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Abstract 
Accurate crop yield prediction is essential for sustainable agriculture and food security. Traditional 
methods often fall short in addressing the complex factors influencing crop growth. This paper explores 
the use of neural architecture search (NAS) combined with multimodal data integration to improve 
prediction accuracy. By incorporating diverse data sources such as unmanned aerial vehicle (UAV) 
imagery, and weather data, the research develops a framework for crop yield prediction. NAS techniques 
systematically identify optimal neural network architectures to handle these varied datasets effectively. 
The approach is validated with real-world agricultural data, showing that NAS-optimised models 
significantly outperform traditional methods. This work enhances precision agriculture, enabling better 
resource allocation and sustainable farming practices. 
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1. Introduction 

In today’s agriculture sector, accurately predicting crop yields is essential for making well-
informed decisions and promoting sustainable farming practices. Precise yield forecasts can 
significantly impact the success and flexibility of agricultural operations, aiding in efficient 
resource allocation and adaptation to market fluctuations [1]. Traditional prediction methods often 
struggle to consider the complex array of factors that influence crop growth and productivity [2]. 
This challenge has sparked a wave of enthusiasm for using cutting-edge technologies such as 
machine learning and data science to enhance predictive models. 
One of the encouraging approaches is integrating neural architecture search (NAS) techniques with 
multimodal data. NAS methods have the potential to revolutionise how we perceive and forecast 
crop yields [3]. By utilising various data sources such as UAV imagery, weather data, soil 
conditions, and agronomic practices, multimodal approaches offer a more comprehensive 
understanding of the factors shaping crop outcomes. This paper explores the potential of NAS-
based methodologies in enhancing crop yield prediction through multimodal data fusion, 
ultimately aiming to advance sustainable agricultural practices and provide stakeholders with 
valuable insights to guide their decisions. 

Crop yield prediction is incredibly important in modern agriculture. It’s not just about 
estimating how much food we’ll have; it’s about ensuring global food security, maintaining 
economic stability, and promoting sustainable development. As the world’s population continues 
to grow and is expected to exceed 9 billion by 2050, the demand for food will skyrocket, putting 
huge pressure on our agricultural systems [4]. Accurately forecasting crop yields becomes crucial 
in this scenario, as it allows farmers and stakeholders to plan ahead, allocate resources effectively, 
and manage risks proactively. By knowing what to expect from future harvests, farmers can make 
smart decisions about water usage, fertilisers, and pesticides, ensuring they get the most out of 
their crops while minimising waste and environmental harm. Moreover, reliable yield predictions 
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enable policymakers to create well-informed policies, identify areas that are particularly 
vulnerable, and develop specific actions to make agriculture stronger and fight against food 
insecurity. 

Machine learning (ML) has revolutionised agriculture, offering powerful tools to analyse vast 
datasets and address challenges such as predicting yields, detecting diseases, and optimising 
resource management [5]. Neural networks, known for capturing complex agricultural patterns, 
enable precision farming and sustainable practices across diverse conditions. Despite technological 
advancements, accurately predicting crop yields remains complex due to varied environmental 
factors and data challenges [6]. Integrating multimodal data enhances prediction accuracy and 
strength, yet requires advanced computational techniques such as NAS for optimal model design 
[7]. This research aims to improve crop yield prediction through NAS and multimodal data fusion, 
encouraging sustainable agriculture by enabling informed decisions customised to diverse farming 
needs. 
2. Related work 

Understanding the landscape of crop yield prediction requires exploring various techniques and 
emerging trends that shape agricultural research [8]. Deep learning, a subset of AI, trains neural 
networks on large datasets to learn and predict without explicit programming [9]. These networks, 
with deep layers of interconnected nodes, automatically extract complex data patterns, 
transforming fields like computer vision, natural language processing, and agriculture. In farming, 
they enhance tasks such as crop yield prediction, disease detection, and precision farming, offering 
efficient solutions to agricultural challenges. 

