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Abstract
Data Poisoning Attacks (DPAs) can severely impact the performance of Machine Learning (ML) models by
manipulating training datasets to introduce errors or biases. The integrity of ML models is crucial for user safety
and trust, especially as these models increasingly influence key decision-making processes in safety-critical
sectors like finance, healthcare, and law enforcement. As ML technology advances, so do the vulnerabilities of
these systems, making the reliability of training data vital for ensuring accurate and dependable model outcomes.
This review examines the growing threat of DPAs on ML systems at the training stage, categorizing these attacks
into label manipulation, data injection, feature space manipulation, and relationship manipulation. By exploring
multiple types of attacks and providing relevant examples, this analysis aims to raise awareness about the
significant risks posed by compromised data, which can lead to widespread mistrust in ML systems and cause
considerable harm, including financial losses, legal liabilities, and even threats to human lives.
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1. Introduction

Machine Learning (ML) models demonstrate outstanding effectiveness in addressing a variety of complex
data classification and analysis problems. Because ML models can recognize patterns in data and make
predictions, they have transformed several sectors such as healthcare by facilitating advanced data
analytics, personalized medicine, and predictive modelling [1]. However, adversarial attacks have
consistently exposed critical vulnerabilities in such systems, highlighting the need for robust security
measures to safeguard the integrity and reliability of these applications in every domain [2].

Data Poisoning Attacks (DPAs), a subset of adversarial attacks, signify a substantial threat to the
integrity of ML models because of the multiple pathways in which they can introduce vulnerabilities to
a system where accurate and reliable predictions are crucial [3]. Attackers may introduce erroneous or
misleading data points, subtly altering class distributions or introducing noise, which can also lead to
biased or incorrect predictions [4]. For example, in Figure 1. (a) and (b) show a model built to identify
dogs. The model, in Figure 1 (a), trained on clean data is clearly able to classify a dog. The model, in
Figure 1 (b), gets trained on a poisoned data point (has red dots and a different label). This training data
point, while it looks clearly like a dog to the human eye, gets registered as a cat due to the label as well
as the image being poisoned. This leads to the model misclassifying during testing and can have severe
implications when models are trained in real-time.

In this paper, we focus on DPAs primarily at the training stage of an ML model because these
attacks are growing more nuanced as ML technology evolves [5]. We aim to categorize and analyse
various DPAs and assess their impact on ML models to establish real-world consequences. We focus on
illustrating these attack types using the Breast Cancer Wisconsin (Diagnostic) Dataset [6] which provides
a practical scenario to better understand how such attacks can alter model performance.
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Figure 1: Example of training phase DPA (a) model trained on clean data (b) model trained on poisoned data

The rest of paper is structured as follows: Section 2 describes the previous work related to the
research. Section 3 shows the overview of data poisoning and describes the four groups in which DPAs
can be divided, enumerates the different types of attacks under the four groups established previously
and formulates these attacks using a medical dataset. Section 4 analyses the impacts of these attacks.
Section 5 presents a discussion on what are the emerging solutions to DPAs. Section 6 concludes the
paper and sets up the future scope of work.

2. Related work

Research on DPAs in ML has gained significant attention due to the vulnerabilities these attacks expose
in various AI applications. One study categorizes different attack scenarios and discusses mitigation
strategies, emphasizing the interplay between data poisoning and the trustworthiness of AI systems
[7]. However, it only describes three different types of training attacks i.e. non-targeted, targeted, and
backdoor poisoning.

One survey offers a taxonomy of DPA and an experimental assessment that focuses on the necessity
of strong Federated Learning (FL) [8]. This study is limited in scope as it only addresses four types
of training attacks specific to FL including label-flipping attacks, poisoning sample attacks, backdoor
attacks and untargeted attacks thereby reducing its overall comprehensiveness and limiting its utility
for broader applications.

Tian et al. offer an overview of poisoning attacks and countermeasures in centralized and federated
learning [9]. They categorize attack methods by their goals, analyses the differences and connections
among techniques, present countermeasures with their pros and cons. Their analysis is constrained by
its examination of only three types of DPAs in centralized learning and FL. By mentioning nine types of
input attacks, the study by Surekha et al. offers a broader perspective into DPAs across multiple types
of ML than the previous studies but lacks in-depth explanation on these attacks [10].

