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Abstract 
This paper presents a comparative study on the time performance of various distance measures within the 
vector-space model, applied to content-based and collaborative filtering datasets. Euclidean distance, inner 
product, and cosine similarity were evaluated. A custom experimental framework was developed to assess 
these measures. The impact of dataset size, dimensionality, and the number of closest vectors returned by 
queries were analyzed. 
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1. Introduction 

Recommender systems have become an integral part of our daily lives, influencing decisions in 
various domains. From suggesting movies and TV shows on platforms like Netflix, to recommending 
products on e-commerce sites such as Amazon, and even curating personalized music playlists on 
Spotify, these systems enhance user experience by providing tailored content based on individual 
preferences. Unlike traditional recommender systems that operate behind the scenes, dialog-based 
systems engage users in interactive conversations to gather preferences and provide 
recommendations through natural language interfaces. This approach offers a more human-centric 
and engaging way to receive personalized suggestions, potentially leading to improved user 
satisfaction and increased adoption of recommendation-driven applications [6]. 

Recommender systems typically rely on two main approaches: content-based filtering and 
collaborative filtering. Content-based filtering relies on the attributes of items (or their content itself) 
and user profiles to suggest similar items [15]. For instance, if a user has shown interest in science 
fiction movies, the system will recommend other science fiction movies based on the features such 
as genre, director, or actors. Collaborative filtering leverages the preferences and behaviors of 
multiple users to generate recommendations. It assumes that if users A and B have similar tastes, 
items liked by user A are likely to be appreciated by user B as well [17]. Both methods aim to discover 
new content users might enjoy, but they differ in their underlying assumptions and data 
requirements. 

One common technique to implement both filtering types is representing user profiles and items 
as vectors. This method leverages distance or similarity measures between vectors to identify 
recommendations [2]. In content-based filtering, the system compares the vectorized user profile 
with vectorized item profiles to find similar items, ensuring recommendations align closely with the 
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with each other, identifying users with similar tastes to suggest items they have enjoyed (Fig. 1, 
right). 

 
Figure 1: Representation of user profiles in the content-based (left) and collaborative filtering 
algorithms. 

Generative models, such as GPT-like models, are widely used to develop chat-based applications 
due to their ability to generate human-like text. However, they are not always the ideal solution for 
recommender systems [19]. These models are trained on extensive corpora that include a vast 
amount of data unrelated to recommendations, which can dilute their effectiveness in this specific 
context. Additionally, they may lack relevant data that the system aims to recommend, and their 
training data may not be updated frequently, limiting their ability to provide recent items. To address 
these limitations, it is possible to fine-tune the model on relevant, domain-specific data or to 
incorporate Retrieval-Augmented Generation techniques. 

Retrieval-Augmented Generation (RAG) enhances the capabilities of generative models by 
allowing them to access external knowledge sources [16], making them more effective for 
recommendation tasks. In a RAG- olely on pre-
trained knowledge but instead retrieves relevant data dynamically from a connected database or 
vector store [1]. For example, when a user engages with a dialog-based system, the model generates 
a query based on the conversation. This query is then used to search the vector store, which contains 
pre-encoded user and item profiles. By retrieving relevant vectors  such as items similar to the 

 the system can provide up-to-date and accurate recommendations. This 
approach combines the strengths of generative models with real-time, domain-specific data, ensuring 
the recommendations are both contextually relevant and current. 

While numerous investigations have focused on estimating the impact of distance measures on 
recommendation accuracy [9], only few of them have considered the time performance of these 
measures [12]. Time performance is a critical factor in production systems, which must efficiently 
handle large volumes of data and serve numerous users simultaneously. Slow response times can 
degrade the user experience and strain system resources, which is unacceptable in real-time 
applications like recommender systems. Optimizing the time performance is essential to ensure that 
recommender systems can deliver timely and relevant recommendations, maintaining a seamless 
user experience even under heavy load. The goal of this study is to assess the time performance of 
different distance measures within vector stores. The results could provide valuable insights not only 
for improving recommender systems but also for any other domain that relies on vector stores, from 
information retrieval to natural language processing and beyond. 
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2. The experiment methodology 

