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Abstract 
Integral nonlinear models are used to simulate the human eye movement system (EMS) while accounting 
for its nonlinear dynamics and inertial properties. Multidimensional transient characteristics (MTCs) of 
the EMS were identified based on experimental input-output data obtained from eye-tracking responses 
to visual test stimuli. These transient characteristics include first-order and diagonal cross-sections up to 
the second and third orders of MTCs. The study aimed to evaluate the accuracy of EMS simulation models 
by analyzing the calculation errors of transient characteristics using nonlinear dynamic identification 
methods based on Volterra integro-power series (IPS) and integro-power polynomial (IPP). Computational 
methods, including the least squares method (LSM), approximation, and compensation, were used to 
derive the models. Models developed using the LSM and approximation methods produced consistent 
transient characteristics when the same test signals were applied, highlighting the convergence of the 
Volterra series within the identified region. The findings showed that increasing the number of test 
signals enhanced the accuracy of the EMS models. Quadratic models were identified as the most reliable, 
providing a balance between precision and computational efficiency. Cubic models closely matched EMS 
responses but exhibited instability in their transient characteristics, making them less practical for EMS 
application. The compensation method, while computationally less demanding, proved unsuitable for 
tasks requiring high accuracy due to significant errors in the resulting models. Quadratic IPP models 
developed with LSM based on three response datasets are recommended for future studies, as they 
provide a stable and precise framework for modeling EMS dynamics and exploring psychophysiological 
state assessment. 

Keywords 
eye movement system, simulation, integro-power series and polynomials, multidimensional transient 
characteristics, eye-tracking, accuracy of simulation, a neurophysiological condition.1 

1. Introduction 

Eye-tracking technology [1] is widely applied in the assessment of neurophysiological conditions 
[2] [5], cognitive research, and memory studies [6], as well as in monitoring student behavior and 
learning processes [7]. This technology provides valuable insights into both conscious and 
subconscious human actions. Understanding eye movements is crucial for expanding research in 
various professional fields, ultimately enhancing the efficiency of work activities. 

Despite the advancements in eye-tracking systems, there is a growing need for new 
mathematical models to accurately simulate the human eye movement system (EMS). Additionally, 
specialized equipment is necessary to support experimental research involving these systems. Eye-
tracking technology relies on sophisticated devices, known as eye trackers, to precisely determine 
the coordinates of eye movements. 
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In medical applications and experimental psychology, the ability to simulate the EMS is vital for 
effective control, monitoring, and diagnostics. Developing a comprehensive mathematical model of 
the EMS, which takes into account individual human variability, is essential for creating advanced 
treatment methodologies [2]. This includes a wide range of personalized applications, such as 
medical and sports simulators, human-machine interface testing [8], secure data access [9], [10], 
and more. 

This paper presents the findings on the accuracy of simulating the dynamic characteristics of 
the human EMS. These characteristics were derived from experimental "input-output" data, 
capturing responses to visual stimuli using cutting-edge eye-tracking technology (a simulation 
task). The study focuses on the nonlinear and inertial properties of the EMS, which are crucial for 
developing accurate and reliable models. 

2. Problem statement 

To simulate the human eye movement system, integral nonlinear models [11] [13] are employed, 
which consider both the nonlinear and inertial properties of the system being studied. The EMS is 
simulated by determining multidimensional transient characteristics (MTCs) based on "input-

enabling accurate recording of eye responses to visual stimuli. The construction of the model 
involves an approximation simulation method using Volterra integro-power series (IPS) [14], [15] 
and a least squares method (LSM) [14] to create the model based on Volterra integro-power 
polynomials (IPP). The simulation methods for nonlinear dynamic systems (NDS) based on IPS and 
IPP vary in their computational approaches, providing distinct methodologies for NDS 
simulation [15]. 

The aim of this research is to evaluate the accuracy of EMS simulation by examining the errors 
in calculating MTCs when using nonlinear dynamic simulation methods based on IPS and IPP 
models. This study also addresses the development of algorithmic and software tools for extracting 
EMS dynamic characteristics from eye-tracking data and assessing the accuracy of different 
simulation methods. 