A study by Emanuele Cinà et al. provides a comprehensive systematization of DPAs, reviewing over
hundred papers in the field over the past fifteen years [11]. They describe five types of attacks, limited
to computer vision, and further perform threat modelling on them. The work done by Goldblum et al.
provides an extensive list of DPAs during the training phase [12]. They discuss about eight different
attack types with what type of a model can be targeted by each attack. Another study provides a
comprehensive overview of attacks and defences but does not adequately address the rapid evolution of
attack strategies, risking obsolescence of proposed defences [13].

This study presents seventeen distinct DPAs during the training phase, covering multiple domains
within ML. These DPAs are further classified into four groups for enhanced clarity and distinction. Each
type is illustrated using the Breast Cancer Wisconsin (Diagnostic) Dataset.



3. Overview of data poisoning attacks

DPAs detrimentally affect ML systems by intentionally altering the training data to corrupt model
performance or change model behaviour [14]. These attacks involve introducing malicious data points or
modifying existing ones, skewing the training process to favour the attacker’s goals [12]. As ML models
are increasingly integrated into various industries, understanding, and mitigating the risks associated
with data poisoning is crucial for maintaining the integrity and reliability of these systems [15]. The
impact of these attacks can vary from minor performance reduction to severe consequences, depending
on the context in which the ML model is employed. DPAs can be classified into several distinct groups,

Figure 2: Data poisoning groups and types

each exploiting different vulnerabilities in the ML training process (see Figure 2). These groups include
label manipulation, where incorrect labels are assigned to training data [16]; data injection, which
involves adding fraudulent data points [17]; feature space manipulation, where the features of the data
are altered to mislead the model [18]; and relationship (or context) manipulation, which disrupts the
underlying relationships between data points [19]. As shown in Figure 2, the different groups can be
further divided into the following types.

3.1. Label manipulation attacks

Label manipulation attacks in ML involve various strategies that aim to compromise the integrity of a
model’s training data, thereby skewing its outcomes. One common approach is label flipping, where
attackers maliciously alter the labels of training samples to mislead the model into making incorrect
predictions [20]. Another technique is targeted poisoning, which focuses on specific cases or categories
within the dataset, intending to skew the model’s results towards erroneous outputs [11]. Additionally,
clean-label attacks involve introducing subtle changes to the training data that appear harmless but are
strategically crafted to cause model errors [21].

3.2. Data injection attacks

Data injection attacks encompass various techniques used to manipulate and break ML models. One
such method is outlier injection, which involves adding extreme feature values to distort the model’s
learning process [22]. Backdoor attacks (or Trojan Attacks) embed specific trigger patterns in data to
control the model’s behaviour upon activation [12]. Another approach is gradient ascent, where data is
crafted to maximize the model’s error rate during training [23]. Availability attacks focus on inserting
noise into the training data, hindering the model’s learning process and reducing its accuracy [24]. In



contrast, integrity attacks involve making subtle changes to data, leading to a gradual decline in the
model’s performance [25]. Data obfuscation disguises the attack by altering data in ways that appear
plausible, making it difficult to detect [26]. Finally, false data injection creates fictitious records to skew
the model’s predictions, further compromising its reliability [27].

3.3. Feature space manipulation attacks

Feature space manipulation encompasses several techniques that adversaries use to compromise ML
models. One such technique is feature collision which involves creating features that seem harmless but
cause the input data’s characteristics to overlap or “collide” with those of other features, disrupting how
the model interprets and learns from the data [28]. Another method is subpopulation attacks, which
target specific demographic groups within the dataset to exploit vulnerabilities associated with those
subpopulations [29]. Generative Adversarial Network (GAN)-based poisoning utilizes data generation
to produce synthetic data that poisons the model by damaging its performance or causing it to make
incorrect predictions [30]. Replica injection involves duplicating examples within the training data,
which can skew model bias and lead to overfitting on certain patterns [31]. Semantic poisoning, on the
other hand, changes feature relationships to mislead the model by altering the underlying data semantics
without altering its appearance [32]. Lastly, constructive interference refers to the manipulation of
decision boundaries through manufactured examples, aiming to disrupt the model’s ability to accurately
classify data by strategically influencing its learning process [33].

