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Abstract 
The paper introduces a novel methodology for reducing the size of YOLO-based underwater object detectors 
to deploy it on edge hardware. Feature extraction layer light-weighting technique is used to compress the 
model with minimal impact on performance. Two new object detection network topologies are created, 
suitable to be used as a student network in knowledge distillation tasks. Knowledge distillation algorithm 
with temperature decay strategy is developed to mitigate the performance loss caused by model 
compression without inflating the parameter count. Object detection models, based on the proposed 
methodology, are tested on Underwater Target Detection Algorithm Competition 2020 dataset, providing 
higher accuracy and offering faster runtime than the existing solutions. 
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1. Introduction 

Due to rapid development of deep learning [1], optimization algorithms [2] and complex neural 
network topologies [3, 4, 5], developing intellectual systems for autonomous underwater vehicles 
(AUVs) is gaining more and more attention. These applications include biodiversity exploration, 
pollution monitoring, demining and surveillance operations, rescue missions, and other critical tasks 
in underwater environments. 

To operate in real-time mode, the artificial intelligence model is usually deployed on a separate 
device, typically a single board computer, which is then installed on the AUV. This approach allows 
for greater modularity in system design and easier upgrades. However, this method has its own set 
of challenges and limitations. The edge devices chosen for this purpose are selected primarily for 
their economic and power efficiency, which is crucial for underwater operations. In such cases, 
performance is frequently traded off for extended battery runtime and lower overall system costs, 
potentially limiting the capabilities of installed software. 

Another major problem is that detecting targets in underwater environments is significantly more 
challenging than generic object detection on land, due to the overall lower image quality of 
underwater datasets. The degradation in image quality is caused by presence of suspended particles 
in the water, which introduces significant color distortion and cast. One more issue, which further 
complicates the task, is motion blur, caused by continuous movement of underwater vehicle. 
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Additionally, there are substantial differences in light emission and propagation between underwater 
and land scenes. 

To overcome these obstacles, researchers have developed a variety of advanced techniques. 
Common approaches typically involve implementing the series of pre-processing steps to enhance 
image quality before inputting it into intellectual system, designing and deploying deeper neural 
networks capable of extracting meaningful features from degraded inputs, and integrating 
specialized network blocks that enhance feature representation abilities. Often, combinations of 
these methods are used, which results in complex, multi-stage processing pipelines. While these 
solutions have demonstrated impressive results in improving underwater object detection, they come 
with a significant drawback: increased overall network complexity, which translates directly into 
higher hardware requirements, larger model sizes, and increased power consumption. 

The complexity of these advanced models makes it infeasible to deploy them on the edge devices 
typically used in AUVs. Thus, there is a need for research focused on size reduction strategies 
specifically tailored for underwater object detectors. The ultimate goal of such research should be to 
develop a comprehensive methodology that enables significant reductions in the size of object 
detection neural networks while simultaneously preserving their accuracy and operational speed. 

The successful development of such methodologies could potentially lead to the design of smaller, 
more efficient AUVs capable of accessing environments that are currently out of reach. Considering 
this, this research paper aims to explore novel approaches to network size reduction for underwater 
object detection models, addressing this crucial challenge and contributing to the ongoing 
advancement of AUV technologies and their applications in marine science, environmental 
monitoring, and underwater operations. 

2. Related work 

2.1. Object detection algorithms 

Generic object detection neural network topologies development started in 2014, when R-CNN model 
[6] was first introduced. In that timeframe, two-stage object detection methodologies were widely 
used, with one network responsible for region proposals, and another network handling object 
localization and classification. This approach is known to provide high accuracy, but the detection 
speed is slow due to a large number of computations caused by redundant bounding boxes. Two-
stage object detectors have undergone series of improvements, with Fast R-CNN [7] and Faster R-
CNN [8] being significantly more effective than the original model, but the performance was still 
unsuitable for real-time applications. 

Later in 2015, one-stage object detection algorithms such as Single-Shot Detector (SSD) and You 
Only Look Once (YOLO) [9] were introduced. In these methods, a single convolutional neural 
network is responsible for predicting bounding boxes across all classes simultaneously by splitting 
the image into S x S grid, determining the tile containing the center of an object and handling 
confidence score calculations within it. This approach streamlines a detection process and leads to 
significant performance improvements by the cost of accuracy. 

