
442 
 

On supervising and coordinating microservices within 
web applications on the basis of state machines 

Oleksiy Oletsky1,*, , Vitalii Moholivskyi1  

1 National University of Kyiv-Mohyla Academy, Skovorody St.,2, Kyiv, 04070, Ukraine  
 

Abstract 
An approach to supervising and coordinating microservices by applying state machines has been developed. 
Both orchestration and choreography approaches to coordinate microservices are considered. A prototype 
of a library based on this approach is reported.  Such advantages as central control over complex distributed 
execution flow, declarative description of the system and the workflows within it, rich facilities for 
visualization, possibilities for applying mathematical methods of analysis, keeping track of long-running 
background jobs, monitoring the current state of a system, testing coordination logic with mocked 
implementation details, and debugging coordination issues using only state machine without running 
microservices are illustrated on examples. A way to estimate the importance measures of specific 
microservices based on PageRank-like techniques is suggested. Some suggestions for using other 
mathematical methods are discussed.  

Keywords  
Microservice architecture, state machines, coordination of microservices, orchestration of microservices, 
choreography of microservices, distributed workflows, PageRank-like algorithms, ranking microservices1 

1. Introduction 

Microservice architecture has gained wide acknowledgment among software architects since its 
introduction in 2011 [1-3]. Traditional monolithic architecture exposes more and more weaknesses 
and vulnerabilities in coping with such challenges as scalability demands, fault tolerance standards, 
flexibility requirements [2]. Such issues become especially crucial for the situation, currently very 
typical, when an application is deployed in cloud, and facilities for replacing or updating separate 
modules independently of other parts of the application matter very much. 

On the other hand, microservice architecture puts forward new challenges, imminent just for it. 
Sometimes such challenges are caused by not very high proficiency of developers and even of 
architects, who may have troubles even with more or less serious monolithic applications, not saying 
about much more sophisticated microservice-based ones. But even having been designed perfectly, 
microservice-based applications are prone to such integral troubles as complexity of overall 
management and such as establishing and maintaining proper coordination across microservices 
within the application. Developers and admins suffer from a lack of control, observability and 
monitoring capabilities over the distributed execution flow within microservice-based web 
applications. Testing and debugging complexity have also increased significantly compared to the 
monolithic architecture. 

To our knowledge, now there is no strong theoretical base for microservice architecture, 
commonly recognized and accepted. Heuristic approaches prevail in this realm, even though a theory 

 

Information Technology and Implementation (IT&I-2024), November 20-21, 2024, Kyiv, Ukraine 
Corresponding author.  

 These authors contributed equally. 
 oletsky@ukr.net (O.Oletsky); mogolivskiy@gmail.com (V. Moholivskyi) 
 0000-0002-0553-5915 (O.Oletsky); 0009-0001-2654-7798 (V. Moholivskyi) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oletsky@ukr.net
mailto:mogolivskiy@gmail.com
https://orcid.org/0000-0002-0553-5915
https://orcid.org/0009-0001-2654-7798


443 
 

of microservice based systems might find its roots in such comprehensive and fundamental 
disciplines as theory of complex systems, theory of parallel computing and distributed systems, etc. 
There are many sound results in the field of distributed systems [4], but a microservice-based 
application as an example of distributed systems has many specific features [5], which makes it 
impossible to apply those results directly without any upgrades taking into account those specific 
features. In particular, classic theory of distributed systems paid insufficient attention to the problem 
of coordinating across nodes in real-time mode. Another problem is related to scaling distributed 
systems, and within microservice architecture new approaches can be suggested [6]. The problems 
of fault isolation [7], deployment and technology flexibility [8] are worth mentioning as well. 

Not a single, but a very important issue is to entrench facilities for declarative describing the 
overall build of a microservice-based application as well as actual and possible workflows within it, 
easy for supervising and interpreting them. Moreover, such declarative descriptions appear to be not 
only tools for representing the architecture, but also for triggering control actions as well. 

In this paper we are suggesting the approach based on so-called state machines addressing these 
issues. A prototype of a software package implementing this approach and demonstrating main 
possibilities addressing issues mentioned above is reported as well. In addition to this, some ways of 
increasing effectiveness, reliability and security of applications by using certain mathematical 
methods are discussed. 