3.4. Relationship manipulation attack

Causal poisoning involves deliberately altering correlations between datapoints to mislead causal
inference models [34]. This technique can manipulate the perceived relationships within data, leading
to wrong conclusions about cause-and-effect dynamics.

3.5. Attack examples using a medical dataset

We explore each of the DPA types using examples based on the Breast Cancer Wisconsin (Diagnostic)
Dataset. This dataset contains features extracted from breast cancer cell images, where each instance
is labeled as either "benign" or "malignant." We will use this dataset as a consistent reference for all
examples.

In the dataset (see Table 1), let X represent the feature matrix, where each row xi corresponds to
the features of an individual sample, and let Y represent the label vector, where yi corresponds to the
label of xi, with yi = 1 for malignant and yi = 0 for benign. Let xj be a new data point that does not
already exist in the dataset.

All the functions used are denoted in bold and italics to maintain consistency and clarity in the
explanation.

Table 1: Overview of Attacks and Formulations

Name of Attack Example Formulation

Label Flipping Changing the label of certain data points from
malignant (1) to benign (0) or vice versa, confus-
ing the model during training and causing it to
make incorrect predictions on test data.

Change labels: yi =
1 → yi = 0 for some i
where xi exhibits ma-
lignant characteristics.

Targeted Poisoning Altering the labels of specific cancer cases with
rare cell features, flipping their diagnosis from
malignant to benign. This can cause the model
to perform poorly in these rare but crucial cases.

Modify yi = 1 →
yi = 0 for samples
with rare features xi =
rare(X).

Continued on next page



Table 1 Continued

Name of Attack Example Formulation

Clean-label Attacks Adding benign samples that have similar features
to malignant samples but keeping their label as
benign. This confuses the model during inference
when it encounters similar patterns in malignant
cases.

Add xi ≈
malignant(X),
keep yi = 0.

Outlier Injection Adding outlier data points with impossible or un-
realistic feature values, such as extremely high
or low measurements, which could skew the
model’s understanding of what constitutes be-
nign and malignant tumours.

Add xj with
max(xj) ≫ max(X)
or min(xj) ≪
min(X).

Backdoor Attacks Inserting a specific pattern (i.e., a particular com-
bination of feature values, for example a small
watermark) in some training data labelled as be-
nign. The model learns to associate this pattern
with benign cases, even if it appears in future
malignant inputs.

Insert pattern p in xi,
label as yi = 0 even if
xi = malignant(X).

Gradient Ascent At-
tacks

Modifying data points to increase the model’s
error. This can be achieved by creating data sam-
ples that maximize prediction errors, thus ruining
the overall model performance.

Modify xi to x′i such
that ∇L(f (x′i), yi) >
∇L(f (xi), yi), where
∇L is the gradient loss
function and f is the
model.

Availability At-
tacks

Introducing enough noisy data points that con-
fuse the learning process, causing the model to
fail to generalize and effectively classify the ac-
tual cases.

Introduce noise:
xj = noise(X),
yj = random(0, 1).

Integrity Attacks Subtly altering specific features of benign data
to appear malignant. This could cause the model
to falsely classify future benign datapoints as
malignant, leading to over-treatments.

Alter xi → x′i where
x′i ≈ malignant(X),
yi = 0.

Data Obfuscation Slightly modifying the features of current benign
samples so that they still look plausible but cause
damage to the model performance, misclassifying
them as malignant.

Slightly change
xi to x′i such that
d(xi, x

′
i) < ϵ, yi = 0,

where d() represents
the distance function
and ϵ is the plausibility
threshold.

False Data Injection Adding fictitious patient records with fake mea-
surements and labels to corrupt the training data,
leading the model to learn incorrect patterns.

Add fictitious samples
(xj , yj) with random
xj and yj .