Convolutional neural networks (CNNs) excel in spatial data analysis, crucial for tasks like 
analysing UAV imagery in agriculture [10]. They extract hierarchical features from images, aiding 
in crop health monitoring and yield prediction by finding complex details in vegetation and land 
use. Recurrent neural networks (RNNs), on the other hand, specialise in sequential data, ideal for 
analysing time-series data such as weather patterns and soil moisture [11]. RNNs capture dynamic 
environmental changes over time, enhancing yield prediction accuracy by modelling long-term 
trends. 

Despite their effectiveness, the success of deep learning, CNNs, and RNNs in agriculture 
depends on data quality and diversity [12]. Representative training datasets are vital to developing 
reliable models. Challenges like data pre-processing, feature engineering, and model 
interpretability require attention to maximise model applicability. 

Neural architecture search (NAS) has gained considerable attention in recent years as a means 
to automate the design of neural network architectures [13]. NAS algorithms employ search 
strategies, such as reinforcement learning, evolutionary algorithms, or gradient-based optimisation, 
to explore the vast space of possible architectures and identify configurations that optimise 
performance on a given task. By automating the design process, NAS enables the discovery of 
architectures that are tailored to specific applications and data characteristics, leading to improved 
performance and efficiency compared to manually designed architectures. 

In agriculture, NAS has demonstrated its potential in fine-tuning neural network architectures 
for a range of tasks, spanning from crop classification and disease detection to yield prediction 
[14]. By adapting architectures to the unique characteristics of agricultural data, NAS enables the 
creation of models that are better suited to capture relevant features and patterns. However, the 
application of NAS in crop yield prediction using multimodal data remains relatively unexplored. 
Few studies have investigated the potential of NAS to automatically design architectures that 
effectively leverage diverse data sources for accurate and strong yield predictions [15]. 

NAS techniques have found applications across a wide range of domains, including computer 
vision, natural language processing, healthcare, and finance [16]. In computer vision, NAS has been 
used to automatically design architectures for image classification, object detection, and image 
segmentation tasks. These methods have led to the discovery of novel network architectures that 
outperform handcrafted designs on benchmark datasets such as ImageNet. In natural language 
processing, NAS has been applied to tasks such as machine translation, text generation, and 
sentiment analysis, leading to the development of state-of-the-art language models with improved 
performance [17]. 

Despite the potential benefits, several challenges exist in the integration of NAS with 
multimodal data for crop yield prediction [18]. These include the complexity of agricultural 



systems, the heterogeneity of data sources, and the need for scalable and efficient search 
algorithms. Addressing these challenges requires interdisciplinary collaboration between 
researchers in machine learning, agriculture, and data science. Moreover, opportunities exist for 
developing novel NAS algorithms tailored to the specific requirements of agricultural applications, 
as well as for exploring innovative approaches to multimodal data fusion and feature 
representation [19]. 

NAS continues to evolve rapidly, with new techniques and approaches being proposed to 
overcome existing limitations and expand its applicability to diverse domains [20]. In the context of 
crop yield prediction, NAS offers the potential to unlock deeper insights by optimising model 
architectures that effectively combine the strengths of multiple data sources, such as UAV images, 
weather data, soil conditions, and historical yield data [21]. By automating this process, researchers 
can systematically evaluate a wide range of architectures and fine-tune them to maximise 
accuracy, efficiency, and scalability. 

One of the key advantages of NAS is its ability to automate hyperparameter tuning, a 
traditionally labour-intensive task [22]. This includes not only the search for the most suitable 
architecture but also fine-tuning elements such as the learning rate, batch size, and layer 
configurations, which are critical for achieving optimal performance in yield prediction tasks. 
Automating this aspect significantly reduces the manual intervention required, allowing 
researchers and practitioners to focus more on interpreting results and improving model 
deployment strategies. 