2. State machines as the theoretical model for describing 
microservices 

A state machine can be defined as a 5-tuple [9] 

(𝑄, 𝛴, 𝛿, 𝑞0, 𝐹), (1) 
where 𝑄 is a finite set called the states, 𝛴 is a finite set called the alphabet, 𝛿 is a state transition 

function 𝛿: 𝑄 × 𝛴 → 𝑄 (determines the next state given a current state and an input symbol), 𝑞0 is 
the start state, where 𝑞0 ∈ 𝑄, 𝐹 is a set of final state, where 𝐹 ⊆ 𝑄. 

Within the context of microservices, the alphabet 𝛴 is a set of messages (events) occurring 
between or within microservices. Therefore, a state transition function 𝛿: 𝑄 × 𝛴 → 𝑄 receives an 
internal or external event with a current state and returns the next state. Moreover, the function 𝛿 
could trigger control procedures for meeting the functional requirements of an application. Those 
control procedures could be as follows (including but not limited to): persisting data to the database, 
sending messages (events) to the message broker, executing remote procedure calls, etc. 

State machines provide a well-defined structure for representing different states of a system and 
the transitions between them and thus can be regarded as a tool for declarative descriptions. As a 
result, they enable to improve understanding of overall structure, organization, and behavior of the 
system. Software engineers get the possibility to effectively monitor and visualize how the system 
transitions through various states. Explicitly defined transitions between states make the execution 
flow control simpler. Each state can be provided with a specific configuration as a condition for 
transitioning to another state. In this way, the risk of unexpected behaviors is decreased as there 
shall be a limited set of defined in advance well-known transitions between states. State machines 
also can improve maintainability as the system can grow and evolve by adding new states or 
transitions without the need to redesign the entire system. Each state machine can operate 
independently or interact with other state machines, allowing the system to be scaled. Since each 
state is distinct and transitions are well-defined, it is easier to isolate and identify where issues may 
occur. This makes debugging and testing much simpler, as engineers can focus on individual states 
and transitions rather than on the entire system. Also, testing a state machine is more 
straightforward because you can verify each state and transition to ensure the system behaves as 
expected in every scenario. State machines encourage reusable state logic. As states and transitions 



444 
 

can be abstracted and reused across different parts of the system, it leads to more efficient 
development. Complex workflows involving multiple concurrent tasks or parallel processes can be 
handled efficiently by multiple interacting state machines. State machines are ideal for modeling 
long-running processes, such as business workflows or distributed transactions, by clearly defining 
each step (state) and what needs to happen to move to the next step. State machines provide 
mechanisms to define error states and recovery paths when a failure or unexpected event occurs. For 
example, the system can transition to a safe state or invoke compensating actions to undo failed 
operations. The system can be designed to transition into safe or idle states in the event of failure, 
allowing for graceful degradation of the system instead of a complete crash. 

3. Methods and models of microservices coordination using state 
machines 

To our knowledge, using state machines for coordinating microservices have not been studied 
enough so far. This is one of the main questions our paper is focused on. 

When a microservice web application is designed, the first factors which should be taken into 
account are scalability, reliability, and performance. The main goal of a software architect is to create 
a highly effective system. The effectiveness of the system is the main criteria for designating service 
boundaries. However, established service boundaries not only bring undisputed value but also create 
new challenges in terms of communication and coordination. As microservices are typically 
deployed as independent containers running on different servers, having effective means of 
communication and coordination between microservices is essential for managing distributed 
execution control flow between independent services. Therefore, several methods of microservices 
coordination have emerged: 

1. Orchestration [10] 
2. Choreography [10] 
3. Saga Pattern for distributed transactions [11] 
4. API Gateway Pattern [12] 
5. Service Mesh [13] 

Without a doubt, each of the above methods has its use cases. But, in this research, we will 
concentrate on the first two methods as they may benefit the most from using state machines. The 
third method surely can benefit from state machine utilization, too. But as this pattern builds on top 
of orchestration or choreography [14], there is no need to examine it separately. As methods applied 
to orchestration and choreography can also be indirectly applied to the Saga pattern too. 