Poisoning via Fea-
ture Collision

Creating new training data points that share fea-
ture space similarities with malignant samples
but label them as benign, causing confusion and
misclassification.

Generate xj such that
xj ≈ malignant(X)
but set yj = 0.

Subpopulation At-
tacks

Targeting training data of a specific patient de-
mographic (e.g., older patients) by adding noise
to that subgroup, causing the model to underper-
form on this specific population.

Add noise to
xi where xi =
older_patients(X).

Continued on next page



Table 1 Continued

Name of Attack Example Formulation

GAN-based Poison-
ing

Using GANs to generate synthetic images of be-
nign tumours that mimic the feature distribution
of malignant cases, causing misclassification dur-
ing inference.

Use GAN to create
xGAN ∼ benign(X)
but resembles
malignant(X).

Replica Injection Duplicating certain benign examples multiple
times in the dataset to bias the model towards
classifying similar features as benign, even when
they may be malignant.

Duplicate xi where
yi = 0 multiple times
to bias the model.

Semantic Poison-
ing

Altering benign data samples by changing fea-
ture relationships (e.g., modifying cell size ratios)
to mislead the model into incorrect conclusions
about what defines malignancy.

Alter xi such that
relationshipnew(xi) ̸=
relationshiporiginal(xi),
maintain yi = 0.

Constructive Inter-
ference

Introducing data that causes the model to con-
struct incorrect decision boundaries in feature
space, such as mixing malignant and benign fea-
tures in novel ways to confuse the model.

Introduce xi such that
it lies between deci-
sion boundary of be-
nign and malignant,
yi = 0.

Causal Poisoning Introducing data that changes the learned rela-
tionships between variables. For example, alter-
ing the correlation between cell texture and ma-
lignancy, misleading the model into incorrect
causal inferences.

Modify data
xi such that
corrnew(texture(xi), yi) ̸=
corroriginal(texture(xi), yi).

4. Impact of data poisoning

Data poisoning is a critical challenge in the development and deployment of ML models as it renders
the model ineffective in making sound and reliable decisions [35]. For example, to poison Gmail’s
spam filtering mechanism attackers sent millions of emails to confuse Gmail’s spam filters, allowing
malicious emails to bypass detection [36]. In 2016, Microsoft’s AI chatbot Tay was shut down hours
after launch when malicious users fed it offensive tweets, causing it to post inappropriate content
[36]. Researchers have demonstrated that Google’s AI image recognition system can be deceived by
adversarial attacks, where subtly modified images such as a 3D-printed turtle altered to appear as a
rifle, cause the AI to misidentify objects [37]. A firm reportedly manipulated a Tesla’s AI system to
drive into oncoming traffic by poisoning the training data used for its navigation and decision-making
processes [38]. In 2023, a new application called Nightshade came about and is being used by artists to
undermine generative AI models by deliberately corrupting their training data, aiming to expose and
counteract the impact of AI on their creative work [39].

The performance in critical scenarios, such as healthcare, can directly impact patient care and safety
[40]. Even a small percentage of poisoned data can disproportionately affect a model’s accuracy, leading
to bad performance, misdiagnoses, and incorrect treatment recommendations. For instance, a poisoned
model might incorrectly identify benign tumours as malignant or fail to recognize serious conditions,
leading to inappropriate treatment plans. As a result, healthcare providers may be reluctant to adopt
these systems, fearing potential inaccuracies and the associated liabilities [41].

Data poisoning poses significant risks to ML models in the financial sector as poisoned data can
lead to incorrect predictions and decisions in areas like fraud detection, credit scoring, and algorithmic
trading [42]. For instance, if an ML model is trained on manipulated data, it may incorrectly classify
fraudulent transactions as legitimate, leading to substantial financial losses for institutions. Similarly,
poisoned data can skew credit scoring models, resulting in unfair lending practices that either deny



credit to worthy applicants or approve loans for high-risk individuals, increasing default rates. In
algorithmic trading, data poisoning can cause models to make erroneous buy or sell decisions, leading to
market manipulation and significant financial instability. These vulnerabilities undermine the integrity
of financial operations and diminish trust in such systems, which can result in increased regulatory
scrutiny and legal liabilities for financial institutions.

