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Abstract 
Prejudicial attitudes, such as those relating to age, race, or gender, exert a powerful influence on individuals, 
and are pervasive throughout society. Recent research suggests that the statistical patterns of how words 
are used in language may capture such biases, with language models providing approximations for people’s 
linguistic experience. However, many questions on the links between language models and people’s biased 
attitudes remain unanswered. In the current study we focus on gender–career bias (where men are routinely 
favoured over women in the workplace) to examine the extent to which language models can be used to 
model behavioural responses in the Gender–Career Implicit Association Test (IAT). We provide a 
systematic evaluation of a range of language models, including n-gram, count vector, predict, and Large 
Language Models (LLMs), to determine how well they capture people’s behaviour in the IAT.  We examined 
data from over 800,000 participants, tested against over 600 language model variants. While we find that 
LLMs perform well in modelling IAT responses, they are not significantly better than simpler count vector 
and predict models, with these other models actually providing better fits to the behavioural data using 
Bayesian estimates. Our findings suggest that societal biases may be encoded in language, but that resource-
greedy large language models are not necessary for their detection. 
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1. Introduction 

Janet is less likely to be called for an interview than John. Jamal is less likely to get a job than 
James, and obese applicant Julie is less likely to be shortlisted than her perceived healthy colleague 
Joan. Implicit biases (ones that we are not consciously aware of) are pervasive in our society [1] and 
can lead directly to prejudicial decision-making [e.g., 2–4]. Biases linked to gender, race, perceived 
health status, and many other characteristics are seen in employment, education, criminal justice, 
politics, and healthcare [5]. For example, in employment contexts, prospective female employees are 
rated as less competent and hireable than (identical) male applicants, and are less likely to be offered 
a job [3]. Similarly, while women engineers publish in journals with higher Impact Factors than their 
male peers, they receive fewer citations from the scientific community [6]. In these ways gender-
bias in career progression is readily visible, in both empirical studies and in the workplace.  

Such systemic patterns make the issue of bias one of global importance, and one with significant 
economic and societal costs. For example, employees who perceive bias are more than three times as 
likely to quit their jobs, with an estimated cost of up to $550 billion in the US alone [7]. Yet despite 
the acknowledged prevalence of such biases, we still do not fully understand where these biases 
come from or how they are transmitted [8]. 

However, we know that language is a primary form of cultural transmission [9,10], making it a 
plausible candidate for the communication and entrenchment of society’s implicit biases. 
Furthermore, recent work in computational modelling suggests that implicit biases may be captured 
by the latent statistical patterns in language [11–14]. In other words, the way words appear together 
in language may influence our unconscious, and potentially prejudicial, attitudes towards others. 
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However, we still do not have a good handle on whether these patterns can be adequately captured 
by existing language models. 

Recent work has demonstrated that statistical distributional properties of words reflect human 
biases and prejudicial judgements [11–13]. The way positive and negative terms are distributed in 
language closely reflects the positive or negative biases people exhibit towards various concepts, as 
measured by implicit association tests (IAT), for example. The IAT is a computerised task, with 
strong internal consistency and test–retest reliability [8], and is the most commonly used measure 
of people's automatic associations between concepts, used in thousands of studies [e.g., 5]. In an IAT, 
participants classify stimuli into categories as quickly as possible, where faster responses indicate 
stronger associations between concepts [15]. Displaying a greater degree of bias results in a higher 
D score for a participant. For example, in a Gender–Career IAT which contrasts male and female 
names, people consistently respond more quickly when male names are paired with career-related 
concepts (e.g., “John” and “Management”), compared to male names paired with non-career-related 
concepts (e.g., “John” and “family”), and vice versa for pairings with female names and concepts. This 
pattern indicates stronger negative associations for women and career concepts.  Thus, participants 
tend to respond more quickly to congruent stimuli pairings (i.e., male names and career concepts, or 
female names and family concepts) compared to incongruent stimuli pairings (i.e., male names and 
family concepts, or female names and career concepts). This is not to say that every individual 
participant follows this pattern, but over a large sample of participants this is the pattern that 
emerges [e.g., 8]. 

Investigating how language models capture human biases measured by Implicit Association Tests 
(IATs) Lynott et al. [12] used n-gram co-occurrence counts from a corpus of over 1 trillion words to 
show that stereotypical Black names (e.g., Jamal) co-occur with more negative attributes than White 
names (e.g., Brad), correlating strongly with implicit biases (r = 0.79) found in IATs. In the work of 
Caliskan et al. [11] word embeddings like GloVe were used to capture biases such as preferences for 
flowers over insects and gender imbalances in professions. In a recent paper, Bhatia and Walasek 
[16] go further, using large samples of human participants, which provides the much-needed 
statistical power for these kinds of analyses, and directly links human behaviour in IAT tasks with 
cosine similarity between stimuli words in language models. 

While these studies highlight the potential of language models in bias detection, limitations 
include generally small sample sizes and reliance on a small number of language models. Zhang et 
al. [17] have raised concerns about the robustness of word embedding-based bias detection, noting 
that results may depend heavily on model parameters. Thus, it remains unclear whether language 
models generally can reliably capture biases, or if only a select few perform well under specific 
conditions. 