3.1. Orchestration and choreography coordination methods using state machines 

Orchestration-based coordination focuses on centralized control over all microservices 
communications [15, 16, 17]. It provides an effective way to manage complex workflows, letting each 
service focus on specific business logic instead of scattering on communication with other services 
[15]. The orchestrator defines a sequence of tasks and handles service invocations, does retries, and 
manages transactions. One prominent disadvantage of the orchestration approach is the increasing 
complexity for an orchestrator as the number of services grows. This problem can be resolved using 
a state machine to take over control of orchestrator logic. In this way, the behavior of a service acting 
as coordinator can be defined by a state machine. However, modeling the whole microservice as a 
one single state machine is not practical in a real-world scenarios. Much more practical approach 
would be to model specific activities aka tasks, which need to be performed, as an individual state 
machines. Thereby, the orchestration will have many state machines applicable for specific tasks at 
its disposal. 



445 
 

Choreography-based coordination focuses on decentralized control over workflow between 
microservices [15, 16, 17]. Each microservice is responsible for coordinating the execution flow by 
passing execution control to a corresponding microservice. Such a model is also often called event-
driven architecture. In this approach, microservices communicate by producing and consuming 
events without direct knowledge about other microservices. The following approach creates a lot of 

to guarantee eventual consistency at all times as thoughtful handling of workflow order and failures 
is required. Also, debugging and monitoring flow through microservices is much harder than with 
the orchestration approach. Those issues may be softened using state machines. As the choreography 
approach implies independence of services, each service will need to get a state machine. Having 
many state machines per service to manage different workflows can also be considered for a more 
voluminous service from a domain logic perspective. As a result, a system will become more 
manageable because of a clear definition of states for each microservice. Reliability will improve 
because of the structured error-handling and lowered chance of getting into inconsistent states. 

The comparison of orchestration and choreography coordination with state machines is shown 
at Figure 1. 

 
Figure 1: The comparison of orchestration and choreography coordination with state machines 

The comparison summary of both approaches is given in Table 1.  
With orchestration, control is centralized. A single orchestrator microservice manages the 

interactions between other microservices, directing the overall workflow. This orchestrator uses a 
state machine to determine the sequence of actions and transitions, guiding each service on what to 
do and when to do it. The advantage of this approach is that it simplifies management, monitoring, 
and debugging, as everything is controlled and tracked by the orchestrator. However, it also 
introduces potential drawbacks, such as creating a bottleneck at the orchestrator and making the 
system more vulnerable to failure due to this single point of control. 

In contrast, choreography relies on decentralized control, where each microservice operates 
independently and communicates directly with others as needed. Every microservice manages its 
own behavior through an internal state machine, allowing for greater flexibility and scalability. This 
approach is more resilient to failure, as there is no central orchestrator that could become a point of 
failure. However, the downside of choreography is that it can be more complex to manage and debug, 
as the coordination between services happens in a distributed manner, requiring careful design to 
avoid issues.  

Thoughtful consideration is required to choose a more appropriate approach for a given 
circumstance. In general, the orchestration based coordination style is more compatible with state 



446 
 

machines and can benefit the most from their capabilities. The comparison summary of both 
approaches is given in Table 1.  

Table 1 
The summary of orchestration and choreography coordination with state machines comparison 

Characteristic Orchestration Choreography 
Control Centralized through an orchestrator 

microservice 
Decentralized, each microservice is 

independent 
Coordination The orchestrator directs the flow and 

interactions 
Microservices communicate 

directly 
State Machine One main state machine inside the 

orchestrator 
Each microservice has its own state 

machine 
Advantages Easier to monitor and manage Greater flexibility, scalability, and 

resilience 
Disadvantages Orchestrator can become a bottleneck 

and single point of failure 
Harder to debug, more complex 
coordination between services 

 
 

4. Library for coordinating microservices using state machines 

A prototype of a library addressing the issues mentioned above was developed and is reported in 
the paper. We called the developed library SMMC (State Machine Microservice Coordinator). The 
architecture of the created library is shown at Figure 2. 

To ensure the proper operation of a state machine in a microservice environment, the library 
implements some fundamental functionality as follows: 

• registering state machine definitions 
• handling the creation and execution of a state machine instance, its suspension and 

persistence, retrieval and revival when required 
• creating required data structures in ArangoDB database and Kafka message broker 
• handling the exchange of events between microservices 
• handling graceful shutdown 
• guaranteeing scalability, high availability, and fault tolerance based on both infrastructure 

and implementation choices. 

A very important point is to choose the proper software tools for implementing the units of the 
architecture shown in Figure 2.  

