelling [21], [22], which is evolved formal grammars. To represent a fractal, we define a 
constructor and specialize it accordingly: 

𝐶 = 〈Μ, Σ, Λ〉 ⟼𝑆 , 〈Μ𝑓 , Σ𝑓 , Λ𝑓〉, (1) 
where Μ𝑓 ⊃ 𝑇 is a non-homogeneous extensible medium containing a set of terminals 𝑇. Terminals 
include subsets of elements: 

• graphic: basic, which are elements of construction, intermediate and final forms constructed 
on their basis, which have the property of self-similarity. Basic ones include lines, curves, 
and geometric shapes; 

• symbolic: Latin letters indicating commands for the actor, which will be matched with 
graphic elements, signs of addition and subtraction operations  to indicate tilt angles; "→" 
substitution relation. 

Σ𝑓    is a signature of relations and operations performed on medium elements, Λ𝑓 is a set of 
assertions of information support (ISC). ISC includes ontology, purpose, rules, constraints, initial 
conditions and conditions for end of construction. 

4.1 Ontological model of the medium 

Let's consider the ontology of the medium and represent it using OWL Full (Figure 1). The set of 
terminals includes elements of two classes that correspond to the graphic representation of fractals: 
basic Line_type and Fractal are the constructed elements that have the property of self-similarity. 
The set of attributes of a terminal is determined by its belonging to a class. Line_type has derived 
classes: Curve, Ellipse, Line, Rectangle, Triangle. The individuals of Line_type class can be described 
with the property has_width. Rectangle individuals can be described using the property has_height. 

The set of constructed elements (fractals) is determined by their class. The Fractal class is basic. 
Its individuals can be described using the following object properties: available constants 
(hasConstant) and variables (hasVariable), line type (hasLineType), and starting terminal (hasStart). 
Their domain is individuals of the corresponding Constant, Variable, and Line_type ontology classes. 
The Fractal class individuals can be described with the following data properties: the tilt angle when 
constructing the fractal image, and the number of iterations during construction. 

Subclasses of Fractal are Dragon_curve, Koch_curve, Sierpinsky_triangle. The subclass implicitly 
defines the structure of a fractal, which is described by the substitution rules 𝑙1 → 𝑙2, where 𝑙1, 𝑙2 are 
forms that may contain terminal symbolic elements, "→" is the substitution relation. The Variable 
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and Constant ontology classes can be used to describe the terminal elements of the substitution 
relation. 

 
Figure 1: The class hierarchy of fractal description and auxiliary components 

Data attributes of the Variable class are: 

• hasMeaning_Koch_curve and hasMeaning_Sierpinsky_triangle  are description of actions 
done when constructing an image of the Koch curve and Sierpinsky triangle, respectively, if 
the current symbol in the sequence of symbols formed by the constructor is an individual of 
the Variable class; 

• hasRule_Koch_curve and hasRule_Sierpinsky_triangle represent the right part of the 
substitution rule for constructing the image of the Koch curve and Sierpinsky triangle, 
respectively, the left part is an individual of the Variable class. 

The data properties describing individuals of the Constant class are hasMeaning_Koch_curve and 
hasMeaning_Sierpinsky_triangle. They are the descriptions of actions when constructing the image 
of the Koch curve and Sierpinsky triangle, respectively, if the current symbol in the sequence of 
symbols formed by the constructor is an individual of the Constant class. 

Some individuals of the Variable and Constant classes may have attributes that are not described 
in the class. 

The medium ontology includes a basic set of individuals that is used as the values of object 
properties or used to construct new fractal individuals. Let's consider these individuals in more detail. 

F1, F10 are individuals of the Koch_curve class. They are Koch curves, with different angles of 
inclination, the number of iterations and the type of line. The F1 individual is used as a base for 
forming other individuals. That is, new individuals of the Koch_curve class are built using data of 
the hasConstant, hasVariable, and hasStart properties of this individual. The structure of the F1 
individual is shown in Figure 2. Rectangles with a purple contour are individuals and blue ones are 
ontology classes. Solid yellow lines are a class-subclass relationship. Dashed yellow lines indicate 
that individuals are of a certain class. So, for example, F is an individual of the Variable class, and F1 
is a Koch_curve. Solid blue lines are properties. For example, the individual F is the value of the 

 
Individuals F2 and F3 are base for all new individuals of classes Sierpinsky_triangle and 

Dragon_curve, respectively. Their structure is like one of F1. 
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Figure 2: The structure of the Koch Curve individual 

When forming a new individual of one of the Fractal subclasses based on individuals existing in 
the ontology, the following procedure is used: 

1. the number of iterations and the angle are set as an integer, 
2. line type is selected from the list of individuals of Line_Type subclasses, 
3. set of variables and constants is copied from the base individual of the fractal of the selected 

class. 

