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Abstract 
The segmentation and classification of cardiac magnetic resonance imaging are critical for diagnosing heart 
conditions, yet current approaches face challenges in accuracy and generalizability. In this study, we aim 
to further advance the segmentation and classification of cardiac magnetic resonance images by introducing 
a novel deep learning-based approach. Using a multi-stage process with U-Net and ResNet models for 
segmentation, followed by Gaussian smoothing, the method improved segmentation accuracy, achieving a 
Dice coefficient of 0.974 for the left ventricle and 0.947 for the right ventricle. For classification, a cascade 
of deep learning classifiers was employed to distinguish heart conditions, including hypertrophic 
cardiomyopathy, myocardial infarction, and dilated cardiomyopathy, achieving an average accuracy of 
97.2%. The proposed approach outperformed existing models, enhancing segmentation accuracy and 
classification precision. These advancements show promise for clinical applications, though further 
validation and interpretation across diverse imaging protocols is necessary. 
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1. Introduction 

Cardiovascular disease (CVD) remains the primary cause of global mortality, accounting for 
approximately 17.9 million deaths annually [1]. Its substantial impact highlights an urgent demand 
for effective diagnostic tools to detect and manage heart-related pathologies early. Cardiac magnetic 
resonance imaging (MRI) has established itself as the gold standard  in cardiac diagnostics, offering 
non-invasive, high-resolution images of heart structures and functions. These capabilities make MRI 
indispensable for identifying conditions such as myocardial infarction, cardiomyopathies, and 
structural abnormalities [2, 3]. 

Despite its strengths, cardiac MRI faces considerable challenges. The heart s intricate anatomy 
and its continuous motion due to respiration and heartbeat introduce artifacts that compromise 
image clarity. Additional factors, such as the presence of metal implants or equipment-induced 
distortions, further complicate accurate image interpretation [4, 5]. These issues often require labor-
intensive image preprocessing and corrections, thereby increasing the cost and time required for 
analysis. 

Artificial intelligence (AI) has emerged as a transformative technology in medical imaging, 
demonstrating its ability to automate complex tasks and identify subtle abnormalities that may elude 
human observers. Deep learning (DL), in particular, has shown remarkable potential for tasks such 
as image segmentation and classification, offering high accuracy and consistency [6]. However, the 
integration of AI into medical workflows faces several obstacles, including the need for extensive 
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annotated datasets, concerns about data privacy, and challenges in adapting AI models to diverse 
clinical environments [7]. 

The primary issue in cardiac MRI processing is the difficulty in achieving accurate segmentation 
and classification of MRI scans due to motion artifacts, complex heart anatomy, and existing model 
limitations. Existing solutions often struggle with issues like image artifacts, poor segmentation in 
complex cases, and the inability to accurately classify various heart conditions due to segmentation 
errors. Thus, this study aims to address these challenges by introducing an innovative approach to 
cardiac MRI analysis. Specifically, the objective is to design novel methods that deliver highly 
accurate segmentation and classification performance, ultimately advancing clinical decision-
making. 

The structure of the paper is as follows: Section 2 reviews the state-of-the-art techniques in 
cardiac MRI segmentation and classification, highlighting advancements and limitations. In Section 
3, the manuscript introduces a multi-stage segmentation process using U-Net and ResNet models, 
followed by a cascade classification system. Section 4 presents improved segmentation accuracy 
through mask localization and postprocessing, alongside high classification precision. Finally, 
Section 5 summarizes the study s findings, emphasizing its contributions to enhancing cardiac MRI 
analysis and discussing potential limitations and future research directions. 

2. Related works 

DL has completely transformed medical image analysis by uncovering complex patterns in data that 
traditional methods struggle to identify. Models like U-Net [8] and ResNet [9] have been instrumental 
in achieving accurate image segmentation, even when trained on limited datasets. U-Net s encoder-
decoder architecture, for instance, efficiently captures both global and local image features. However, 
these models often demand significant computational resources and rely on substantial training data 
to achieve optimal performance [10]. 

Recent trends emphasize building trust in AI systems by introducing human-in-the-loop [11] and 
human-centric approaches [12]. While these hybrid techniques improve interpretability and 
reliability, they increase the complexity of deployment. Additionally, combining deep learning with 
traditional methods, such as active contour modeling, enhances segmentation precision but adds to 
computational overhead [13]. 