Additionally, the use of NAS can help address scalability concerns in agriculture [23]. 
Agricultural data is often vast and continuously expanding, especially as more farms adopt 
precision agriculture techniques and deploy Internet of Things (IoT) devices to gather real-time 
data [24]. NAS can assist in identifying architectures that not only provide high accuracy but also 
scale effectively with larger datasets, reducing computational costs while maintaining prediction 
accuracy [25]. This scalability is essential for real-world applications where processing efficiency 
can be as important as predictive performance. 

Another challenge is the effective integration and interpretation of multimodal data [26]. While 
NAS excels at automating the design of neural networks, the unique challenges presented by 
multimodal data – such as the need for appropriate feature extraction, data fusion techniques, and 
handling missing or imbalanced data – still require significant attention. Future research should 
explore how NAS can be further tailored to address these challenges, particularly in agricultural 
contexts where data is often noisy or incomplete [27]. 

The integration of cloud-based platforms and NAS could further enhance scalability and 
accessibility [28]. Cloud-based platforms offer the computational power necessary to perform 
large-scale NAS operations, enabling smallholder farmers or agricultural organisations with limited 
resources to access sophisticated yield prediction models [29]. By using cloud-based NAS 
frameworks, model deployment can also become more seamless, allowing updates and 
improvements to be applied dynamically as new data becomes available [30]. 

NAS represents a frontier in agricultural technology, offering the potential to revolutionise the 
way crop yield predictions are made [31]. Its ability to automatically design architectures that are 
tailored to complex, multimodal datasets holds significant promise for improving accuracy, 
scalability, and efficiency in predictive modelling. Nonetheless, addressing the computational, data 
integration, and interpretability challenges associated with NAS will be crucial to unlocking its full 
potential in this domain. Through continued innovation and interdisciplinary collaboration, NAS 
could become a pivotal tool in driving sustainable agricultural practices and enhancing global food 
security. 

 
3. Methodology 

NAS automates the design of neural network architectures for crop yield prediction using 
multimodal data. The search space includes configurations like CNNs for image data, RNNs for 
time-series data, and hybrid models. Architectural parameters vary, including the number of layers, 
layer types, filter sizes, learning rate, batch size, and dropout rate. Performance is evaluated using 
root mean squared error (RMSE), mean absolute error (MAE), and R-squared (R²), along with 
computational efficiency and model generalisability. The NAS process involves defining the search 



space, initialising the search strategy, generating candidate architectures, training and evaluating 
them, and iterating until a preferred model is identified as shown in Figure 3.1. 

 

 
Figure 3.1 NAS Process Workflow 

The chosen methodology addresses the complexity and variability of factors affecting crop 
yield, including weather conditions, soil characteristics, and plant health. Integrating multimodal 
data, such as weather, soil measurements, and UAV imagery, captures the full scope of variables 
influencing agricultural productivity, leading to more accurate and reliable prediction. 
3.1. Data Acquisition Process 

Data acquisition involves identifying relevant sources like weather stations, soil sensors, and 
UAV imagery. For this study, pre-existing data from a recent study [32] was acquired. This 
includes six years of image and weather data gathered in several regions of Japan, which we use in 
developing model architectures using NAS. Sample images captured by UAVs as shown in Figure 
3.2 and multispectral cameras provide critical information about crop health.  

The weather data used in this project includes several key features that help analyse crop yields. 
Features recorded here are Date, Year, Yield, Normal and Observed. The Date and Year features 
record when observations were made, allowing for the study of seasonal trends and yearly 
variations. Location specifies the geographical area, which is vital as different regions have unique 
climatic and soil conditions affecting yield. The Yield feature contains the actual crop yield, the 
primary target for the model to predict. Normal refers to the expected average yield based on 
historical data, offering a baseline for comparison. Observed represents the real, recorded yield for 
that specific time and place, allowing direct comparison with both the predicted and expected 
outcomes. Together, these features provide a detailed view for predicting and analysing 
agricultural productivity.  