To improve both speed and detection accuracy, YOLO series of object detectors have undergone 
a lot of updates. YOLOv2 [10] introduced batch normalization and removed dropout layers. YOLOv3 
[11] used residual connections in feature extraction layers and feature pyramid network (FPN) for 
multi-scale feature aggregation. YOLOv4 [12] introduced cross-partial connections. YOLOv5 [13] 
offered automated hyperparameter search. YOLOX [14] introduced anchor-less design, decoupled 
classification and regression head, advanced augmentations and label assignment strategy. YOLOv7 
[15] offered new layer aggregation and model scaling strategies. YOLOv8 [16] implemented new 
augmentation strategies and offered improvements for model light-weighting. YOLOv9 [17] uses 
programmable gradient information to deal with information loss when data is transmitted through 
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network layers. YOLOv10 [18] offered dual label assignment strategy to omit non-maximum 
suppression strategy and introduced tweaks for lower latency. 

Generally, modern versions of YOLO network share the same topology, where convolutional 
neural network (backbone) is responsible for feature extraction at multiple scales, feature pyramid 
network (neck) is used to aggregate multi-scale features, mixing contextual and detailed information, 
and detection head is responsible for regression and classification tasks. 

2.2. Underwater object detection frameworks 

To overcome constraints presented by lower quality of underwater images, unique features of 
underwater targets such as small size and dense location, and computational constraints, specific 
underwater detection frameworks are developed. Typically, these frameworks can be divided into 
three categories by the way they achieve efficiency improvements for detecting targets in 
underwater environments. 

The first category are object detectors with higher feature representation abilities, reached by 
bigger network capacity or introduction of specific blocks for better feature extraction. Attention 
mechanisms are often used to enhance feature extraction capabilities of the model by ensuring that 
backbone layers of the network focus on more relevant features [19, 20]. Liu et al. have suggested to 
introduce transformer blocks into object detector backbone, based on the assumption that using 
heterogenous architectures enhances the variability of extracted features [21]. Other array of works 
focuses on data augmentation and series of pre-processing steps to reach higher object detection 
accuracy by raising the quality and quantity levels of input data [22]. However, these methodologies 
share a common problem, such as overall network complexity. Although using a larger network, 
extra blocks and preprocessing is useful for accuracy, the number of parameters and high latency 
makes it infeasible to run on edge hardware, so real-world usage of this type of frameworks is 
restricted with using it on pre-collected data. 

The second category of underwater object detection frameworks includes models, which achieve 
accuracy gains by focusing on mitigating a specific issue with underwater images, such as small 
target size, target overlap and motion blur [23, 24]. Common approaches include enhancing feature 
map upsampling process, using extra classification heads for smaller objects or adding extra blocks 
such as attention and visual transformers [25]. Main problem of the frameworks of this type are its 
generalization capabilities. While the accuracy is enhanced on datasets which have the problems 
targeted by a specific model, the same enhancements may not be applicable for other dataset, limiting 
its real-world usage. 

The third category includes underwater object detection methodologies, which focus on 
decreasing the parameter count, size and latency of the model [26, 27]. Light-weighting is typically 
done by replacing the feature extraction portion of the model, which in case with YOLO-based 
detectors, is responsible for over 50% of overall computational complexity. Backbone part of object 
detector are typically fully or partially replaced with a mobile or light-weight convolutional neural 
networks, such as FasterNet [28] or GhostNet [29]. These changes drastically reduce model size and 
improve processing time, making the model more feasible to be used on edge devices, such as AUV 
integrated hardware. However, in this case, the speed and size improvements are reached by 
decreasing the network capacity, which leads to worse accuracy than by using generic solutions. To 
mitigate this effect, researchers typically introduce extra layers to enhance the representation ability 
of a network, which introduces extra parameters and lessens efficiency improvements, achieved by 
model light-weighting. 

This fact has sparked our interest in comparing the performance of light-weight underwater 
object detectors and finding optimal way to mitigate the performance loss, which is inevitably a side-
effect of model light-weighting. 
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2.3. Knowledge distillation 

Knowledge distillation (KD) is a highly efficient technique of boosting efficiency of a light-weight 
student model by forcing it to mimic the outputs of a larger pre-trained teacher model. Earliest 
overviews on these methodologies were formulated by Bucilua [30] in 2006, and the term "knowledge 
distillation" and modern concept of this process was introduced in 2015 by Hinton [31]. Later, 
Romero et al. improved training process and student model performance by using intermediate 
representations as hints [32]. Zagoruyko and Komodakis suggested to use attention transfer to boost 
student performance [33], while Zhang et al. offered to use multiple co-learning student models [34]. 