In the field of cardiac MRI, multimodal approaches that integrate data from various imaging 
modalities, such as CT and MRI, have shown promise [14]. While these methods improve 
segmentation outcomes, their reliance on datasets from different imaging sources creates significant 
integration challenges [15]. For instance, Hu et al. [16] developed a deeply supervised network paired 
with a 3D Active Shape Model that reduces manual initialization efforts. Despite its effectiveness, 
the method s high computational demands and lack of validation across imaging protocols limit its 
broader applicability. da Silva et al. [17] introduced a cascade approach utilizing DL models for 
automatic segmentation of cardiac structures in short-axis cine-MRIs, achieving enhanced 
segmentation accuracy; however, it may face limitations such as increased computational complexity 
and reduced generalizability due to reliance on high-quality training data. 

In addition, recent enhancements to U-Net, such as attention mechanisms [18] and residual 
connections [19], have further boosted their performance in cardiac MRI segmentation. These 
improvements allow the model to better focus on relevant regions and handle variations in heart 
anatomy. However, challenges remain in terms of computational efficiency and robustness to 
imaging artifacts. 

Segmentation and classification are often treated as isolated tasks, but recent works aim to 
combine these processes. Sander et al. [20] addressed segmentation errors with a corrective 
framework that requires manual intervention, increasing workflow complexity. Ammar et al. [21] 
designed a combined segmentation-classification pipeline for diagnosing heart diseases, but its 
reliance on high-quality segmentation introduces additional training burdens. Similarly, Zheng et al. 
[22] utilized semi-supervised learning for explainable classification but encountered issues with 
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motion artifacts. Zhang et al. [23] leveraged dilated convolutions for multi-scale segmentation, 
though their method struggled with overfitting and resource-intensive training. 

Existing approaches to cardiac MRI face several unresolved issues, including dependency on high-
quality data, poor generalizability across diverse clinical environments, and the high computational 
cost of model training and deployment. These limitations hinder the practical application of DL in 
cardiac MRI analysis. 

The goal is to enhance the accuracy of heart structure segmentation and improve the 
classification of conditions such as hypertrophic cardiomyopathy, myocardial infarction, and dilated 
cardiomyopathy. The main contributions of this research are as follows: 

• A multi-stage segmentation method combining U-Net and ResNet DL models for 
localizing and segmenting heart structures, followed by postprocessing with Gaussian 
smoothing to refine contours and reduce artifacts. 

• An MRI classification method based on the DL cascade model for distinguishing between 
heart conditions by leveraging segmented MRI data. 

• Significant improvement in segmentation accuracy, achieving a Dice coefficient of up to 
0.974 for left ventricle (LV) and 0.947 for right ventricle (RV) segmentation. 

3. Methods and materials 

In this study, we introduce a novel approach to the segmentation and classification of MRI scans, 
involving a multi-stage process, as illustrated in Figures 1. 

 
Figure 1: The scheme of the proposed approach: the process flow of MRI scans, starting with heart 
part segmentation, followed by classification using a cascade of DL models, and ending with 
predicted class outputs. 

 
The proposed approach is divided into two key stages. In the first stage, relevant heart parts are 

segmented to extract critical anatomical features. In the second stage, a cascade of DL models [24] is 
employed to classify the MRI scans, ultimately producing the predicted classes. The following 
subsections detail each stage of the process, along with the materials and techniques used. 

The first stage of the process is presented as a novel method of MRI segmentation, while the 
second stage is formalized as a new method of MRI classification. Below, we describe all stages of 
the proposed approach in detail. 

3.1. Method of MRI segmentation 

The proposed method for heart segmentation on MRIs involves three key steps: localization, mask 
generation, and post-processing to refine contours. First, existing masks are split into binary masks 
for the myocardium, LV, and RV with a DL model used to identify the region for each fragment. 
Then, DL helps refine the contours, and finally, the masks are combined into a single mask and 
resized to their original dimensions for improved accuracy. 

These steps together provide an integrated approach (Figure 2), which increases the accuracy of 
heart segmentation on MRI scans. 

Below is a detailed description of each step of the method. 
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The input data for the process in the image consists of MRI scans of the heart, where masks 
representing different heart structures are provided. These masks depict the LV, RV, and 
myocardium as distinct areas for analysis. 