3. Theoretical background 

In this study, the approximation method [15] and compensation method [14] are employed to 
develop models using Integro-Power Series, while the least squares method (LSM) [13] is utilized 
for constructing models based on Integro-Power Polynomials. 

Approximation Identification Method. The approximation identification method for NDS (method 
of linear combinations of responses) in the time domain is grounded in isolating the n-th partial 
component (PC) of the NDS response by constructing linear combinations of responses to test 
signals with different amplitudes. This approach is an adaptation of methods originally based on 
the Volterra series. It is proved in [14] that: 

Assertion 1. Let test signals a1 (t), a2x(t) aNx(t) be sequentially applied to the input of the NDS, 
where N is the degree; a1, a2 aN  are different real numbers, non-zero, satisfying the condition 
|aj| 1 for j=1,2,...,N; x(t) is an arbitrary function. Then, the linear combination of the system's 
responses to these inputs equals the n-th PC of the response to the input signal x(t) with an 
accuracy up to the discarded terms  of the Integro-Power Series of order N+1 and higher: 
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here bl = 1 when l = n; bl = 0 when l  n, l  N}. 
The system (2) always has a solution, and it is unique since its determinant differs from the 

Vandermonde determinant only by the factor a1, a2 aN. Thus, for any real numbers aj, which are 
non-zero and pairwise distinct, it is possible to find numbers cj such that the linear combination (1) 
of the NDS responses equals the n-th term of the Integro-Power Series with an accuracy up to the 
discarded terms of the series. By satisfying the conditions for forming the system of linear 
algebraic equations (2), we obtain the relation (1). 

When test signals in the form of step functions (Heaviside functions  t)) with amplitudes a1, 
a2 aN are applied to the input of the system being identified, we obtain estimates of the diagonal 
cross-sections of the NDS multidimensional transient characteristics: 
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where y(t|aj) = y(aj t)) are the NDS responses to the test signal with amplitude aj . 
Identification of NDS using the Least Squares Method. The method of NDS identification based on 

the Volterra polynomial model in the time domain relies on approximating the NDS response y(t) 
to an arbitrary deterministic signal x(t) in the form of an integro-power polynomial of N-th order 
(N  the order of the approximation model): 
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Valid assertion [14]. 
Assertion 2. Let test signals a1x(t), a2x(t)  aLx(t) be sequentially applied to the input of the 

NDS; a1, a2 aL are different real numbers satisfying the condition 0<aj1 for j=1,2,...,L; x(t) is 
an arbitrary deterministic signal, then 
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The partial components in the approximation model )(ˆ tyn  are found using the least squares 
method. This allows obtaining estimates for them, where the sum of squares of deviations of the 
NDS responses being identified, )]([ txay j  from the model responses )]([~ txay jN , is minimal, thus 
ensuring the minimum mean square criterion 
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Minimizing criterion (6) boils down to solving a system of normal equations Gauss, which in 
vector-matrix form can be expressed as: 

yAŷAA = , (7) 
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If the identified system is supplied with test signals in the form of step functions with 
amplitudes a1, a2 aL, we obtain estimates of the transient characteristics )(ˆ )(

1 th N and the diagonal 

cross-sections of the transient characteristics of the eye movement system ),(ˆ )(
2 tth N , ),,(ˆ )(

3 ttth N

),...,(ˆ )( tth N
N  [14].  

Responses of the investigated EMS models are generally calculated based on expressions: 
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Compensation Identification Method. The formalism of the method for determining the 
intersections of n-th order transient characteristics of nonlinear dynamic systems is based on the 
following assertion [14]. 

Assertion 3. Let the test inputs be the sum of n step signals )τ(θ)( kkk tatx −=  (k=1,2,...,n), shifted 
in time by 1, ..., n. Then, for an NDS with a single input and a single output, the estimate of the 
intersection of the n-th order transient characteristic is 
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where )δ,...,δ|( 1 nty  is the NDS response at time t when subjected to a multi-step input signal with 
amplitudes ak, obtained as a result of processing experimental data based on (11). If 1δ =k , the test 
input contains a step signal shifted by k; otherwise, if 0δ =k , it does not contain it. 