An ML model trained on poisoned data that specifically targets a certain demographic can inadver-
tently perpetuate or even amplify biases that were not initially present [43]. When the poisoned data
skews the representation of a particular demographic, the model may develop biased decision-making
processes that disproportionately affect that group [44]. This can result in unfair outcomes, such as
biased hiring algorithms or discriminatory loan approval systems, where the biases introduced during
training become automated, perpetuating systemic inequalities. Even if the original data was free of
such biases, the poisoned data can introduce new harmful patterns that the model then enforces in its
predictions and decisions.

Backdoors embedded in ML models can pose a serious threat by not only manipulating model
behaviour but also by enabling the extraction of sensitive training data. This data, often containing
personal or confidential information, can be exploited by attackers to enhance social engineering tactics
[45]. For instance, if a backdoor allows access to detailed training data, attackers can gather specific
insights about individuals, such as their preferences, behaviours, or personal details. Armed with this
information, they can craft highly convincing phishing emails or fraudulent messages tailored to exploit
the victim’s vulnerabilities. This misuse of extracted data significantly amplifies the effectiveness of
social engineering attacks, making them more persuasive and harder to detect.

Data poisoning during the training of ML models can significantly impact public trust and perception
of technology [46]. When poisoned data skews a model’s outputs, it can undermine confidence in AI
systems, especially in critical sectors like healthcare, finance, and law enforcement where reliability
and fairness are crucial. This erosion of trust can lead to decreased adoption of AI technologies and
heightened scrutiny of their ethical implications. Additionally, compromised models can strain social
services by misallocating resources, thereby deepening disparities in access to essential services [47].
The economic impact includes potential financial losses and damage to a company’s reputation, which
can deter investment in AI research and development, ultimately affecting innovation and economic
growth in the tech industry.

5. Discussion

As data poisoning becomes a more prominent threat, emerging defence mechanisms are being developed
to protect ML models. Techniques such as adversarial training, formal verification and role-based
access controls, training data sanitization, robust statistical methods, and advanced anomaly detection
algorithms are at the forefront of these efforts [48]. Adversarial training involves exposing models to
potential attacks during the training phase, allowing them to learn from and resist these threats [49].
Robust statistical methods aim to enhance the resilience of models by employing techniques that reduce
sensitivity to corrupted data points [50]. Additionally, anomaly detection algorithms are becoming
increasingly sophisticated, capable of identifying unusual patterns that may indicate data poisoning
[51]. These technological advances aim to fortify ML systems against poisoning attacks, enabling them
to maintain performance and reliability even in the face of malicious interference.

Healthcare, traditionally a slow adopter of cutting-edge technology, has been particularly vulnerable
to these evolving threats [52]. Unlike sectors such as finance or cybersecurity, which have rapidly
integrated ML innovations, medical systems often operate with legacy infrastructures that are less
adaptable to new technologies [53]. The sensitivity of health data and the strict regulatory environments
further complicate the integration of advanced ML systems, creating a gap where vulnerabilities can
easily be exploited [54].

Moreover, the rapid pace of change in ML technology worsens these vulnerabilities. New algorithms
and models are being developed at a breakneck speed, outpacing every sector’s ability to implement



robust security measures effectively [55]. The need of the hour is for every sector to accelerate its
adoption of technological advancements while simultaneously enhancing its cybersecurity posture to
protect against the growing threat of data poisoning.

6. Conclusion and future work

DPAs represent a great challenge to the reliability, safety, and ethical application of ML systems. In
this paper, we have systematically categorized DPAs into four distinct groups and seventeen specific
types, providing a comprehensive framework for understanding the diverse nature of these threats.
Furthermore, we have presented clear examples of these attacks, leveraging a medical dataset to
demonstrate their practical implications and to facilitate more rigorous analytical interpretations.

Our future work will focus on developing robust defence mechanisms that can preemptively identify
and neutralize DPAs before they can affect ML models. This includes further research into the creation
of real-time monitoring systems that can detect and respond to DPA threats using technologies like
adversarial training and blockchain.
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