To set the line type, the ontology has individuals: C1 of the Curve class, E1  Ellipse, L1  Line, 
T1  Triangle, and R1  Rectangle. This list can be updated. 

Individuals of the Constant class present in the ontology are "+", "-". They have data properties 
defined by the Constant class. 

Individuals of the Variable class present in the ontology are F, and G. They have data properties 
defined by the Variable class. Individual F has additional properties: 

• hasMeaning_Dragon_curve is description of the actions to be done during the construction 
of the dragon curve image, if this variable is processed in the rule; 

• hasRule_Dragon_curve represents the right side of the substitution rule for drawing the 
dragon curve image, the left side is the given variable. 

Such a difference in the attributes of the variables F and G is caused by the type of fractals they 
are used to construct. 

Individuals of the Fractal class and its subclasses can have the hasStart property as a data property 
or an object property. This is due to the conceptualization of the property. If the derivation of the 
chain that describes the fractal according to the rules of substitution starts with a variable, then 
hasStart takes the value of the individual from the basic set of individuals of the ontology. If the 
output starts with a construction (chain) of variables and constants, then hasStart is represented by 
a string. So, for example, the derivation of the chain that describes the constructions of the fractal of 
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chain that describes the fractal constructions of the Sierpinski_triangle class begins with F-G-G. 
Elements of the given chain are individuals present in the ontology. 

4.2 Signature of operations for constructing fractals 

Operations like concatenation, partial and complete derivation, as well as substitution relations, are 
defined on the medium elements. 

The concatenation operation ⨂(𝑙1, 𝑙2) is the operation of linking form elements. If 𝑙1 and 𝑙2 are 
forms, then the form 𝑙1, 𝑙2 is called a concatenation of forms 𝑙1, 𝑙2. Any sequence of medium elements 
on which the binding operation has been performed will be called a form. 

A substitution relation is a binary relation with attributes 𝑙𝑖 →𝑤𝑝
𝑙𝑗. For the form 𝑙 =

⨂(𝑙1, 𝑙2, … , 𝑙ℎ , … , 𝑙𝑘) and an available substitution relation (𝑙ℎ , 𝑙𝑞)𝑤𝑝
 (can be written as 𝑙ℎ →  𝑙𝑞) 

such that 𝑙ℎ ≺ 𝑙𝑞 (𝑙ℎ is part of 𝑙𝑞), the result of the ternary substitution operation 𝑙∗ = ⟹𝑤𝑝
(𝑙ℎ , 𝑙𝑞 , 𝑙) 

will be of the form  𝑙∗ = ⨂(𝑙1, 𝑙2, … , 𝑙𝑞 , … , 𝑙𝑘). 
Partial derivation operation (| ⇒ (Ψ, l𝑖𝑤𝑖

)), Ψ is the set of production rules consists of choosing 

one of the available substitution rules 𝜓𝑟: 〈𝑠𝑟, 𝑔𝑟〉 ∈ Ψ with substitution relations rs and performing 

substitution operations on its basis, rg   operations on attributes, they are not used in this paper. 
The binary operation of complete derivation or simple derivation (|| ⇒ (Ψ, l𝑖𝑤𝑖

)consists of a step-
by-step transformation of forms, starting from the initial non-terminal and ending with a 
construction that satisfies the derivation termination condition, which involves the cyclic execution 
of partial derivation operations. The derivation termination condition is the completion of a certain 
number of cycle iterations. 

The purpose of construction is to form a sequence of symbols for further transformation into a 
sequence of graphic primitives of the Line_type class, forming a geometric fractal. 

Restrictions of the fractal constructor are set by the executor of the model, which affects the 
number and complexity of the constructed structures and the time of their formation. 