As a state machine engine, XState library is used [18]. This choice is based on a wide range of 
functional abilities the library provides.  Even though the library derives from classic Mealy or Moore 
machines [19, 20]. It complements them by state machine approaches suggested by David Harel, 
Grady Booch, and SCXML standard, such as nested and parallel (composite) states, internal and 
external events, conditional transitions, context dependence (internal memory), and triggerable 
control procedures [21 - 23]. 

As a communication mechanism, Apache Kafka message broker is used [24]. A message broker 
is an essential tool in a microservice architecture that provides reliability, resiliency, and scalability 
[12]. Thus, it is a much better method of communication than, for instance, a remote procedure call. 

As a persistence layer, a multi-model ArangoDB database is used [25]. This database supports 
persisting both documents and graphs. Document collection is used to persist the current state of a 
state machine.  Graph collections are used to gather data for further analysis and recommendations 
for software engineers.  

 



447 
 

 
Figure 2: The architecture of the SMMC library 

The library aims to handle execution, communication, and persistence issues. Another objective 
is to provide extended analytics capabilities based on defined system workflows. Finally, the library 
works toward elevating security standards for microservice architecture. 

A very important thing supported by the library is providing a good possibility for visualizing the 
overall build of the system and the workflows within it. Basic features of visualization are taken from 
the XState library. These basic features were supplemented in the developed library. This includes, 
for instance, representing in the form of a graph illustrated on the Figure 3, which was generated by 
the SMMC library.  

The library requires a user to have an environment with deployed ArangoDB and Kafka instances. 
On library initialization, a user should provide ArangoDB and Kafka clients to the main class 
constructor. Only the official ArangoDB client [25] and KafkaJS library [26] are supported at the 
moment. The main class called Smmc contains methods of migration and rollback responsible for 
creating and deleting data structures required for the library to function. Calling the migrate method 
will create database smmc in the ArangoDB with state_machines, states, and edges collections. The 
migration method will also create event topics in Kafka. Calling rollback will remove created 
resources. A user may call the migrate method on a microservice startup or alongside other 
migrations. Then, a state machine should be registered using the registerStateMachineDefinition 
method. A state machine definition and its logic should be provided according to the XState syntax 
[18]. The reverse method, unregisterStateMachineDefinition, is also available. After all state machine 
definitions are registered, the start method should be called. It will check connections to the 
ArangoDB and Kafka. If connections are healthy, the consumer and the producer for events topic in 
Kafka will be initialized and started. On a microservice shutdown, the stop method should be called 
to ensure a graceful shutdown of state machines processing inside the SMMC. Before returning, the 



448 
 

stop method will wait for the completion of in-
persistence to the database. Once the SMMC is started, the getStateMachineManager method can be 
called to get an instance of StateMachineManager, which allows creating state machine instances, 
getting them to check the current state, and deleting them.  

 

 
Figure 3: Visualization of workflows within the system in the form of a graph 

Figure 4 shows how distributed microservice execution workflow can be defined and how that 
definition can be visualized in the form of a flow chart. Meaningfully, this is the workflow related to 
scanning of the system in order to detect possible intrusions. Firstly, targets for security scanning 
are retrieved from a database based on the defined security policies. Secondly, scanning of the 
network traffic and of the system log files is performed simultaneously. Finally, a report containing 
the results of the scanning is created. Then procedures for counteracting possible intrusions can be 
triggered on this basis. 

The displayed example illustrates the solution of some previously discussed issues. The domain 
logic can be defined using state machines without worrying about cross-microservice 
communication and state machine persistence. The library provides a convenient means of forking 
and joining workflows using composite states defined as parallel state machines. In Figure 4, the 

joins it. The example also shows how all the information about microservices events exchange is 
concentrated in one place. In contrast, with typical free-coded microservices, where each of the 
services holds some data and looking through the code base of each service is required to get even a 
high-level overview of workflows existing in the system. We also see a predictable error handling. 
Error states are explicitly defined together with transition, which will happen if an error occurs. This 
approach makes easier to perform corrective actions based on a state where an error occurred. The 
right part of Figure 4 pictures a state machine visualization automatically generated based on the 
programmed definition at the left part of Figure 4. Such visualizations can be very useful for both 
getting a high-level understanding of a system at a glance and inspecting it in depth to study each 
tiny detail about the system. Additionally, such a visualization can visually show the current state of 
a workflow, which is especially useful for the long-running workflows like cleanup or indexation 
jobs. 