 
Figure 2: Scheme that demonstrates the proposed method of segmenting heart structures from MRI 
scans. Masks for the heart s LV, RV, and myocardium are localized using the U-Net and ResNet DL 
models. These localized masks are further refined through cardiac mask generation, followed by 
postprocessing to improve accuracy and produce segmented images with improved masks. 

 
Step 1. The localization part consists of decomposing the existing masks into separate binary 

masks for different heart structures: myocardium, LV, and RV (Figure 3). 

 
Figure 3: Decomposition of a general mask (a) into three binary masks (b). 

 
This process allows each heart structure to be processed separately, improving segmentation 

accuracy. Each binary mask focuses on a specific heart structure, where relevant pixels are marked 
as 1, and all others are 0. This separation helps DL models target individual structures, reducing 
interference from other parts of the image and simplifying the segmentation task, which boosts 
accuracy and reduces computational complexity. 

For each mask, a separate DL model is trained to detect the location of a specific heart fragment, 
working like an object detector to identify boundaries within the MRI scan. For example, the model 
trained for the LV focuses only on locating that specific structure. 

The models are trained using the Fastai library [25] and pre-trained networks built on U-Net [8] 
and ResNet [9] architectures, with the ResNet-34 version (34 layers) being used in this study. Images 
are resized for uniformity before training, and the model is trained for 10 epochs, followed by fine-
tuning and an additional 10 epochs. This method improves accuracy by adjusting parameters, and 
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the resulting masks help center and localize the heart structures by adjusting the image s aspect ratio 
and adding a 15% frame for better focus. The localization result for the LV is shown in Figure 4. 

As an outcome, the first phase yields localized images with marked regions of interest: the 
myocardium, LV, and RV. 

Step 2. For cardiac mask generation, there were three separately trained models for each heart 
structure. These models take the localized images from step 1 as input and perform detailed region 
delineation of each heart structure. 

 
Figure 4: An example of the localization result: (a) yellow mask  LV, yellow dashed frame  LV 
area, red frame  final localization area; (b) localized image of the LV area. 

 
Training here follows the same approaches and technologies as in step 1. Image localization helps 

to operate with less data, boosting accuracy in determining heart structure contours. This 
localization helps avoid noise and unrelated structures, allowing the DL model to capture finer 
details, which is essential for this step s accuracy. Figure 5 shows original input image, samples of 
input localized images, and output masks from step 2. 

Therefore, the output of step 2 is segmented images containing masks of separately defined areas: 
the myocardium, LV and RV. 

Step 3. Postprocessing focuses on refining and improving the quality of the generated masks. Since 
the models are trained on uniformly resized images, they must be scaled back to their original 
dimensions for proper comparison with the ground truth masks. However, simple resizing can cause 
detail loss and artifacts, which affects the final evaluation. To address this, smoothing methods that 
create smooth pixel transitions for a more natural appearance when resizing are used. In our case, 
Gaussian smoothing offered an acceptable balance between performance and efficiency. It is 
formalized by the following formula: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

− 
𝑥2+ 𝑦2

2𝜎2 , (1) 

where 𝐺(𝑥, 𝑦) is the Gaussian filter value in point (𝑥, 𝑦), 𝜎 stands for standard deviation, which 
specifies the intensity of smoothing, (𝑥, 𝑦) represent pixel coordinates. 

Linear regression is utilized to identify the optimal value automatically of 𝜎 in formula (1) for 
each image size. Finally, the output data of the proposed method are segmented images with 
improved masks in their original size for more correct comparison with expert masks. 

3.1. Method of MRI classification 

The proposed classification method detects abnormalities in LV and RV or confirms a normal state 
by analyzing MRI scans across different cardiac cycle stages. Structured in multiple levels to 
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minimize class confusion and improve generalization, it incorporates critical anatomical features 
such as tissue density, ventricular volume, and dynamic myocardium thickness. 

 

 
Figure 5: Segmentation results: (a) input image, (b) RV mask, (c) LV mask, and (d) myocardium mask. 