While being an efficient technique, KD process ensures best results when teacher and student 
models share the similar architecture (e.g. CNN-to-CNN, ViT-to-ViT). As feature heterogeneity 
increases in later layers of neural network, it becomes harder for a student model to improve 
performance. Researches by Touvron et al. [35], Hao et al. [36] are offering more efficient KD 
algorithms for heterogenous architectures, however, the problem is still not fully resolved and KD 
performance is better when teacher and student models are similar. 

3. Problem statement 

The problem of creating an optimal size reduction methodology for YOLO-based underwater object 
detectors involves building two neural networks: 𝑀  and 𝑀 . Both networks accept input 
samples (𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑖, 𝑦𝑖), where 𝑋𝑖 denotes the 𝑖-th RGB image matrix of dimensions 
𝑛 × 𝑛 × 3, and 𝑦𝑖 represents the vector of ground truth bounding box coordinates, which represent 
the position of the object within the image, and class labels for each object within the image. The 
teacher network 𝑀 , parametrized by the weights 𝜃 , and the student network 𝑀 , 
parametrized by 𝜃 , are trained to handle the following transformation: 

𝑓𝜃: 𝑋𝑖 ↦ {(𝑏̂𝑖𝑗, 𝑐̂𝑖𝑗)}𝑗=1
𝑘 , 

 
where 𝑏̂𝑖𝑗 is the predicted bounding box for object 𝑗 in image 𝑋𝑖 , and 𝑐̂𝑖𝑗 is the predicted class 

probability for the object. The goal is to minimize the discrepancy between the predictions 𝑏̂𝑖𝑗, 𝑐̂𝑖𝑗 
and the ground truth 𝑏𝑖𝑗, 𝑐𝑖𝑗 for bounding boxes and class labels, respectively. 

The loss function of 𝑀  and 𝑀 , denoted as ℒYOLO, is composed of regression and 
classification losses. CIoU [37] is used as a main bounding box regression loss, defined as: 

ℒCIoU(𝑏, 𝑏̂) = 1 − IoU(𝑏, 𝑏̂) +
𝜌2(𝑏𝑐 , 𝑏̂𝑐)

𝑐2
+ 𝛼 ⋅ 𝑣, 

 
where 𝑏, 𝑏̂ are the ground truth and predicted bounding boxes, respectively, IoU(𝑏, 𝑏̂) is the 

Intersection over Union, which measures the overlap between the predicted and ground truth 
bounding boxes: 

IoU(𝑏, 𝑏̂) =
|𝑏 ∩ 𝑏̂|

|𝑏 ∪ 𝑏̂|
, 

 
where |𝑏 ∩ 𝑏̂| is the area of overlap, |𝑏 ∪ 𝑏̂| is the total area covered by both boxes, 𝜌(𝑏𝑐 , 𝑏̂𝑐) is 

the Euclidean distance between the centroids 𝑏𝑐 , 𝑏̂𝑐, 𝛼 is the weight factor, balancing the importance 
of aspect ratio consistency: 

𝛼 =
𝑣

(1 − IoU(𝑏, 𝑏̂)) + 𝑣
, 

(1) 

(2) 

(3) 

(4) 



60 
 

 
𝑣 measures the consistency of the aspect ratio between the predicted and ground truth boxes: 

𝑣 =
4

𝜋2
(arctan⁡ (

𝑤

ℎ
) − arctan⁡ (

𝑤̂

ℎ̂
))

2

, 

 
where 𝑤 and ℎ are the width and height of the ground truth bounding box, and 𝑤̂, ℎ̂ are the width 

and height of the predicted bounding box. 
Classification is governed by varifocal loss function (VFL), defined as: 

ℒVFL(p, q) = {
−𝑞(𝑞𝑙𝑜𝑔(𝑝) + (1 − 𝑞)𝑙𝑜𝑔(1 − 𝑝))    𝑞 > 0

−𝛼𝑝𝛾𝑙𝑜𝑔(1 − 𝑝)    𝑞 = 0,    
 

 
where, 𝑝 is the predicted classification score, 𝑞 is the target score, 𝛼 is the balancing coefficient, 

and 𝛾 is the penalty coefficient [38]. 
Total loss function can be defined as the sum of these two loss functions and distribution focal 

loss: 