The initial conditions for the construction of fractals are the presence of individuals of the 
Variable and Constant classes, which are used as the value of the hasStart property. The value of the 
has_n property is defined. 

The construction completion condition is the execution of a specified number of iterations in the 
full derivation operation, which is determined by the value of the has_n attribute of the Fractal class. 

4.3 Interpretation of the fractal constructor 

We interpret the constructor using the algorithmic constructor 𝐶𝐴 [21], [22]: 

〈𝐶𝑓 , 𝐶𝐴,𝑓 = 〈Μ𝐴,𝑓 , 𝑉𝐴,𝑓 , Σ𝐴,𝑓 , Λ𝐴,𝑓〉〉 ⟼   〈 𝐶𝑓𝐴 , 𝐶𝑓𝐴 = 〈Μ1, Σ1, Λ1, 𝑍〉〉 𝐼 , (2) 

where Λ1 ⊃ Λ𝑓, 𝑉𝐴,𝑓 = {𝐴𝑖
0|𝑋𝑖

𝑌𝑖 } is the set of basic algorithms, 𝑋𝑖 , 𝑌𝑖  are the set of definitions and 

values of the algorithm 𝐴𝑖
0|𝑋𝑖

𝑌𝑖 . Λ𝐴,𝑓 = {Μ𝐴,𝑓 ⊃ ⋃ (𝑋(𝐴𝑖
0)⋃𝑌(𝐴𝑖

0))𝐴𝑖
0∈𝑉𝐴,𝑓

∪ Ω(𝐶𝑓)}

 
 non-

homogeneous medium, Ω(𝐶𝑓) is set of algorithms implemented by the 𝐶𝑓 constructor;  Λ1 =

{(𝐴1
0|𝐴𝑖,𝐴𝑗

𝐴𝑖∙𝐴𝑗 ↲ " ∙ "), (𝐴2 |𝑙𝑖,𝑙𝑗

𝑙𝑖∙𝑙𝑗 ↲ "⨂"), (𝐴3 |𝑙ℎ,𝑙𝑞 ,𝑓𝑖

𝑓𝑖 ↲ ⟹), (𝐴4 |𝑓𝑖,Ψ
𝑓𝑖∙

↲ ⟹), (𝐴5 |𝜎,Ψ
Ω̅∙ ↲ ⟹), Λ1 ⊃ Λ𝑓; Z 

is the set of possible executors (actors) that can implement algorithms 𝐴𝑖 . The result of the actor's 
work is a constructed chain of symbols that describes the construction of fractals using the symbols 
of constants and variables. 

The constructor 𝐶𝑓𝐴   includes algorithms for performing operations: 
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• 𝐴1
0|𝐴𝑖,𝐴𝑗

𝐴𝑖∙𝐴𝑗   algorithm compositions, 𝐴𝑖 ∙ 𝐴𝑗  sequential execution of algorithm 𝐴𝑗 after 

algorithm 𝐴𝑖; 
• 𝐴2 |𝑙𝑖,𝑙𝑗

𝑙𝑖∙𝑙𝑗  concatenations of medium elements, 𝑙𝑖, 𝑙𝑗  forms; 

•  𝐴3 |𝑙ℎ,𝑙𝑞 ,𝑓𝑖

𝑓𝑖   substitutions, 𝑙ℎ,𝑙𝑞
, 𝑓𝑖  forms; 

• 𝐴4 |𝑓𝑖,Ψ
𝑓𝑖∙ , 𝐴5 |𝜎,Ψ

Ω̅∙   partial and complete derivation, where 𝑓𝑖,𝑓𝑗   are forms, 𝜎 is an axiom, Ω̅ is 
a set of formed constructions. 

By construction, we mean the form formed by multiple substitution and subtraction operations. 
As a result of the interpretation, we get a constructive system, which consists of a construction 

model and a model of the internal executor. 