2.1. Hardware and software setup 

The experiment was performed on a Windows 10-powered machine equipped with an AMD Ryzen 
1500x 3.7 GHz processor, 16 GB of DDR4 3200 MHz RAM, and a 512 GB M2 SSD. While the time 
performance results may vary slightly based on the hardware configuration, the patterns and trends 
observed in the experiment should remain consistent across different setups, ensuring the 
generalizability of the results. All experiments were implemented using Python 3 (version 3.10.5), a 
widely adopted programming language in machine learning research due to its simplicity and 
extensive library support. 

Chroma DB [4] was used as the vector store in this experiment for several reasons. First, it 
provides a Python library, making it straightforward to integrate into the experimental pipeline. 
Second, Chroma allows local data storage without the need for an external API, which helps 
eliminate delays related to internet connectivity. Finally, it integrates with LangChain [11], a popular 
Python framework for building controllable agentic workflows, including RAG applications, which 
enhances the flexibility and functionality of the experiment. Chroma natively supports three distance 
measures [4]: Squared L2 (Euclidean distance), inner product (IP) and cosine similarity (CS). In 
Chroma, these distances are defined as follows [4]: 
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where n is the dimension of the vectors, Ai and Bi are the coordinates of vectors A and B, 
respectively. All these distances were estimated and compared. 

2.2. Content-based filtering dataset 

For the content-
This dataset contains nearly 2.7 million news articles and essays from 27 American publications, 
spanning from 2016 to 2020 years. Each record in the dataset includes various attributes such as 
publication date, author, title, article text, URL, and more (Fig. 2). However, for content-based 
filtering, only the article (as the text to embed), title (as a metadata field), and row index (as the 
record ID) were used to populate the vector store. 

-MiniLM-L6-v2 model) [3] was utilized to 
convert each article into a 384-dimensional vector. To ensure manageable computational time, the 
dataset was divided into three subsets containing 25,000 (25K), 75,000 (75K), and 125,000 (125K) 
articles. Larger subsets were not created due to the extended time required to embed large datasets. 

Queries to the vector store were executed using 100 pre-embedded texts, which were not part of 
the created datasets, simulating user profiles. Additionally, experiments were also conducted on 
generated random data. 
 



102 
 

 
Figure 2: Data sample of the News dataset. 

2.3. Collaborative filtering dataset 

For the collaborative filtering experiment, three sizes of the MovieLens (ML) [8] dataset were used: 
with 100,000 (100K), 1 million (1M), and 10 million (10M) ratings. The larger datasets were not utilized 
due to limitations in compute resources. 

The dataset includes user-item interactions, where each interaction is represented in the format: 
user ID, movie ID, provided rating and timestamp (Fig. 3). Ratings are given on a 5-star scale with 
half-star increments, and the timestamp was omitted. 

 
Figure 3: Data sample of the MovieLens 100K dataset. 

For collaborative filtering, the user-item interactions should be represented as a utility matrix, 
where each row corresponds to a user, and the columns represent their interactions with all items 
(movies) from the dataset. Thus, an additional transformation was done to convert the entire data 
into utility matrix form (Fig. 4). 

 
Figure 4: The MovieLens dataset in a utility matrix form. 
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The width of the utility matrix  and, accordingly, the dimensionality of the vectors  varies 
depending on the number of items (movies) in the dataset. For the 100K dataset, the matrix included 
610 users and 9,724 items; for the 1M dataset, it included 6,040 users and 3,706 items; and for the 10M 
dataset, there were 69,878 users and 10,677 items. This variation allowed for an estimation of how 
vector dimensionality impacts retrieval time. To query the created vector stores, 10 records were 
taken from the utility matrix itself, and 90 records were generated to simulate additional users and 
their interactions. 