 
Figure 3.2 Images captured through UAV and multispectral cameras: (a) green, (b) NIR (near-infrared), and (c) red 



3.2. Data Processing and Integration 

Following the acquisition of multimodal datasets, including UAV imagery and weather data, a 
preprocessing step was applied to ensure consistency, reliability, and compatibility across the 
different data types. For image data, UAV-captured images were directly used, preserving the 
original resolution. For weather data, temporal features such as date and year were incorporated to 
capture seasonal patterns, while spatial features like Location were included to account for regional 
differences. Yield-related attributes, including normal yield (expected average yield based on 
historical data) and observed yield (actual recorded yield), were standardised and used as primary 
inputs for the predictive model. 

Once preprocessed, the datasets were aligned and integrated into a unified format, ensuring 
temporal and spatial synchronisation between weather data and UAV imagery. This combined 
dataset was then partitioned into training, validation, and test subsets, following an 80:20 split. The 
training set, comprising 80% of the data, was used to train neural network models by iteratively 
optimising parameters. The validation set was reserved for hyperparameter fine-tuning and 
monitoring overfitting, while the independent test set served as a reliable benchmark for 
evaluating the model's real-world predictive accuracy. 

Python scripts were employed throughout the data processing and integration pipeline. 
Libraries such as Pandas were used for data cleaning and manipulation, while TensorFlow and 
Keras supported the development and fine-tuning of the predictive models. This precise data 
preparation approach established a solid foundation for building and testing high-performing 
models for crop yield estimation. 
3.3. Research Architecture 

A high-level overview of the method is illustrated in Figure 3.3. This integrates both image and 
weather data into a unified model. By combining visual and environmental inputs, this approach 
enhances the accuracy of yield forecasts and provides more comprehensive insights. 

 
 
Neural architecture search refines the prediction process by exploring different configurations 

of convolutional neural networks (CNNs) for image analysis and optimising the integration of 
multimodal data, such as combining image and weather information. By automating the search for 
the best-performing architectures, NAS tailors the CNN to effectively capture both spatial and 
environmental factors, improving yield prediction. 

Data mapping aligns temporal and spatial dimensions of weather data with UAV imagery, 
ensuring accurate reflection of conditions and time frames. This alignment is crucial for the model 
to learn relationships between data types. By processing image and weather data pairs, the 
integrated model leverages complementary strengths of both data types, improving predictive 
performance. 
4. Experiments and Results 

4.1. Initial Model Training 

The initial model training utilised a multimodal dataset comprising images and weather data. 
This dataset was split into training, validation, and test sets following an 80:20 ratio. Specifically, 
80% of the data was dedicated to training, where the model’s parameters were optimised, and its 
architecture refined. The remaining 20% was divided between validation and test sets. The 

Figure 3.3 Research Design Architecture 



validation set played a critical role in monitoring performance and fine-tuning hyperparameters to 
avoid overfitting, ensuring the model could generalise effectively to unseen data. 

After training, the model was validated and tested on test datasets. The validation process 
allowed for iterative adjustments to hyperparameters by comparing the model's predictions with 
actual outcomes, ensuring strong performance without overfitting. Finally, the model was 
evaluated on test set to measure its ability to generalise beyond the data seen during training and 
validation. The test results provided key performance metrics, offering insights into the model's 
predictive accuracy and practical applicability in real-world crop yield prediction tasks. 
4.2. Loss Function and Evaluation Metrics 

Loss is a measure of how well the model's predictions match the actual data. In our case, it 
reflects how closely the predicted crop yields align with the true yields. The loss used in this study 
is mean-squared error (MSE), which calculates the average squared difference between the 
predicted and actual values. MSE was chosen for its sensitivity to larger errors, making it a suitable 
loss function for regression tasks like crop yield prediction. 

The performance of the model was evaluated using three key metrics: root mean squared error 
(RMSE), mean absolute error (MAE), and R-squared (R²). 