4.4 The concretization of the fractal constructor 

To clarify the entered operations, we will concretize the constructor 𝐶𝐴: 

〈 𝐶𝐼,𝐶𝐴 𝐴,𝑓 = 〈Μ1, Σ1, Λ1, 𝑍〉〉 ⟼   〈 𝐶𝐾,𝐼,𝐶𝐴 𝐴,𝑓 = 〈Μ1, Σ1, Λ2, 𝑍〉〉 𝐾 , (3) 
where Λ2 = Λ1 ∪ Λ3, Λ3 ⊃ {𝑀1 ⊃ 𝑇, 𝑇 = {𝐹, 𝐺, +, −}}, is a set of terminals, 𝐹 is the initial terminal 
for constructing fractals of the Koch_curve, Dragon_curve classes. For fractals of the Sierpinski 
triangle class, the FGG form is the initial terminal. 

ISC: rules of substitutions. Let us consider the rules of substitutions, which allow us to formalize 
the process of building a chain of instructions for building a fractal image. 

To construct a fractal of the Koch Curve class we apply the following rule: 

 (4) 
where the symbols are commands: "-

element (the type of the element is specified by the hasLineType property of the Fractal class). 
To build a fractal of the Dragon's Curve class we apply the following rules: 

 (5) 
 (6) 

where the symbols are commands: G  go up and draw a graphic element (the type of the element is 
specified by the hasLineType property of the Fractal class), the meaning of the other symbols is 
similar to Koch's curve. 

To construct a fractal of the Sierpinski triangle class we apply the following rules: 

 (7) 
 (8) 

where symbols are commands with meanings given above. 

5. Graphic representation of geometric fractals based on a 
constructive-production model with ontological knowledge 

The developed constructor model (3) is the basis of the program for constructing images of 
geometric fractals. The program is written in Java using the Jena framework. 

In the process of forming graphic representations of fractals, external and internal actors are 
involved (Figure 3). 
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Figure 3: Workflow for formation and visualization of geometric fractal images 

External actor: 

• the developer of the constructive-synthesizing model including the ontology (U1); 
• the user is the customer of constructions and the supplier of data for construction (U2); 
• hardware-software system (U3), for the interaction of external actors: the user (U2) with Jena; 
• a converter of chain structures (software and hardware, as in this case (part of U3), or an 

internal executor of another constructive-synthesizing model). 

The internal actor (Z) forms fractal sequences of symbols based on the developed constructive-
synthesizing model. 

Let's consider the details of the internal actor. The implementation of the interpreted constructor 
𝐶𝐴 𝑓 consists of the formation of chains of symbols that satisfy the rules (4  8) by executing 

algorithms related to signature operations according to the rules of axiomatics: 

𝐶𝐴 𝑓  ⟼ Ω̅𝑅 ( 𝐶𝐴 𝑓), (9) 

where Ω̅( 𝐶𝐴 𝑓) ⊂ Ω( 𝐶𝐴 𝑓), Ω̅ is the set of formed chains of symbols that describe fractals, Ω( 𝐶𝐴 𝑓) is 

the set of constructions that satisfy 𝐶𝐴 𝑓
 and can potentially be formed. 

Let's consider the details of external actors. The formation of a graphic representation of a chain 
of symbols Ω̅ is performed by an external actor using the program. For this, it uses chains formed by 
the internal executor of the constructor (Z) according to the rules and parameters (number of 
iterations, angle), which are presented in the ontology. The construction of the chain is performed 
by separate methods (functions) of the program. The input data (medium elements) describing the 
fractal are read programmatically from the OWL file using a SPARQL query: 

PREFIX f:<http://www.semanticweb.org/... # > 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
SELECT ?subject 
WHERE { ?subject rdfs:subClassOf f:Fractal}. 
Thus, the developed program represents an internal actor that implements the algorithms of the 

constructor (2), and an external one that uses the results of the work of the internal (chain of symbols) 
to form images. 
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For the elements, Ω̅( 𝐶𝐴 𝑓) we will construct an image of a geometric fractal that corresponds to 
the description chain. 0 and 0 show images of basic fractals. These individuals are in the input data. 
The value of the properties of the individual F1 of the Koch curve is shown in the information panel 
of the program window on the left (Figure 4). Fractal F2, the graphic representation of which is 
shown in Figure 5a, has the following property values: angle  120, number of iterations  4, start 

 ellipse. 

 
Figure 4: The main window of the program with a graphic representation of an individual of the 
Koch Curve class 

Let's consider the construction of a graphic representation of the F2 individual in more detail. 
Rules (7) and (8) were applied for its construction. 