The library guarantees scalability, high availability, and fault tolerance based on both 
infrastructure and implementation choices. Firstly, infrastructure dependencies such as ArangoDB 
and Kafka provide such guarantees themselves [24, 25]. Secondly, the library implementation 
approach follows a stateless philosophy [12], all state is kept in ArangoDB database, and an 
orchestrator microservice running the library is exclusively a stateless processor of events from 
Kafka. Such an approach allows scaling an orchestrator microservice to as many replicas as required. 



449 
 

The design of Kafka events topic also enables scaling by increasing the number of partitions. State 
machine instance id is used as a partition key for events topic to avoid concurrency issues.  

 

 
Figure 4: The example of state machine definition and its visualization created using XState 
visualizator 

Currently, the SMMC library is best designed for running on a single microservice, which should 
act in the role of an orchestrator. Usage according to the choreography approach on many 
microservices is possible, but a library user should take care of spawning instances of state machines 
on each service separately. Automation of related state machines creation for choreography 
coordination is a subject for future improvement. Having a separate state machine on each 
microservice shall create a multi-agent model, which could be a foundation for modelling decision 
making in a multi-agent environment based on a Markov chain. State machines provide a solid 
theoretical model for the workflows between microservices, which enables implementing further 
analytics capabilities.  

5. Use of PageRank-like techniques for analyzing importance of 
microservices 

Analyzing measures of significance that might be ascribed to specific microservices appears to be a 
very important point. This can be carried out by means of the classical PageRank algorithm [27] and 
techniques based on it and similar to it. Within this approach, relations and dependencies between 
microservices should be considered. 

In general, PageRank-like algorithms are based on getting a stochastic matrix P representing 
different associations between nodes, and then vector evaluating measures of importance for each 
node can be obtained as a main left eigenvector of P. 

Such an analysis could identify crucial microservices having a central role in the system. Knowing 
the most important microservices allows to set priorities in allocation of computational resources, 
development afford and monitoring focus for each microservice. A quantity of event dependencies 
between microservices defined by state machines will be a base for computing weight of a 



450 
 

relationship. This is a difference between our research and related ones [28]. We can compute the 
weight of a relationship between microservice 𝑀𝑗 and microservice 𝑀𝑖 using the formula: 

𝑤𝑗𝑖 =  
𝑁𝑖𝑗

𝑁𝑚𝑎𝑥
     

(2) 

where 𝑁𝑖𝑗 is a number of event dependencies specified in state machines between 𝑀𝑗 and 𝑀𝑖, and 
𝑁𝑚𝑎𝑥 is a maximum number of event dependencies detected between any 𝑀𝑗  and 𝑀𝑖.  

Then, PageRank-like technique can be applied to the graph in order to get microservices 
importance scores. Brin and Page [27] defined PageRank algorithm as: 

𝑃𝑅(𝑖) =  𝛾 ∑
𝑎𝑗𝑖

𝑑𝑗
(𝑜𝑢𝑡)

𝑗∈𝑉

𝑃𝑅(𝑗) +  
1 −  𝛾

n
   

(3) 

By adding Ding concept of weight [29] we get: 

𝑃𝑅(𝑀𝑖) =  𝛾 ∑
𝑤𝑗𝑖

s𝑗
(𝑜𝑢𝑡)

𝑃𝑅(𝑀𝑖) + 
1 −  𝛾

n
𝑀𝑗∈𝑉

 
(4) 

where: 

• 𝑃𝑅(𝑀𝑖) is the score of importance of a microservice 𝑀𝑖, 
• represents the probability that an event will follow 

actual dependencies versus a random jump, 
• 𝑤𝑗𝑖  is the weight of the interaction between microservice 𝑀𝑗 and microservice 𝑀𝑖 (2),  

• s𝑗
(𝑜𝑢𝑡) is the sum of the weights of all outgoing interactions from microservice 𝑀𝑗, 

normalizing the contribution 
• 1 − 𝛾

n
 represents a random jump probability needed to give a chance of importance event to 

isolated microservices. 