 
By leveraging segmentation results from prior steps of method of MRI segmentation and 

combining MRI scans and segmentation masks from both diastolic and systolic phases, the model 
captures both geometric and texture details essential for accurate diagnosis. Each heart segment is 
represented in separate RGB channels, aiding the DL model in analyzing structural and tissue 
heterogeneity, with images interpolated to a consistent size to reduce noise and irrelevant details 
before classification. 

Figure 6 shows the set of images that are typically fed into the DL model. 

 
Figure 6: Visualizations of input data. The top row represents images from the systolic phase, while 
the bottom row shows images from the diastolic phase. The columns correspond to slices along the 
short axis. Red marks indicate the segments of the RV, blue marks  the LV, and green marks  the 
myocardium segment. 

 
To address the common issue of class imbalance in medical datasets, the proposed method uses a 

cascading classification model, following the scheme in [24]. This approach helps improve 
generalization in small datasets by training binary classifiers that focus on two specific classes at a 
time, enhancing classification accuracy. 

The cascade consists of four classifiers: 
1. The first classifier separates LV pathologies from RV pathologies and normal conditions, 

allowing the model to focus on general LV features. 
2. The second classifier distinguishes between RV abnormalities and normal conditions, further 

refining the model s accuracy.  

End systole 

End diastole 
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3. The third classifier differentiates hypertrophic cardiomyopathy from other LV pathologies.  
4. The fourth classifier separates myocardial infarction-related pathologies from dilated 

cardiomyopathy, which are often hard to tell apart, enabling the model to better distinguish 
between them. 

Figure 7 illustrates the application of all four classifiers for pathology identification. 

 
Figure 7: Algorithm for cascading application of binary classifiers. 
 

The proposed classifiers utilize the CNN model [26] adapted for the task of binary classification. 
The architecture is schematically represented in Figure 8. 

 
Figure 8: Architecture of the DL model within the proposed method for classifiers. 

 
The model architecture has 50 layers and includes essential components like an initial 

convolutional layer for extracting basic features and normalization and activation layers to stabilize 
learning. The first layer, Conv1, uses large filters to capture basic features like edges and textures, 
followed by Conv2 through Conv5, which apply various filters to learn more complex and abstract 
details at each stage. 

After these convolutional operations, global average pooling gathers all learned features into a 
single vector, which is then passed to the final layer responsible for binary classification. This multi-
layered processing allows the model to accurately analyze both simple and complex patterns in the 
input data, making it highly suitable for classification tasks. 

The overall method scheme is depicted in Figure 9. The method involves the following key steps. 
The input data consists of modified images from the dataset, including MRI scans for each patient 
during both the diastolic and systolic phases. 

Is ALV? 

MINF 

Is HCM? 

Is DCM? 

Is ARV? 

DCM ARV HCM NOR 

Yes Yes 

Yes 

Yes 

No 

No 

No 

No 

Start 

End 

Input 
42×64×64×3 7×7, 64 

1×1, 64 
3×3, 64 
1×1, 256 

1×1, 128 
3×3, 128 
1×1, 512 

1×1, 256 
3×3, 256 
1×1, 1024 

1×1, 512 
3×3, 512 
1×1, 2048 

Output 
(2 Classes) 

Conv1 
(21×32×32×64) 

Conv2 
(11×16×16×256) 

Conv3 
(11×16×16×512) 

Conv4 
(6×8×8×1024) 

Conv5 
(3×4×4×2048) 

×3 ×4 ×6 ×3 
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Step 1: MRI scans are prepared by cropping to focus on the necessary heart segments, then resizing 
them to a uniform dimension. The segmentation masks and images are combined, with each heart 
segment placed in a separate channel. 

Step 2: The cascade of four classifiers is trained, with each classifier trained individually. The 
-

the data split into training and validation sets. Early stopping is used during training to prevent 
overfitting by stopping the process if validation losses don t improve. 

 
Figure 9: Scheme of the proposed method of classifying heart pathologies from MRI scans. The input 
data includes both MRI scans and masks representing different heart structures. The process involves 
preparing the data by combining images with masks and normalizing them, followed by a cascade 
classification system to identify specific heart conditions. 
 

The output of the method is a trained cascade of classifiers that can identify the following 
pathologies: 

1. Abnormal right ventricle (ARV). 
2. Hypertrophic cardiomyopathy (HCM). 
3. Previous myocardial infarction (MINF). 
4. Dilated cardiomyopathy (DCM). 
5. Normal state (NOR). 