In certain cases, we have: 
for n=1 
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where a1, a2 = 2a1, a3 = 3a1 are the amplitudes of test signals. 
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The responses of the second and third-order models are calculated accordingly using the 
expressions: 
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4. Research results 

The EMS's responses to the test step signals, defined as x(t) = aj t) with amplitudes aj (j=1, 2, 3): 
a1=1/3, a2=2/3, a3=1 were analyzed. These responses formed the basis in the construction of 
Volterra models [13]. Horizontal visual stimuli displayed at varying distances from the starting 
position on a monitor were utilized as test signals, effectively simulating the application of step 
signals with different amplitudes to the EMS. The responses of the EMS were recorded using eye-
tracking technology, integrating both hardware and software components. In the simulation 
process, when applying the approximation method, models based on IPS are identified as 
M1.N/x:<a1 aL> (N  order of approximation, x  number of test signals; a1 aL  amplitudes of 
the test step signals). For models based on IPP, the least squares method (LSM) is used, resulting in 
models designated as M2.N/x:<a1 aL>. Additionally, when employing the compensation method 
of simulation, models are determined as M3.N/x:<a1 aL>. 

For EMS simulation in work [15], experimental "input-output" data were gathered using three 
test step signals with amplitudes a1=1/3, a2=2/3 and a3=1. The Tobii Pro TX300 eye tracker was 
employed to collect these experimental data (Fig. 1), from which transient characteristics were 
determined for models M1.N, M2.N, and M3.N for N=1 (linear model), N=2 (quadratic model), and 
N=3 (cubic model). The transient processes of EMS responses to visual stimuli with varying 
amplitudes are depicted in Fig. 2. 

The software tools were developed using the Python programming environment. 

  

Figure 1:EMS responses to visual stimuli of 
different amplitudes 

Figure 2:Transient processes of EMS responses 
to visual stimuli of different amplitudes 

To evaluate the accuracy of the developed models for varying amplitudes of the test signals a1, 
a2 and a3, the metric applied is the normalized root mean square error (NRMSE): 
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where )|( jm aty and )|(~
jm aty  are the responses of the EMS and the model of the EMS to the test 

signal in the form of a step function with amplitude aj, measured/ computed at the time instant tm 
(tm is the observation time of the EMS responses); j=1,2,3. 
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For N=1, transient characteristics )|(ˆ
1 jath  (j=1, 2, 3) were obtained based on the responses 

)|( 1aty  or )|( 2aty  or )|( 3aty , as shown in Fig. 3. Fig. 4 shows transient characteristics graphs of 
the M2.1/2 models, which were calculated based on two responses: )|(and)|( 21 atyaty , or 

)|(and)|( 31 atyaty , or )|(and)|( 32 atyaty  and the transient characteristic graph of the model M2.1/3. 
For the M1.1 identification method does not allow to calculate the transient characteristics based 
on two or three responses [14]. 

  

Figure 3: Transient characteristics of the EMS 
models M1.1/1 and M2.1/1, built using test 
signals with amplitudes 1; 2; 3 

Figure 4: Transient characteristics of the EMS 
models M2.1/2, built using test signals with 
amplitudes: 1 and 2; 1 and 3; 2 and 3; and 
M2.1/3 

Table 1 shows the values of the percentage NRMSE estimates of the responses built using the 
identification methods of the EMS models M1.1/1 and M2.1/1; in Table 2  of the models M2.1/2 
and M2.1/3. 