Based on knowledge of events correspondence to microservices and definitions of state machines, 
the graph with weights 𝑤𝑗𝑖 in edges can be computed for the set of microservices 𝑀. For example, 

policies management service, firewall management service, treat detection service, vulnerability 
management service, vulnerability scanning service, incident response service, monitoring service 
and metrics service. When using state machines, relationships between those microservices are 
defined by state machine definition and can be converted to a graph. The weight 𝑤𝑗𝑖 of a relationship 
between 𝑀𝑗 and 𝑀𝑖 can be automatically computed based on the quantity of communications 
between a pair of microservices. As a result, the graph pictured at Figure 5 with weights of 
microservices relationship importance is received. 

The importance of each microservice is computed using Formula 4. As a result, a score for each 
microservice from the given set of microservices 𝑀 is received. Scores calculated for a given example 
(Figure 5) are presented in Table 2. Table 2 shows that incident response service, firewall 
management service, and policies management service are the most significant services. To be 
specific, it means that other services depend on them the most. Consequently, failure of those 
services could be extremely critical for the system. 

The suggested approach allows software engineers to identify the most important microservices 
within their applications to take preventive actions to avert potential issues. Such preventive actions 
may include increasing test coverage, leveling up requirements for code review, writing supporting 
documentation, having more detailed logging, adding additional monitoring metrics, creating extra 
real-time alerts, etc. 



451 
 

 
Figure 5: The graph with weights of microservices relationship importance 

Table 2 
Microservices and their importance scores 

Microservice Importance score 
Policies management service 0.141 
Firewall management service 0.179 

Treat detection service 0.082 
Vulnerability management service 0.069 

Vulnerability scanning service 0.098 
Incident response service 0.279 

Monitoring service 0.088 
Metrics service 0.064 

 
Additionally, having a reliable measure of importance for each microservice is beneficial for 

service ranking in regression testing as it enables testing of the system in the most efficient way [28]. 

6. Conclusions and discussion 

The paper considers how to improve processes of control and monitoring within a microservice-
based application, mainly by means of entrenching coordination across microservices. We are 
suggesting an approach based on using state machines for declarative describing the overall build of 
an application and workflows within it. 

A prototype of a software package implementing this approach and demonstrating main 
possibilities for addressing the issues mentioned above is reported as well. The main functions 
implemented by the prototype are as follows: 

• registering state machines definitions 
• handling the creation and execution of a state machine instance, its suspension and 

persistence, retrieval and revival when required 
• creating required data structures in ArangoDB database and Kafka message broker 
• handling the exchange of events between microservices 
• handling graceful shutdown 
• guaranteeing scalability, high availability, and fault tolerance based on both infrastructure 

and implementation choices. 

Advantages of using state machines for typical tasks such as defining the business logic of a web 
application, coordinating complex workflows between many microservices, keeping track of long-



452 
 

running background jobs, monitoring the current state of a system, testing coordination logic with 
mocked implementation details, and debugging coordination issues using only state machine 
without running microservices are showcased on the workflow depicted on the Figure 4. 

For constructing more formalized models of coordinating microservices, especially for models 
involving modelling forking and joining workflows like the one mentioned above, use of Petri nets 
appears to be very promising [30]. 

Declarative descriptions provided by state machines enable to explore the microservice-based 
application by means of various mathematical methods and on this base to work out 
recommendations for how to improve certain features of it. Namely, this paper illustrates the use of 
PageRank-like techniques for evaluating measures of importance for different microservices. 

There are many other possible applications of mathematical models and methods based on 
descriptions provided by the state machine. For instance, explicit specifying the states and possible 
transitions across them enables to consider a Markov chain of transitions. Provided that we are able 
to get transitional probabilities across the states, we can calculate the probabilities that the system 
shall be in the certain state in the long run on this basis. This may be related, for instance, to 
estimating expected loads on certain microservices or to other, more complicated, issues. So, the 
ability to find the stationary distribution for a Markov chain provides valuable insight into the long-
term behavior of a state machine, especially in scenarios where transitions between states are 
probabilistic. 

An explicit graph representation enables to apply techniques typical for graphs. For instance, use 
of the A* algorithm [31] enables to find the optimal sequence of operations aimed at moving the 
system from its known current state to the desired target state. 