3.2. Dataset 

The Automated Cardiac Diagnostic Challenge (ACDC) dataset [27] was used for both segmentation 
and classification tasks in this study. The dataset includes 150 patients split into five groups: healthy, 
myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, and right ventricular 
anomaly. Each patient s data includes physical parameters, images, and expert-annotated heart 
structure masks. While previous work [28] filtered the dataset for improved results, this study uses 
the original dataset. The pre-formed training and testing sets were used to ensure comparability with 
other studies. 

3.3. Evaluation criteria 

Experiments were conducted to evaluate each stage of the method, with models trained using 
consistent epochs, architecture, and data. The results were averaged over 10 training and testing 
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cycles to ensure objectivity. Segmentation quality was measured using the Dice coefficient, which 
compares the overlap between predicted and expert masks. The Dice coefficient formula is as follows: 

𝐷𝑖𝑐𝑒 =  
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
, (2) 

where 𝐴 is a set of pixels, 𝐵 is a set of pixels of true segmentation, |𝐴| represents set 𝐴 count, |𝐵| 
stands for set 𝐵 count, |𝐴 ∩ 𝐵| represents count of overlapped elements for the set 𝐴 and set 𝐵; a 
value of 0 in formula (2) indicates no overlap, and 1 indicates perfect alignment between the masks. 

For classification accuracy, the average is calculated by considering each classifier s accuracy at 
every step and taking the arithmetic mean of all class accuracies to get the overall model accuracy. 
This approach ensures a fair comparison with other methods. The following formalizations are used 
for these calculations: 

𝐴NOR,ARV =
𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 1 + 𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 2

2
, (3) 

𝐴HCM =
𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 1 + 𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 3

2
, (4) 

𝐴MINF,DCM =
𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 1 + 𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 3 + 𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 4

3
, (5) 

𝐴 =
𝐴𝑁𝑂𝑅 + 𝐴𝐴𝑅𝑉 + 𝐴𝐻𝐶𝑀 + 𝐴𝑀𝐼𝑁𝐹 + 𝐴𝐷𝐶𝑀

5
, (6) 

where 𝐴𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 1−4 represents the accuracy of each classifier, 𝐴NOR,ARV,𝐻𝐶𝑀,𝑀𝐼𝑁𝐹,𝐷𝐶𝑀 
represents the classification accuracy of each class, with A being the overall accuracy of the method. 

4. Results and discussion 

4.1. Results for method of segmentation 

The experimental results obtained to determine the accuracy of the localization, decomposition, 
and postprocessing stages are shown in Table 1.  

Moreover, the results obtained are compared with other methods (Table 2). 
Segmentation of original images. In the first stage of the experiments, a model was trained to 

segment full MRI scans without any prior localization or decomposition. The model was trained to 
detect the contours of the myocardium, as well as the LV and RV, across the entire image. The results 
of this experiment are shown in Figure 10. 

Localization and segmentation of original images. The second stage of the experiments involved 
localization and segmentation of the original MRI scans. First models were used to determine the 
heart area location (with myocardium, RV, and LV). After that, the localized area was passed to the 
input of the DL model for detailed segmentation. An example of the result of the described 
experiment is shown in Figure 11. 

Table 1 
Computational results, i.e., values of Dice coefficient, to test the accuracy of the localization (L), 
decomposition (D), and postprocessing (PP) steps within the proposed segmentation method. Myo. 
of LV stands for the myocardium of LV. Numbers in bold represent higher values. 

Experiment End diastole End systole 

LV RV Myo. of LV LV RV Myo. of LV 

Original Images 0.911 0.842 0.812 0.890 0.871 0.832 
L 0.920 0.902 0.875 0.894 0.891 0.884 
D 0.919 0.892 0.855 0.887 0.873 0.885 

L + D 0.956 0.939 0.866 0.930 0.905 0.898 
L + D+ PP 0.974 0.947 0.896 0.940 0.915 0.920 
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Table 2 
Comparison of segmentation results with state of the art by Dice coefficient. Numbers in bold 
represent higher values. 