ℒYOLO = 𝜆CIoUℒCIoU + 𝜆DFLℒDFL + 𝜆VFLℒVFL, 
 
with 𝜆CIoU, 𝜆DFL and 𝜆VFL being hyperparameters, balancing the importance of each component. 
To reduce the size of 𝑀  while maintaining performance, knowledge distillation is used for 

transferring knowledge from the larger teacher model 𝑀 . The objective of knowledge 
distillation is to minimize a combination of the standard YOLO loss ℒYOLO and distillation loss ℒKD, 

for the student model is defined as follows: 

ℒstudent = 𝛼ℒYOLO + (1 − 𝛼)ℒKD, 
 
where 𝛼 controls the trade-off between the YOLO loss and the distillation loss in the total loss 

function. 
Both 𝑀  and 𝑀  are optimized using the Stochastic Gradient Descent (SGD) algorithm 

with the following weight update rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℒ, 
 
where 𝜂 is the learning rate controlling step size, and ∇𝜃ℒ is the gradient of the loss function with 

respect to the model parameters. 

4. Proposed methodology 

4.1. Developing knowledge distillation algorithm for YOLO 

To enable knowledge transfer from larger teacher model into light-weight student model, regression 
and classification components of total loss function have been modified to include distillation loss 
with additional weighting coefficient added to avoid learning collapse due to student model fully 
mimicking teacher model outputs. Additionally, temperature coefficient 𝜏 with decay strategy has 
been used to control the softening of logits for the classification component, allowing to regulate the 
amount of knowledge being distilled from a larger model by a student. 

Bounding box regression loss is handled by CIoU function with additional L2 loss component, 
improving the consistency between teacher and student model bounding box predictions: 

(5) 

(6) 

(7) 

(8) 

(9) 



61 
 

ℒCIoU = (1 − 𝜆distill) ⋅ (1 − CIoU(𝑏𝑖𝑗, 𝑏̂𝑖𝑗)) + 𝜆distill ⋅ ∥∥𝑏̂𝑖𝑗
teacher − 𝑏̂𝑖𝑗

student
∥∥
2

2
, 

 
where 𝜆distill is the distillation coefficient balancing the standard CIoU loss and the distillation 

term, 𝑏̂𝑖𝑗teacher and 𝑏̂𝑖𝑗student are the bounding boxes predicted by the teacher and student networks 
in that order. 

Classification loss is handled with varifocal loss function (VFL), with Kullback-Leibler divergence 
loss (KL-loss) added as a distillation component, scaled by temperature. To encourage exploration in 
earlier stages of student model training, we propose temperature decay strategy, starting from higher 
values and linearly shifting the temperature coefficient toward 1 to focus on more confident 
predictions in later stages of training: 

ℒVFL = (1 − 𝜆distill) ⋅ VFL(𝑦𝑖𝑗 , 𝑐̂𝑖𝑗
student) + 𝜆distill ⋅ 𝜏(𝑡)

2

⋅ KL(𝜎 (
𝑐̂𝑖𝑗
teacher

𝜏(𝑡)
) ∥ 𝜎 (

𝑐̂𝑖𝑗
student

𝜏(𝑡)
)), 

 
with 𝜏(𝑡) representing the decaying temperature, 𝑐̂𝑖𝑗teacher and 𝑐̂𝑖𝑗student are the class probability 

logits for teacher and student models, respectively. 

Algorithm 1 
Training YOLO student and teacher models 

Input: Dataset 𝒟 = {(𝑋𝑖, 𝑦𝑖)}𝑖=1
𝑁 , teacher model 𝑀 , student model 𝑀 , initial 

temperature 𝜏0, decay strategy 𝜏(𝑡), hyperparameters 𝜆CIoU, 𝜆DFL, 𝜆VFL, 𝜆distill, maximum epochs 
𝑇𝑚𝑎𝑥, learning rate 𝛼, batch size 𝐵. 

Initialize student model parameters 𝜃 , load teacher model with parameters 𝜃 , set 
initial temperature 𝜏⁡ = ⁡ 𝜏0. 