2.4. Methodology 

For each dataset and distance function, 10 queries were conducted using 10 input vectors. The 
number of closest vectors returned by Chroma DB was parametrized, starting from 10 and increasing 
in increments up to 3,010 vectors. A smaller number of returned vectors is practical when the vector 
store directly powers a recommender system, providing a concise set of recommendations. On the 
other hand, a larger number of returned vectors is beneficial when the query results serve as input 
for subsequent stages in a recommendation pipeline, such as in hybrid recommender systems [14], 
where additional post-processing or combination with other algorithms may be required (Fig. 5). 

 
Figure 5: Diagram of a cascaded hybrid recommender system, where the output of the main 
recommender system is processed by the secondary recommender system. 

3. Results 

Due to the extensive volume of data generated during these experiments, only key results and trends 
are presented in this paper. Therefore, readers interested in the raw data and detailed results can 
access them through the provided link: 
https://github.com/Gurdel/distances_comparison_public/blob/main/results_raw.xlsx. 

3.1. Results on the News dataset 

As mentioned in the previous chapter, the content-based filtering experiments were divided into two 
groups: one using real data and the other using generated data. The time performance across both 
groups was nearly identical, indicating that the nature of the data did not significantly impact the 
computational efficiency. Additionally, all evaluated distance measures demonstrated similar 
response times. The minor variations observed in the results can likely be attributed to experimental 
error rather than any inherent difference in the algorithms. 

Figure 6 illustrates the increase in average response time across all experiments conducted on the 
News datasets. Although the dataset size increased by 200% (from 25K to 75K) and 400% (from 25K 
to 125K), the average response time for all distance measures rose by only 36.5% and 58.5%, 
respectively (Table 1). This indicates that the system scales efficiently, maintaining relatively low 
increases in response time even as the dataset size grows significantly. 

https://github.com/Gurdel/distances_comparison_public/blob/main/results_raw.xlsx
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Table 1 
An average response time in content-based filtering datasets (in seconds) 

 News 25K News 75K News 125K 
Cosine, real 3.95 5.73 6.65 

IP, real 3.92 5.65 6.47 
L2, real 4.11 5.63 6.49 

 
Figure 6: Response time increase in content-based filtering datasets. 

Figure 7 shows the increase in response time as the number of closest vectors returned by each 
query increases. The results are shown for the IP measure on 25K, 75K, and 125K News datasets 
using real data for queries and 75K News dataset using generated data for queries. The increased 
response time at the beginning of the experiment with real data can be attributed to the internal 
processes of Chroma DB, such as initial indexing and caching mechanisms. When the experiment 
was repeated using generated query data, these spikes were absent, indicating that the system was 
already optimized after the initial runs. Across all database sizes and distance measures, the trends 
for response time remained almost linear, suggesting that the system scales predictably and 
efficiently as the number of retrieved vectors grows. 

 
Figure 7: Response time trends for IP measure in the News datasets. 
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3.2. Results on the MovieLens dataset 

Since the smallest collaborative filtering dataset, ML 100K, contains only 600 records (users), 
querying the vector store for more than 600 results would simply return all available data. During 
queries requesting between 10 to 510 results, the response time remained consistent across all 
distance measures and did not increase. Table 2 contains the average response time for all MovieLens 
datasets when querying up to 510 results. As expected, larger datasets resulted in longer response 
times. However, even in this small sample, a minor difference in performance was observed among 
the distance measures (Fig. 8). CS exhibited slightly worse response times compared to IP and L2, 
suggesting that CS may introduce additional computational overhead in the context of these datasets. 

Table 2 
An average response time in collaborative filtering datasets (in seconds) 

 ML 100K ML 1M ML 10M 
Cosine 0.39 0.67 2.49 

IP 0.38 0.49 2.00 
L2 0.39 0.48 1.63 

 
Figure 8: Response time increase in collaborative filtering datasets. 