Table 1 
Percentage Normalized Root Mean Square Error of the EMS models M1.1/1 and M2.1/1, % 

Models Amplitudes of test signals Mean 
value 

Maximum 
value a1 a2 a3 

M1.1/1:a1 0 18.2 20.3 19.2 20.3 
M1.1/1:a2 17.2 0 5.5 11.4 17.2 
M1.1/1:a3 18.5 5.3 0 11.9 18.5 

For N=2, based on the two responses y(t|a1) and y(t|a2), or y(t|a1) and y(t|a3), or y(t|a2) and y(t|a3), 
the corresponding multidimensional transient characteristics 1(t|aj,ak) and 2(t,t|aj,ak), 
j, k = 1,2,3; j  k were obtained. In the models M1.2/2 and M2.2/2, identical MTCs 

1(t|aj,ak) and 2(t,t|aj,ak)  were obtained for the same experimental data. 

Table 2 
Percentage Normalized Root Mean Square Error of the EMS models M2.1/2 and M2.1/3, % 

Models Amplitudes of test signals Mean 
value 

Maximum 
value a1 a2 a3 

M2.1/2:a1, a2 13.8 3.6 7.1 8.2 13.8 
M2.1/2:a1, a3 16.7 4.9 2 7.9 16.7 
M2.1/2:a2, a3 18 3.7 1.7 7.8 18 

M2.1/3:a1, a2, a3 16.7 3.5 2.5 7.6 16.7 
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Fig. 5 displays the primary-order transient characteristics graphs, while Fig. 6 shows the 
diagonal cross-sections of the second-order MTCs for the EMS models M1.2/2 and M2.2/2. These 
intersections were computed based on the responses: y(t|a1) and y(t|a2), or y(t|a1) and y(t|a3), or 
y(t|a2) and y(t|a3). 

 
 

Figure 5:Transient characteristics of the first 
order of the EMS, models M1.2/2 and M2.2/2 

Figure 6:Diagonal cross-sections of the second-
order transient characteristics of the EMS, models 
M1.2/2 and M2.2/2 

The transient characteristics of the EMS model M3.2/2 are illustrated in Fig. 7. The 
corresponding responses for the same model are given in Fig.8. 

The graphs of the multidimensional transient characteristics 1(t) and 2(t,t), which were 
determined based on the three responses y(t|a1), y(t|a2), y(t|a3) for the EMS model M2.2/3, are shown 
in Fig. 9. The corresponding graphs comparing the M2.2/3 responses with the EMS responses to 
identical test signals are presented in Fig. 10. Analogous results were obtained for the M3.2/3 and 
are shown in Fig. 11 and Fig. 12. 

For N=3, the graph of the primary-order transient characteristic, along with the graphs of the 
diagonal cross-sections of the second and third-order multidimensional transient characteristics for 
the EMS model M3.3, are displayed in Fig.13. The responses of the EMS model M3.3 are shown in 
Fig.14. Analogous results for the EMS models M1.3 and M2.3 are shown in Fig. 15 and Fig.16. 

 
 

Figure 7:Multidimensional transient 
characteristics of the EMS, model M3.2/2 

Figure 8:Responses of the EMS and the model 
M3.2/2 
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Figure 9:Multidimensional transient 
characteristics of the EMS, model M2.2/3 

Figure 10:Responses of the EMS and the model 
M2.2/3 

 

  
Figure 11:Multidimensional transient 
characteristics of the EMS, model M3.2/3 

Figure 12:Responses of the EMS and the model 
M3.2/3 

 

  
Figure 13:Multidimensional transient 
characteristics of the EMS model M3.3 

Figure 14:Responses of the EMS and the model 
M3.3 

  
Figure 15:Multidimensional transient Figure 16:Responses of the EMS and models 
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characteristics of the EMS, models M1.3 
and M2.3 

M1.3 and M2.3 

Table 3 provides the values of the percentage normalized root mean square error of the 
response estimates for the constructed EMS models M1.2/2 and M2.2/2, and the model M2.2/3. 
Table 4 presents the percentage NRMSE values for the models M3.2/2 and M3.2/3, and the model 
M3.3/3. 