The initial condition of vision is the string (axiom): F-G-G. 
As a result of performing the substitution operation on each iteration (there are 4 iterations), we 

get a new chain (line). 
To build a chain, in the first step, we choose a symbol to replace. Let's start with the first F. Apply 

the substitution rule F to it: F-G- -G-G. 

-G-G. 
Step 3: choose another F symbol to replace and apply the F replacement rule to it. The following 

steps are similar to the previous ones. As a result, we will get a chain of symbols, which is interpreted 
by the developed program as follows: F  command for drawing the graphic element horizontally, G 
is for vertically, plus and minus signs indicate the angles of rotation after the image by the F or G 
command. The type of the element is determined by an individual of one of the subclasses of the 
LineType class. 

Fractal F3, the graphic representation of which is shown in Figure 5b, has the following property 
values: angle  90, number of iterations  8, start terminal S, line type  ellipse. All rules used during 
construction correspond to those described in section 4.4. These and other given images of geometric 
fractals were obtained analogously to the construction of the F2 fractal image. 
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a  

b  

Figure 5: Basic fractals: a  Serpinski triangle, b  dragon curve 

According to the scheme in Figure 3, the functionality of the program allows for the addition of 
new individuals, which is done by an external actor. An example of implementation is shown in 
Figure 6. Other examples of images of individuals added through the user interface are shown in 
Figure 7. The signature of drawing elements is given in the format "class - number of iterations - 
angle - line type". 

The construction of fractal images for individuals, which are created during the operation of the 
program, is similar to basic fractals. Chain derivation uses a set of rules that was defined in the base 
fractal that was used as a basis for the current one. The number of iterations, angle and type of 
graphic element for new individuals is set by the user during creation. In the future, these parameters 
are used in the construction of the chain and its interpretation - construction of the image. 

6. Discussion 

The developed ontology of fractals (as part of the constructive-synthesizing model) can be classified 
as a lightweight ontology. The language of the ontology is OWL Full profile, that is, the descriptive 
logic was not used. 

The definition of data types is a component of the model. Types impose restrictions on the set of 
valid values and operations on them. Such restrictions could be represented by constructs of the 
rdfs:domain type. Verification of the consistency of the schema and data can be performed by 
reasoners. Data types are currently checked by Java's built-in type conversion functions. 
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a  b  

Figure 6: Creating a new individual: a  setting the parameters of a new individual, b  a graphic 
representation of the added individual  

Setting fractal parameters and checking their correctness is carried out with the help of a 
graphical user interface implemented by Java tools. At the same time, there is a practice of validating 
data of similar forms by ontological means and is implemented using SHACL [25]. 

The properties of a new fractal are determined by copying them from existing individual fractals. 
In the future, to remove limitations of OWL Full, this can be implemented by OWL or SHACL 
SPARQL rules. In this case, they will be explicitly represented as part of the model. 

In the future, the ontology of fractals can be extended by the presentation of other known fractals. 
There are several alternative approaches to the formation of fractals: algorithmic, functional-

algorithmic using a system of iterated functions based on a set of contracting mappings , L-systems, 
contracting affine automata. 

 
a 

 
b    c 

a  Koch curve-3 -90 -triangle , b  Serpinski triangle-3-120-curve ,  
c  Koch curve-2-(-75)-rectangle 

Figure 7: Elements of a set of implementations of the fractal constructor 
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Constructive-synthesizing modeling allows for creating a more types of fractals [20]. In 
particular, the possibilities of application are shown: 

• large variation of color and forms attributes; 
• non-uniform source elements of fractal formation; 
• combining various, including classical, fractals in multifractals. 

In this paper, the use of ontologies in constructive-synthesizing modeling extends the possibilities 
of generating fractals with a variable element base and initial conditions. 

fractals and a universal constructively synthesizing modeled structure based on ontologies. 

7. Conclusions 

As part of the pilot project, constructive-synthesizing models were improved with formal ontologies 
on the example of formalizing the processes of forming geometric fractals. 

The results of separation of the automation of formation and conceptual modelling of fractals are 
given. It will be appropriate to enrich the ontology with rules and restrictions to ensure the 
verification of the consistency of the model by ontological means. For this, a further redistribution 
of the model constructions from the software code to the ontology must be performed.  

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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