During experiments on the ML 1M dataset, all distance measures exhibited linear trends in time 
increases (Fig. 9). CS demonstrated a slightly worse average response time (1.47 seconds) compared 
to IP and L2 measures, which averaged 1.36 and 1.3 seconds, respectively. However, the differences 
between the measures are marginal, particularly when a higher number of vectors are returned. 

In contrast to previous datasets, cosine similarity exhibited significantly worse performance on 
the ML 10M dataset compared to the other distance measures. As shown in Figure 10, the response 
time for CS increases more rapidly than for IP and L2, and both of them have almost linear trends.  
While L2 had an average response time of 2.84 seconds and IP averaged 3.27 seconds, CS took 4.4 
seconds on average. This can be explained by the fact that, despite all these measures have similar 
time complexity O(n), CS requires more elementary operations to be computed according to its 
formula. This highlights that its performance degradation with high-dimensional data makes IP or 
L2 preferable for high-efficiency scenarios where response time is critical. 
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Figure 9: Response time trends in the MovieLens 1M dataset. 

 
Figure 10: Response time trends in the MovieLens 10M dataset. 

An important observation can be drawn from the comparison of response times between the ML 
10M and News 75K datasets. Although these datasets have a comparable number of vectors 
(approximately 70,000 and 75,000, respectively), the dimensionality of the ML dataset is significantly 
higher (10,677 vs. 384). It was initially assumed that retrieval time on the ML data would be much 
slower compared to the News dataset. However, while the average response time for all measures in 
the News 75K dataset is 5.7 seconds, the ML 10M dataset showed only 3.5 seconds across all 
experiments. This discrepancy can be explained by the sparsity inherent in collaborative filtering 
data. With far more items than any individual user interacts with, the utility matrix has many empty 
(or zero) cells, allowing for substantial optimization in distance computations. This reduces the actual 
number of calculations needed, leading to faster retrieval times despite the higher dimensionality. 
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4. Conclusion 

The experiments conducted on both content-based and collaborative filtering datasets provided 
valuable insights into the time performance of different distance measures. All compared distance 
measures showed linear trends in response time as the number of returned closest vectors increased. 
This consistent behavior across different datasets suggests that the system scales predictably, making 
it reliable for scenarios where larger sets of vectors need to be retrieved. 

Across most datasets, cosine similarity, inner product, and Euclidean distance exhibited similar 
response times, with only minor differences in computational efficiency. However, as data 
dimensionality increased, significant variations in performance were observed. CS showed a notably 
higher response time on the high-dimension datasets, particularly in the ML 10M dataset, where its 
performance lagged behind IP and L2. This performance gap can be attributed to the higher number 
of elementary operations required by CS compared to the other measures. 

Additionally, the comparison between the ML 10M and News 75K datasets highlighted the impact 
of data sparsity on performance, with the ML dataset showing faster response times despite its higher 
dimensionality. This underscores the importance of considering data characteristics when evaluating 
distance measures. 

Moreover, an additional contribution of this study was the development of an experimental 
methodology and accompanying software to systematically evaluate the performance of various 
distance measures. This framework enabled consistent testing across datasets and can be extended 
for future research, providing a valuable tool for benchmarking distance-based retrieval methods in 
recommender systems. 

4.1. Further steps 

To further validate our findings and explore the scalability of different distance measures, it is 
essential to conduct experiments on larger datasets. By incorporating datasets beyond the tested in 
this study, it will be possible to better understand how different distance measures scale and whether 
the observed trends hold on even bigger datasets. This would provide more comprehensive insights 
into the scalability of vector stores and distance measures when applied to real-world, large-scale 
recommender systems. 

To ensure the generalizability of our results, it is crucial to experiment with other vector stores 
beyond Chroma. Different vector stores may have varying optimizations and internal processes that 
could affect performance. By comparing multiple vector stores, we can identify the most efficient 
options for different recommendation scenarios. 

Additionally, future research should explore the use of other similarity measures. While our study 
focused on natively supported by Chroma DB measures, comparing them with other measures will 
provide a comprehensive understanding of their performance characteristics and help identify the 
most suitable measures for specific applications. 
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