For each epoch 𝑡 = 1,… , 𝑇𝑚𝑎𝑥: 
    shuffle training set 𝒟; 
    for each mini-batch ℬ ⊂ 𝒟: 
        do forward path, computing 𝑏̂𝑖𝑗 , 𝑐̂𝑖𝑗  and 𝑏̂𝑖𝑗 , 𝑐̂𝑖𝑗 ; 
        compute loss ℒtotal; 
        do backward pass, compute gradients ∇𝜃 ℒ ; 
        update 𝜃student ← 𝜃student − 𝛼 ⋅ ∇𝜃 ℒ ; 
        update temperature 𝜏(𝑡). 
End of training: Return the trained student model 𝑀 . 
Output: Trained student model 𝑀 . 

 
4.2. Building light-weight student model topology 

To ensure optimal performance of a resulting distilled model, the student model should meet the size 
and computational efficiency requirement. An approach used in this paper involved light-weighting 
the feature extraction (backbone) layers of YOLO object detector, to reduce the number of expensive 
convolutional operations, which contribute a lot to a total parameter count. Feature aggregation 
(neck) and final output layers (head) from original YOLOv8 architecture were reused, as adding 
additional blocks to these parts of the network would increase the parameter count, and extra light-
weighting would introduce more differences between student and teacher model, which could harm 
the distillation performance. In this case, backbone network consists of convolutional blocks, which 
are composed of 2D convolutional layer and batch normalization, followed by SiLU activation 

(10) 

(11) 



62 
 

function. Each convolutional block is followed by bottleneck blocks C2f or C3, which perform 
convolutional operation on the input, then splits the channels, processes the resulting feature map 
through multiple bottlenecks (number in the name of the block represents the bottleneck layer 
count), ending with concatenation. 

Overall architecture of object detection network is shown in Figure 1. 

 
Figure 1: Overall structure of a proposed object detector. 

To find the model, which provides the best balance between efficiency and performance, we have 
built two variants of backbone network, based on GhostConvolution layers derived from GhostNet 
and FasterNet blocks. The core idea behind this design is to reduce the number of computationally 
expensive 3 x 3 convolutions in favor of their light-weight counterparts. 

Default convolution operation outputs feature map 𝑌 by processing input feature map 𝑋 using a 
convolution kernel 𝑊 as 𝑌⁡ = ⁡𝑋⁡ ∗ ⁡𝑊, where ∗ denotes the convolution operation. 
GhostConvolution is aimed at generating the similar number of feature maps by using less 
computations by executing convolution with fewer filters, obtaining intrinsic feature maps 𝑌int as 
𝑌int = 𝑋 ∗𝑊int where 𝑊int is a smaller convolutional filter. Then, the series of computationally 
inexpensive operations is used to generate the ghost feature maps 𝑌ghost as in 𝑌ghost = 𝑓(𝑌int) where 
𝑓 denotes cheap operation. 

FasterNet applies different approach to reduce the computational complexity and decrease 
latency of convolutional operations, based on PConv procedure, which applies convolutional 
operation only on a part of input channels for spatial feature extraction and leaves remaining 
channels as is. Then, PConv is followed by series of pointwise convolution to reuse the information 
from all channels in an efficient way. 

5. Experimental evaluation 

To evaluate the performance of the proposed algorithm, we used the UTDAC2020 (Underwater 
Target Detection Algorithm Competition 2020) dataset, a challenging underwater detection 
benchmark, consisting of 5168 training and 1293 validation images in various resolutions (3840 x 
2160, 1920 x 1080, 720 x 405, and 586 x 480). The chosen dataset contains four classes: echinus, 
holothurian, scallop, and starfish. UTDAC2020 presents several challenges, including significant 
class imbalance, with the echinus class appearing four times more frequently than the other classes. 
The dataset also features targets at different scales, often densely packed, and the cases of low 
contrast, challenging lighting conditions and motion blur caused by camera movement. 
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The machine used for experiment is equipped with Intel Core i5-13600K processor, NVIDIA A4000 
GPU with 16GB VRAM. Software-wise, the test setup is running Ubuntu 20.04.6 LTS with Python 
3.10.13, CUDA 12.1, and PyTorch 2.2.1. 

Each model has been trained during 250 epochs with a batch size of 32 and an image size of 640 
x 640. Stochastic Gradient Descent (SGD) served as the optimization algorithm, with a momentum 
of 0.937, an initial learning rate of 0.01, and a weight decay coefficient of 0.005. For distilled models, 
initial temperature coefficient is set to 5, linearly decaying toward 1 until the model converges. The 
hyperparameters were found empirically using the Ray Tune library. Albumentations package was 
employed for augmenting the dataset, which includes combinations of random crop, random rotate 
and mosaic augmentations. 