Approaches End diastole End systole 

LV RV Myocardium 
of LV LV RV Myocardium 

of LV 
Ours 0.974  0.947 0.896 0.940 0.915 0.920 

Hu et al. [16] 0.968 0.946 0.902 0.931 0.899 0.919 
da Silva et al. [17] 0.963 0.932 0.892 0.911 0.883 0.901 
Sander et al. [20] 0.959 0.929 0.875 0.921 0.885 0.895 
Ammar et al. [21] 0.964 0.935 0.889 0.917 0.879 0.898 
 

 
Figure 10: Comparison of masks for original images: (a) expert mask and (b) DL output mask. 

 

 
Figure 11: Comparison of masks for localized images: (a) expert mask and (b) DL output mask. 

Segmentation of original decomposed images. The third stage of the experiments involved the 
segmentation of the original images (decomposed). The original MRI scans were divided into 
separate binary masks for the myocardium, LV, and RV. Separate DL models were applied for each 
mask, trained to identify the corresponding structures. This allowed for testing if segmentation 
performance increases by splitting the task into separate parts without employing preliminary 
localization. An example of the result of this experiment is shown in Figure 12. 

 
Figure 12: Comparison of masks for images in the original size with mask decomposition: (a) expert 
mask, (b) DL output mask, and (c) difference between masks. 
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Localization and segmentation of decomposed images. The fourth stage of the experiments involved 
localization and segmentation of the decomposed images. First, for each of the binary masks 
(myocardium, LV, and RV), localization models were used to define the regions of these structures. 
The localized regions were then passed to DL models for detailed segmentation. This approach 
allowed us to assess the impact of preliminary localization and decomposition on segmentation 
accuracy. An example of the result of the described experiment is shown in Figure 13. 

 
Figure 13: Comparison of masks for localized images with mask decomposition: (a) expert mask, (b) 
DL output mask, and (c) difference between masks. 

 
Localization and segmentation of decomposed images with postprocessing (proposed approach). At 

the fifth and final stage of the experiments, the decomposed images were localized and segmented, 
followed by postprocessing. After completing localization and segmentation for each of the binary 
masks, the results were processed using postprocessing to smooth transitions and reduce artifacts. 
The masks were returned to their original size using blurring techniques to ensure a correct 
comparison with the expert masks. The results are shown in Figure 14. 

Therefore, the experiments have demonstrated enhanced accuracy of the proposed method, which 
includes localization, decomposition, and postprocessing of images. This approach provides high 
accuracy of segmentation of heart structures in MRI scans, which is critical for further clinical 
analysis and diagnosis. 

 
Figure 14: Comparison of masks for localized images with mask decomposition with contour 
enhancement: (a) expert mask, (b) DL output mask, and (c) difference between masks. 

4.2. Results for method of classification 

The proposed classification method was evaluated using several metrics, including precision, recall, 
F1-score, and overall accuracy. For each of the four classification steps, metrics (2) (6) were used to 
assess the detection and separation of various heart pathologies. Figure 15 presents the confusion 
matrix for each classification step, demonstrating the rate of correct, false positive, and false negative 
classifications. 
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Classifier 1 Classifier 2 Classifier 3 Classifier 4 

    
Figure 15: Confusion matrices for classification steps: step 1  classifier 1, step 2  classifier 2, step 
3  classifier 3, and step 4  classifier 4. 

 
Table 3 shows classification results of the proposed model at each step. 

Table 3 
Classification evaluation metrics for classifiers 1 4 obtained on steps 1 4, respectively, within the 
proposed classification method. 

Classifier Classes Precision Recall F1-score Accuracy 

Classifier 1 NOR+ARV 0.95 0.95 0.95 0.96 MINF+HCM+DCM 0.97 0.97 0.97 

Classifier 2 NOR 1.00 1.00 1.00 1.00 ARV 1.00 1.00 1.00 

Classifier 3 HCM 1.00 1.00 1.00 1.00 MINF+DCM 1.00 1.00 1.00 

Classifier 4 MINF 0.90 0.90 0.90 0.90 DCM 0.90 0.90 0.90 
 
The first step showed a high accuracy of 0.96 in separating LV pathologies from other cases, while 

the second step achieved a perfect accuracy of 1.0 for distinguishing between the normal state and 
RV abnormalities. The third step also achieved a perfect accuracy of 1.0 in classifying hypertrophic 
cardiomyopathy from other LV pathologies. Finally, the fourth step, which differentiates between 
previous myocardial infarction and dilated cardiomyopathy, showed an accuracy of 0.90. 