Another promising possibility is related to triggering certain control procedures connected with 
a certain node of the state machine. For instance, if a light- or middle-threating cyberattack is 
detected, a system built either on orchestration or choreographic principles might make a 
probabilistic decision about which microservices should be stopped and which of them should be 

-
[32, 33], which addresses probabilistic decision making on the base of probabilities for being in 
certain states, is worth mentioning. Use of this model appears to be quite promising, especially for 
situations when there is a lot of similar microservices, and decisions are made by majority of votes. 
Another point is to take into account different factors influencing probabilistic decisions by means 
of constructing multi- - 34, 35]. 

In a certain sense, the state machine for a specific microservice-based application can be regarded 
as a certain unit of knowledge. It focuses mainly on behavioral aspects. However, it appears fruitful 
to combine it with the ontological-oriented approach by building proper descriptive logical systems, 
ontologies and/or knowledge graphs [36, 37]. 

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 

References 

[1] J. Lewis, M. Fowler, Microservices. URL: https://martinfowler.com/articles/microservices.html. 
[2] M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca, R. Casallas, S. Gil, Evaluating the 

monolithic and the microservice architecture pattern to deploy web applications in the cloud, 
in: 2015 10th computing colombian conference (10CCC), IEEE, 2015. 
doi:10.1109/columbiancc.2015.7333476. 

[3] M. Loukides, S. Swoyer, Microservices adoption in 2020. URL: 
https://www.oreilly.com/radar/microservices-adoption-in-2020/. 

[4] S. Ghosh, Distributed Systems, Chapman and Hall/CRC, 2006. doi:10.1201/9781420010848. 

https://www.oreilly.com/radar/microservices-adoption-in-2020/


453 
 

[5] I. Shabani, E. Mëziu, B. Berisha, T. Biba, Design of Modern Distributed Systems based on 
Microservices Architecture, Int. J. Adv. Comput. Sci. Appl. 12.2 (2021). 
doi:10.14569/ijacsa.2021.0120220. 

[6] B. Christudas, Distributed Computing Architecture Landscape, in: Practical Microservices 
Architectural Patterns, Apress, Berkeley, CA, 2019, pp. 1 19. doi:10.1007/978-1-4842-4501-9_1. 

[7] C. M. Krishna, I. Koren, Fault-Tolerant Systems, Elsevier Science & Technology Books, 2020. 
[8] L. Baresi, M. Garriga, Microservices: The Evolution and Extinction of Web Services?, in: 

Microservices, Springer International Publishing, Cham, 2019, pp. 3 28. doi:10.1007/978-3-030-
31646-4_1. 

[9] M. Sipser, Introduction to the theory of computation, Thomson South-Western, 2012. 
[10] C. Surianarayanan, G. Ganapathy, P. Raj, Service orchestration and choreography, in: Essentials 

of microservices architecture, Taylor & Francis, 2019, pp. 175 197. doi:10.1201/9780429329920-
6. 

[11] H. Garcia-Molina, K. Salem, Sagas, in: The 1987 ACM SIGMOD international conference, ACM 
Press, New York, New York, USA, 1987. doi:10.1145/38713.38742. 

[12] S. Newman, Building microservices, O'Reilly Media, Incorporated, 2015. 
[13] R. Sharma, A. Singh, Getting started with istio service mesh, Apress, Berkeley, CA, 2020. 

doi:10.1007/978-1-4842-5458-5. 
[14] S. Aydin, C. B. Cebi, Comparison of choreography vs orchestration based saga patterns in 

microservices, in: 2022 international conference on electrical, computer and energy technologies 
(ICECET), IEEE, 2022. doi:10.1109/icecet55527.2022.9872665. 

[15] A. Stutz, A. Fay, M. Barth, M. Maurmaier, Orchestration vs. choreography functional association 
for future automation systems, IFAC-PapersOnLine 53.2 (2020) 8268 8275. 
doi:10.1016/j.ifacol.2020.12.1961. 

[16] A. Megargel, C. M. Poskitt, V. Shankararaman, Microservices Orchestration vs. Choreography: 
A Decision Framework, in: 2021 IEEE 25th International Enterprise Distributed Object 
Computing Conference (EDOC), IEEE, 2021. doi:10.1109/edoc52215.2021.00024. 

[17] C. Surianarayanan, G. Ganapathy, P. Raj, Service Orchestration and Choreography, in: 
Essentials of Microservices Architecture, Taylor & Francis, 2019, pp. 175 197. 
doi:10.1201/9780429329920-6. 