RMSE measures the average magnitude of the errors in a set of predictions. Lower values 
indicate better predictive accuracy. It is calculated as follows: 
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where y୧ is the true value and yො୧ is the value predicted by the model.  
MAE calculates the average of the absolute differences between predicted and actual values. It 

provides a measure of the model’s accuracy in terms of absolute error. It is calculated as 
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Finally, the R² metric indicates how well the model explains the variation in the dataset. A 

higher R² value indicates a better fit of the model to the data. It is calculated as follows: 
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4.3. Architecture Development and Results 

During the development of the architecture, the integrated multimodal data was processed to 
generate predictions. Initially, we began with a smaller number of epochs to quickly evaluate the 
model's baseline performance. Following this, the number of epochs was progressively increased 
from 10 to 140 to allow the model more time to potentially learn complex patterns within the data 
and improve its predictive accuracy. This gradual increase in epochs was crucial for fine-tuning the 
model, ensuring it had sufficient training time to enhance performance without overfitting or 
under fitting. Throughout this process, we closely monitored key performance metrics to assess 
improvements and optimise the model effectively.  



The training loss graph in Figure 4.1 plots the loss value against the 10 epochs during the model 
training process. 

The training MAE graph in Figure 4.1 above shows the average absolute difference between the 
predicted and actual values over the epochs. Similar to the training loss, the MAE starts high 
initially due to the model’s lack of familiarity with the data patterns. As the model learns, the MAE 
decreases, signifying that the predictions are getting closer to the actual values. Eventually, the 
MAE stabilises, showing that the model’s average prediction error is consistent and has reached its 

minimum possible value given the data and model complexity. 
Both graphs in Figure 4.1 above show a decreasing trend, indicating successful learning as the 

model improves its predictions by adjusting parameters. Continuous decreases in loss and MAE 
without levelling off could signal overfitting, where the model memorises training data instead of 
generalising. However, similar decreasing trends and stabilisation in validation loss and MAE 
suggest overfitting is less likely. 

The training loss graph on the left side of Figure 4.2 shows the loss value against the number of 
epochs, extending over 140 epochs. This extension of the number of epochs reveals that training 

Figure 4.1 Training Loss and Training MAE using 10 Epochs 

Figure 4.2 Training Loss and Training MAE using 140 Epochs 



the model beyond 140 epochs does not yield any further reduction in loss or MAE. The loss then 
stabilises near zero, indicating effective learning without significant improvement from further 
training. The consistent low loss suggests the model avoids overfitting. 

The graph in Figure 4.3 illustrates the training and validation loss on the left and the training 
and validation mean absolute error (MAE) on the right, providing insights into the model's 
performance over 120 generations of NAS. In this process, instead of training a single CNN 
architecture, the neural architecture search (NAS) generates and evaluates multiple CNNs across 
generations. Each generation involves training a set of candidate architectures for a specified 
number of epochs, after which the best-performing architectures are selected for the next 
generation. This evolutionary approach refines the architectures, leading to improved models over 
time. 

In the left plot, the loss values for both training (blue line) and validation (orange line) are 
shown. This decline in loss suggests that the NAS process is effectively generating better 
architectures over successive generations. Importantly, the close alignment between the training 
and validation losses indicates that the model generalises well to new data, with no significant 
overfitting. This generational improvement reflects the ability of NAS to explore and optimise 
different architecture configurations for enhanced prediction accuracy. 

Both the training MAE (red line) and validation MAE (green line) show a steep decline in the 
early stages, similar to the loss curves, before levelling off as training progresses. The consistent 
decrease in MAE suggests that the successive models are becoming increasingly accurate in their 
predictions. Notably, the validation MAE remains consistently lower than the training MAE, 
highlighting the model's strong performance on unseen data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The NAS-optimised model significantly outperforms the best CNN architecture in [32] in 
predicting crop yields. It achieves a lower RMSE (0.70 vs. 0.821 t/ha), better accuracy with a higher 
R2 (0.90 vs. 0.83–0.86), and faster convergence, requiring fewer epochs. The best traditional model 
in [32] had a validation RMSE of 0.831, while the NAS model had a lower validation RMSE of 0.75, 
showing improved generalisation. NAS automatically optimised the architecture for multimodal 
data (images and weather), resulting in superior performance and efficiency. 