To address this issue, in the current study we conduct an analysis of a range of language models, 
parameters and distance measures to determine a) what types of language models best capture 
behavioural responses to gender–career concepts as measured by the implicit association test, and 
b) what distance measures show the best relationship between language models and human 
behaviour. 

While much work in AI, often assumes, that larger and more computationally intensive models 
will perform better in most tasks, findings in the cognitive modelling literature suggest that this is 
not always the case. For example, as tasks become more complex, simpler models often do as well 
as, if not better than, more complex models [18,19]. Thus, a priori we might expect LLMs to perform 
very well, but special efforts to remove biases by the developers can make LLMs less suitable for this 
task, with greater computational complexity not buying them as much of an advantage as one might 
expect. As well as modelling performance, there are of course additional reasons for exploring 
simpler approaches than LLMs, including the high energy and financial costs, the environmental 
impact of LLM training and use [20], possible exposure of sensitive information [21], connectivity 
issues, potential reliance on un-governed corporations, and the questionable traceability, 
explainability and reproducibility of results. Thus, we hope that the current study will provide some 
insights into how well LLMs and other language models can capture human behaviour linked to 
implicit bias.  



2. Method 

2.1. Linguistic Distributional Models 

We examined four families of Linguistic Distributional Models (LDMs) that ranged considerably 
in their complexity: n-gram, count vector, predict, and large language models. The first three families 
have been used extensively in previous research, particularly in cognitive and psycholinguistic work 
[e.g., 18,22–24], which has found that larger models do not necessarily lead to better performance in 
modelling cognitive tasks [e.g., 18]. We also included three well-known large language models from 
Meta and MistralAI [25,26], which were primarily developed with a focus on text generation. A more 
detailed description for many of these models, including calculations for each measure, can be found 
in Wingfield and Connell [18], Pennington et al. [24], Touvron et al.[25] and Jiang et al. [26]. 

Table 1 
Summary of all 663 models, including variants by corpus, window radius, distance measures, and 
embedding size. Custom models are those where various parameters have been manipulated by the 
researchers, while “open” models are those that, while transparent, have fixed sets of parameters, 
including training corpus, embedding size, and so on.  

Model 
family 

Model 
 

Window 
radius 

Embedding  
size 

Number 
of LDMs 

Custom models 

counta,b Conditional probability 1,3,5,10  36 
counta,b Log cooccurrence frequency 1,3,5,10  36 
counta,b PMI 1,3,5,10  36 

counta,b PPMI 1,3,5,10  36 
counta,b Probability ratio 1,3,5,10  36 
n-grama Conditional probability 1,3,5,10  12 
n-grama Log n-gram frequency 1,3,5,10  12 

n-grama PMI n-gram 1,3,5,10  12 
n-grama PPMI n-gram 1,3,5,10  12 
n-grama Probability ratio n-gram 1,3,5,10  12 
predicta,b Skip-gram 1,3,5,10 50, 100, 200, 300, 500 180 
predicta,b CBOW 1,3,5,10 50, 100, 200, 300, 500 180 

Open models 

countb GloVE Global 300 3 

llmb llama-2-7b-chat.Q4_K_M 4096 4096 18 

llmb cor_llama-2-13b-chat.Q5_K_S 4096 5120 18 

llmb mistral-7b-v0.1.Q4_K_M 4096 4096 18 
a Each of “custom” models have three modifications related to corpora on which it was trained (BNC, Subtitles, UKWAC) 
b Three distances were calculated Euclidean, Cosine, Correlation for each vector model 

In this study we examine two classes of models: “custom” and “open”. The “custom” trained 
models – n-gram, count vector (excluding GloVe), and predict  – and “open" models –LLMs and 
GloVe. For the custom models, we had full control over the training corpora (using three different 
corpora: UK Web As Corpus – UKWAC [27], British National Corpus – BNC [28], and the BBC 
Subtitle Corpus; details provided below), context window sizes (1, 3, 5, 10), and embedding sizes (for 
prediction models: 50, 100, 200, 300, 500). For “open” models we have no control over training 
procedures.  

To measure word distances we used Conditional probability, Log n-gram frequency, PMI n-gram, 
PPMI n-gram, Probability ratio n-gram for n-gram models and vector metrics (Euclidean distance, 
Cosine distance, Correlation distance) for count, predict and LLM models (for a summary of “custom” 
and “open” models used in analysis see Table 1). 



2.2. Behavioral data and evaluating model performance 

We collated human behavioral data from the Project Implicit Gender & Career IAT study, 
obtained from an Open Science Framework repository [29]. This data includes raw data per trial, 
including response times (RTs) for stimuli categorization in blocks with "congruent" and 
"incongruent" stimuli.   

We included only participants who chose UK or USA as their current residence and country of 
their origin, reflecting the English-language corpora used to generate the LDMs. We selected 
participants who were 18 or older and participated in the common version of the IAT (without 
additional stimuli), those who did not have prior experience with IAT tasks [30,31], for whom raw 
trial data is available, and where the calculated bias effect size D was found to be equal to the effect 
size in the preprocessed dataset (to avoid discrepancies between raw and preprocessed data). 
Summary of data preprocessing presented in Supplementary materials, Table A.  