Total of five metrics have been used to test the model, with mAp and mAp50 representing the 
object detection accuracy of neural network. Size, parameter count and FLOPs are also measured as 
performance metrics to evaluate the computational efficiency of proposed approach. Detailed 
explanation of metrics is provided in Table 1. 

Table 1 
Metrics explanation 

Metrics Description 

mAp50 
Mean average precision (mAp) at intersection over union (IoU) of 0.50, 

defined as average precision for each class over number of classes  
mAp mAp at IoU of 0.50:0.05:0.95 

Params Total number of model parameters 

FLOPs Performance metrics denoting number of floating-point operations per 
second 

Size Model size in megabytes 
 
A comparison of existing frameworks and models, built using the proposed methodology, is 

provided in Table 2. For distilled models, YOLOv8l with DarkNet-53 backbone is used as a teacher 
model. Student models use YOLOv8s architecture with custom backbones, based on GhostNet and 
FasterNet, with both convolutional blocks and bottlenecks modified. Models using knowledge 

-  

Table 2 
Experiment results on UTDAC2020 dataset 

Method Backbone mAp mAp50 
Params 
(M) 

FLOPs 
(G) 

Size 
(Mb) 

Faster R-CNN ResNet50 44.51 80.93 41.14 63.3 ~ 
RetinaNet ResNet50 43.93 80.42 36.17 52.6 ~ 

FCOS ResNet50 43.88 81.06 31.84 50.4 ~ 
YOLOv8n DarkNet-53 48.92 82.61 3 8.9 6 
YOLOv8s DarkNet-53 50.45 84.58 11.2 28.8 22 
YOLOv8m DarkNet-53 51.62 84.92 25.8 78.7 51 
YOLOv8l DarkNet-53 51.73 84.97 43.6 165.7 84 
YOLOv8s GhostNet 49.76 83.71 6 16.4 9 
YOLOv8s FasterNet 49.85 83.8 5.8 16 9 

YOLOv8s-dist GhostNet 50.62 84.7 6 16.4 9 
YOLOv8s-dist FasterNet 50.71 84.72 5.8 16 9 

 
Experiment results prove superior performance of models using knowledge distillation algorithm. 

In comparison to YOLOv8s, the computational complexity in FLOPs is reduced by 45%, while 
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maintaining object detection performance. The choice of light-weight 
provide any significant difference, with FasterNet and GhostNet backbones providing similar results 
in terms of both size and accuracy. 

Visualization of ground truth bounding boxes and class labels, compared with detections, 
performed with the proposed YOLOv8-dist model, is shown in Figure 2. The samples with complex 
background information and targets of various sizes were selected to demonstrate the performance 
of our model. 

 
Figure 2: Examples of object detection obtained from YOLOv8s-dist model. Ground truth labels are 
on the left, proposed model detection results are on the right. Detection of targets at various scales 
and objects on complex backgrounds is handled correctly. 

6. Conclusions 

The paper proposed a novel methodology to reduce the size of YOLO-based underwater object 
detectors. Knowledge distillation algorithm with temperature decay strategy has been developed for 
object detection neural network, allowing to effectively train light-weight student model by 
transferring knowledge from teacher model of larger capacity. Additionally, we developed two light-
weight YOLO architectures, derived from GhostNet and FasterNet approaches to convolution 
operation, which are suitable to be used as a student model in knowledge distillation tasks. 

The proposed light-weight models are 45% more efficient in terms of computational complexity, 
compared to existing YOLOv8s model. After using our knowledge distillation algorithm, the 
performance of the student model is superior to original YOLOv8s in terms of accuracy (84.72% and 
84.58%, respectively), while the model size is comparable to YOLOv8n, the smallest model among 
YOLO-based detectors. 
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The applications of our methodology include training efficient object detection neural network 
for integrated autonomous underwater vehicle hardware. To achieve even better performance of 
knowledge distillation with YOLO-based detectors, we suggest that further research could be 
conducted on more sophisticated knowledge distillation techniques during training, and using 
knowledge distillation algorithms with heterogenous backbones, such as visual transformers, which 
could potentially enrich intermediate feature maps with more context and semantic information, 
leading to a higher accuracy in applied tasks. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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