 

Figure 4.3 Training and Validation Loss and MAE with 120 numbers of generations 



 
Figure 4.4 Best Architecture Design 

The best architecture, as shown in Figure 4.4, combined convolutional layers for image data 
processing and dense layers for tabular input. The convolutional layers efficiently extracted spatial 
features, while the dense layers captured interactions between tabular data features. Outputs from 
both pipelines were merged using a concatenate layer to enable joint learning from multimodal 
data, improving model performance. Key optimisation techniques, such as dropout layers and 
pooling, played a role in earlier experiments by mitigating overfitting and reducing computational 
overhead. The model performed best with a learning rate of 0.001, batch sizes of 32 to 64, and 
convolutional filters ranging from 32 to 128, balancing feature extraction and avoiding overfitting. 
The network’s moderate depth provided sufficient learning capacity without excess complexity. 
The iterative NAS process was crucial for refining the architecture, leading to an optimal final 
model. These design choices resulted in a well-balanced architecture that delivered excellent 
performance on the task. 

Overall, these results indicate that neural architecture search (NAS) generated successful 
architectures for multimodal crop yield prediction. The loss and mean absolute error (MAE) 
metrics demonstrate significant improvement early on and stabilise at low values, confirming that 
the model has effectively learned and can generalise well. This suggests that the model is capable 
of capturing complex patterns in the multimodal data, contributing to accurate predictions of crop 
yield. 

These results are based on data from specific regions in Japan, which may limit the model's 
generalisability. Differences in crop varieties, soil types, weather patterns, and farming practices in 
other regions could impact its performance. For example, a model trained on temperate climate 
data may not perform well in tropical regions due to varying crop growth cycles and 
environmental factors. To improve the model's adaptability, future work should test it in diverse 
geographic regions and crop types. Expanding the dataset with additional data sources, such as soil 
sensor data or remote sensing from different sensors, could further enhance its predictive 
capabilities and confirm its versatility in precision agriculture. 
5. Conclusions and Future Work 

This study explored the application of neural architecture search (NAS) combined with 
multimodal data for crop yield prediction. The dataset was partitioned into training, validation, and 
test sets, and a supervised neural network model was optimised and evaluated. To demonstrate the 
effectiveness of NAS, a direct comparison was made between the original, manually designed 
convolutional neural network (CNN) model and the NAS-generated CNN model. 

The NAS-optimised model outperformed the traditional CNN in key performance metrics, 
particularly in reducing training loss and mean absolute error (MAE). The NAS approach explored 
various architectures, identifying those that were more suitable for the complexity of the 
multimodal data, which included both images and weather data. In contrast, the manually designed 
CNN, while effective, did not achieve the same level of optimisation in learning from the integrated 



data. This difference was evident in the lower MAE achieved by the NAS-optimised model, 
indicating more accurate predictions of crop yield. 

The NAS-generated model demonstrated faster convergence, with a steeper reduction in 
training loss, indicating improved training efficiency and accuracy. This was confirmed by its 
strong performance on the validation and test sets, showing good generalisation and minimal 
overfitting due to careful hyperparameter tuning. NAS enabled the automated discovery of 
network architectures better suited for the multimodal dataset. While the original CNN performed 
well, the NAS-optimised model yielded significantly better results, highlighting the benefits of NAS 
for complex datasets. 

Future research can refine NAS techniques for optimising CNN architectures and better 
capturing weather trends by incorporating advanced temporal models like recurrent neural 
networks (RNNs) or temporal convolutional networks (TCNs). Additional data types, such as soil 
composition and historical yields, needed to be integrated to enhance accuracy. Another focus 
should be deploying these models in real-time agricultural systems for dynamic decision-making 
and crop yield predictions, with agronomist collaboration for field validation. 
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