Table 3 
Percentage Normalized Root Mean Square Error of the EMS models M1.2/2, M2.2/2, M2.2/3, % 

Models Amplitudes of test signals Mean 
value 

Maximum 
value a1 a2 a3 

M2.2/2:a1, a2 0 0 19 19 19 
M2.2/2:a1, a3 0 9.1 0 9.1 9.1 
M2.2/2:a2,a3 17.3 0 0 17.3 17.3 
M2.2/3:a1, a2, a3 8.2 4.3 1 4.5 8.2 

Table 4 
Percentage Normalized Root Mean Square Error of the EMS models M3.2/2, M3.2/3, M3.3, % 

Models Amplitudes of test signals Mean 
value 

Maximum 
value a1 a2 a3 

M3.2/2: a1, a2 17.2 18.2 37.4 24.3 37.4 
M3.2/3:a1,a2,a3 6.1 11.3 07.8 8.4 11.3 
M3.3/3: a1,a2,a3 9.3 19.9 48.6 25.9 48.6 

For N=3, based on the three responses y(t|a1), y(t|a2), y(t|a3) the transient characteristics 
1(t), 2(t,t), 3(t,t,t) were obtained. For the models M1.3/3 and M2.3/3, identical MTCs were 

obtained, and the responses of the models practically coincide with the responses of the EMS for 
the same input signals. At the same time, Figs. 13 and 15 demonstrate that the transient 
characteristics of the third-order models exhibit instability. 

On Fig. 17, a comparative analysis diagram of errors based on the percentage NRMSE criterion 
constructed using identification software tools for EMS models: M2.1/1, M2.1/2, M2.1/3, is 
presented. On Fig. 18, the same analysis is provided for models M2.2/2, M3.2/2, M2.2/3, M3.2/3 and 
M3.3 (based on average values). The EMS models M1.3 and M2.3 are not shown in the diagram 
because they have negligible deviations from the EMS responses. 

5. Conclusion 

Python-implemented tools for nonlinear dynamic identification were applied to develop 
mathematical models of the human eye movement system (EMS) based on Volterra integro-power 
series (IPS) and integro-power polynomials (IPP). This study aimed to evaluate the accuracy of the 
developed models in the form of first-order transient characteristics and multidimensional 
transient characteristics of the second and third orders, derived from eye-tracking data under the 
influence of visual test stimuli (step signals of varying amplitudes). To construct models based on 
empirical data, computational identification methods were employed, including the compensation 
method, approximation method, and least squares method (LSM). The identification errors of EMS 
models were assessed using normalized root mean square error (NRMSE), reflecting deviations 
between model responses and EMS responses to identical test signals. 
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Figure 17:Comparative analysis of the average 
percentage error values of the EMS models: 
M2.1/1, M2.1/2, M2.1/3 

Figure 18:Comparative analysis of the average 
percentage error values of the EMS models: 
M2.2/2, M3.2/2, M2.2/3, M3.2/3, M3.3 

Models obtained using the approximation and LSM methods on the same test signals exhibited 
identical transient characteristics, as these characteristics coincided within the convergence region 
of the Volterra series. It was found that the accuracy of models, represented by transient 
characteristics, improved with an increasing number of test signals. For the linear model, the 
average error decreased from 11.4% with one test signal to 7.6% with three test signals when LSM 
was applied. For the quadratic model, an average error of 9.1% was observed with two test signals, 
which decreased to 4.5% when three signals were used. For the cubic model, using three test signals 
resulted in nearly identical responses between the model and the EMS. However, it was established 
that third-order models exhibited instability in their transient characteristics, limiting their 
practical applicability. 

The compensation method required fewer computational resources but produced models with 
significant errors, rendering them unsuitable for diagnostic studies. The best result for the 
quadratic model, achieved using three test signals, yielded an average error of 8.4%. 

This study, for the first time, analyzed the errors of EMS mathematical models in the form of 
IPS and IPP derived from eye-tracking data using three test step signals of varying amplitudes. The 
analysis employed compensation, approximation identification methods, and the LSM. It was 
determined that the most accurate EMS model is the quadratic Volterra polynomial, identified 
based on three EMS responses. Therefore, integral quadratic models are recommended for 
diagnostic studies of the human psychophysiological state. 

Declaration on Generative AI 
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