[18] XState documentation. URL: https://xstate.js.org/docs/. 
[19] G. H. Mealy, A method for synthesizing sequential circuits, Bell Syst. Tech. J. 34.5 (1955) 1045

1079. doi:10.1002/j.1538-7305.1955.tb03788.x. 
[20] E. F. Moore, Gedanken-Experiments on sequential machines, in: C. E. Shannon, J. McCarthy 

(Eds.), Automata studies. (AM-34), Princeton University Press, Princeton, 1956, pp. 129 154. 
doi:10.1515/9781400882618-006. 

[21] D. Harel, Statecharts: a visual formalism for complex systems, Sci. Comput. Program. 8.3 (1987) 
231 274. doi:10.1016/0167-6423(87)90035-9. 

[22] G. Booch, J. Rumbaugh, I. Jacobson, Unified modeling language user guide, the (2nd edition) (the 
addison-wesley object technology series), 2nd. ed., Addison-Wesley Professional, 2005. 

[23] State chart XML (SCXML): state machine notation for control abstraction. URL: 
https://www.w3.org/TR/scxml/. 

[24] Apache Kafka documentation. URL: https://kafka.apache.org/documentation/. 
[25] ArangoDB documentation. URL: https://docs.arangodb.com. 
[26] KafkaJS Documentation· KafkaJS. URL: https://kafka.js.org/docs/getting-started. 
[27] S. Brin, L. Page, Reprint of: The anatomy of a large-scale hypertextual web search engine, 

Comput. Netw. 56.18 (2012) 3825 3833. doi:10.1016/j.comnet.2012.10.007. 
[28] L. Chen, J. Wu, H. Yang, K. Zhang, Does PageRank apply to service ranking in microservice 

regression testing?, Softw. Qual. J. (2022). doi:10.1007/s11219-021-09579-6. 
[29] Y. Ding, Applying weighted PageRank to author citation networks, J. Am. Soc. Inf. Sci. Technol. 

62.2 (2010) 236 245. doi:10.1002/asi.21452. 
[30] K. H. Rueda, Applications of Petri Nets petri applications, Sci. J. Appl. Soc. Clin. Sci. 3.34 (2023) 

2 10. doi:10.22533/at.ed.2163342314122.1111 

https://xstate.js.org/docs/
https://www.w3.org/TR/scxml/
https://kafka.apache.org/documentation/
https://docs.arangodb.com/
https://kafka.js.org/docs/getting-started


454 
 

[31] S. J. Russell, P. Norvig, Artificial intelligence: A modern approach, Pearson Education, Limited, 
2021. 

[32] O. V. Oletsky, E. V. Ivohin, Formalizing the Procedure for the Formation of a Dynamic 
Equilibrium of Alternatives in a Multi-Agent Environment in Decision-Making by Majority of 
Votes, Cybern. Syst. Anal. 57.1 (2021) 47 56. doi:10.1007/s10559-021-00328-y.  

[33] O. Oletsky, Exploring dynamic equilibrium of alternatives on the base of rectangular stochastic 
matrices, in: CEUR Workshop Proceedings, 2021. 

[34] D. Dosyn, O. Oletsky, An approach to modeling elections in bipartisan democracies on the base 
-  

[35] 
Products of Stochastic Rectangular Matrices, Cybern. Syst. Anal. 58-2 (2022) 242-250. 
https://doi.org/10.1007/s10559-022-00456-z 

[36] L. Bellomarini, D. Fakhoury, G. Gottlob, E. Sallinger. Knowledge graphs and enterprise AI: the 
promise of an enabling technology. In ICDE, pp. 26 37. IEEE, 2019. 

[37] P. Atzeni, L. Bellomarini, M. Iezzi, E. Sallinger, A. Vlad. Weaving enterprise knowledge graphs: 
The case of company ownership graphs. In EDBT, pp. 555 566. OpenProceedings.org (2020). 


	1. Introduction
	2. State machines as the theoretical model for describing microservices
	3. Methods and models of microservices coordination using state machines
	3.1. Orchestration and choreography coordination methods using state machines

	4. Library for coordinating microservices using state machines
	5. Use of PageRank-like techniques for analyzing importance of microservices
	6. Conclusions and discussion
	Declaration on Generative AI
	References