Figure 16 presents the Receiver Operating Characteristic (ROC) curves for each of the four 
classification steps, illustrating the relationship between sensitivity (True Positive Rate) and 
specificity (False Positive Rate). 

Classifier 1 Classifier 2 Classifier 3 Classifier 4 

    
Figure 16: AUC curves for classification steps: step 1  classifier 1, step 2  classifier 2, step 3  
classifier 3, and step 4  classifier 4. 
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The results obtained indicate that the proposed multi-stage segmentation and cascade 
classification approach delivers competitive performance in cardiac MRI analysis. The AUC values 
for the classification steps are consistently high, with Classifiers 1, 2, and 3 achieving near-perfect 

classes. Classifier 4, while slightly lower with an AUC of 0.91, still demonstrates adequate 
performance, though there may be room for further refinement to improve classification of more 

handling various heart conditions with minimal misclassification. 
A comparison of the overall accuracy of this method with the results from other authors  work is 

presented in Table 4. 

Table 4 
Comparison of classification results with state of the art by accuracy. Numbers in bold represent 
higher values. 

Method Accuracy 
Ours 0.972 

Ammar et. al. [21] 0.923 
Zheng et. al. [22] 0.941 

Mahendra et. al. [23] 0.998 
 
Comparative analysis (Table 4) shows that our method achieves an overall classification accuracy 

of 0.972, positioning it closely with other state-of-the-art techniques. Although slightly lower than 
the highest reported accuracy of 0.998 by Mahendra et al. [23], our approach maintains a strong 
balance between accuracy and practical applicability, achieving improvements over several other 
benchmarks, including Zheng et al. [22] and Ammar et al. [21]. These results suggest that the 
proposed methods are robust and reliable, making them suitable for clinical applications. 

4.3. Limitations of the proposed methods 

While the proposed methods for myocardium segmentation in LV and RV show promise, there are 
some inherent limitations that need to be addressed. First, the model s performance can degrade 
significantly when processing low-quality MRI images. This is particularly noticeable when parts of 
the myocardium or ventricles are not fully visible, leading the model to either generate incorrect 
segmentations or miss the regions altogether. The model relies on detecting differences between the 
target structures and surrounding tissues, so poor visualization can severely affect its accuracy 

Another challenge arises when the brightness levels in the images are either too low or too high. 
In such cases, the model might struggle to correctly identify the boundaries of the heart structures, 
resulting in poorly defined segmentations. Furthermore, the model s training data may lack sufficient 
examples of certain pathological conditions, such as cardiomyopathy or spongy myocardium. This 
scarcity of cases can reduce the model s ability to generalize to these complex conditions, affecting 
its reliability in clinical settings. 

Therefore, while the approach is robust under ideal conditions, its accuracy depends largely on 
the quality of the input data. Special care is needed when working with low-quality images or 
uncommon pathologies, as these can lead to decreased accuracy and make the model less reliable in 
critical diagnostic scenarios. 

5. Conclusions 

This study presented a novel approach to cardiac MRI segmentation and classification, significantly 
improving accuracy using a multi-stage process combining U-Net and ResNet models to enhance the 
segmentation of heart structures. Gaussian smoothing is applied to refine the contours and minimize 
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artifacts. The classification process leverages a cascade of DL classifiers to distinguish between heart 
conditions such as hypertrophic cardiomyopathy, myocardial infarction, and dilated 
cardiomyopathy. 

The performance of the methods was evaluated using the Dice coefficient for segmentation 
accuracy and several classification metrics. The proposed approach demonstrated significant 
improvements in segmentation accuracy, achieving a Dice coefficient of 0.974 for the LV and 0.947 
for the RV. Classification of heart conditions also showed high results, achieving an accuracy of 96% 
for LV pathologies, 100% for hypertrophic cardiomyopathy, and 90% for differentiating myocardial 
infarction from dilated cardiomyopathy. Despite these promising results, the method has limitations, 
particularly when processing low-quality images or dealing with complex pathologies, where 
segmentation accuracy may decrease. 

Future work will focus on developing new techniques for interpreting the results, aiming to make 
the method more applicable and reliable in clinical settings. 

Declaration on Generative AI 
The authors have not employed any Generative AI tools. 
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