After data cleaning, the final dataset comprised 802,070 participants from the USA and UK, 
spanning the period from 2005 to 2021. Descriptive statistics presented in Supplementary materials, 
Table B-E.  Next, we randomly split the whole sample into two subsamples (Sample A: 401,025, 
Sample B: 401,045) balanced by country and year. For each sample data we calculated mean response 
time (m_RT) for each pair of stimuli in each condition (congruent vs incongruent), separated by 
country (USA, UK). 
2.2.1. Preregistration and analysis  

We preregistered our approach to data handling and our planned analyses 
(https://aspredicted.org/ZWZ_9RV). 

Our primary analysis involves conducting multiple regression analyses to model the mean 
response time (RT) of participants in the IAT.  First, using Subsample A, we established a baseline 
regression model containing the factors of country, log word frequency, number of letters and number 
of syllables as predictors, to account for important predictors of reading and processing time [32], 
but which are not of theoretical importance in this case. Subsequently, we add a single LDM (e.g., 
word distances for n-gram models and vector distances for other families, including LLMs) to 
determine if this model improves fit over the baseline model, using p < .05 as a threshold for 
significance. For each LDM, we calculate the Pearson correlation coefficient, r, and the change in 
Bayesian Information Criterion (BIC) to provide complementary measures of how well the model 
fits the RT data. Because the sign of correlations indicating a good fit between model values and 
behavioural data differed between models [18], we report absolute Pearson’s correlation values for 
ease of cross-comparison. BIC is a useful additional measure as it allows us to quantify the strength 
of evidence for and against each model being considered [33]. For example, values of BF10 > 3 are 
seen as providing positive support for the alternative hypothesis (models containing the LDM 
feature), values between 0.33 and 3 are in the anecdotal range, while values < 0.33 are seen as 
providing better support for the null hypothesis (i.e., in favour of the baseline model – see Jeffreys, 
1961).  We completed this analysis for all models. We ran all regression models in R [34] and flexmix 
[35], as well as multiple helper packages [36–41]. 

Thus, regression analysis allows us to find language models for which distances for the stimuli 
words (or word similarity for n-gram models) provide additional information to the baseline model 
for the RT of participants (for the same stimuli words). This allows us to investigate the link between 
participants behavior and semantic distances in language model spaces, and to contribute to the 
discussion how statistical distributional properties of words reflect human biases and prejudicial 
judgements. 

To test for the robustness these findings, we ran the same models on the second half of the data 
(subsample B), and then compared the performance across Subsamples A and B to determine if there 
was consistency across the samples using a number of different measures: correlation direction 
between model estimates in A and B samples, inclusion of B sample correlation estimate within 95% 
Confidence Intervals of the A sample correlation, whether the direction of the regression coefficient 
is the same for A and B samples, whether significant models in A are also significant in B, and 
whether the change in BIC is similar (i.e., > 3) for both samples. We first report the results of our 
preregistered analyses, followed by the results of the robustness analysis outlined above. 



3. Results 

Overall, there was considerable variability in model performance, but the best-performing models 
in each family of models did very well in their ability to reflect human performance in the Gender–
Career IAT. Using correlation strength, 42.5% of all language models lead to significant 
improvements over the baseline model. Figure 1.a) summarises the model correlations: mean 
performance was best for LLMs (Mean r = .495, 81.5% significant models, best-model r = .619), 
followed by count vector (Mean r = .219, 42.5% significant models, best-model r = .535), predict (Mean 
r = .209, 42.8% significant models, best-model r = .601), and then n-gram models (Mean r = .179, 33.3% 
significant models, Best-model r = .492), with 9 of the top 10 performing models being LLMs (see 
Figure 1.b and Supplementary materials, Table F).  

When we examined model performance using BIC as a measure of model fit, we saw a slightly 
different picture (Figure 1.c). Using BIC change from the baseline model, only 2 of the top 10 
models were LLMs, with the other 8 coming from the predict family of models, including a mix of 
CBOW and Skip-gram variants (Figure 1.d and Supplementary materials, Table G). From each 
model family, we found that the best model fit for predict models had a BIC change = 28.92, 
followed by LLMs (best model BIC change = 18.8), count-vector (best model BIC change = 18.6) and 
lastly n-gram (best model BIC change = 9.92). Figures 1.b and 1.d in particular highlight how 
considering correlation strength or change in BIC reveals different patterns, favouring LLMs in the 
former and predict models in the latter.  

In terms of comparing Euclidean, cosine, correlation and association (from n-gram models) 
measures, we find that all measures perform reasonably well, but that mean performance for 
Euclidean (M = 0.263, SD = 0.166) is greater than that of cosine (M = 0.226, SD = 0.165) and 
correlation (M = 0.264, SD = 0.165), which in turn are greater than association strength of n-gram 
models (M = 0.179, SD = 0.114). If we consider the top performing models (Supplementary 
materials, Tables F and G), we can see that it is dominated by models using Euclidean distance. The 
domination of the Euclidean distance was not expected, as in contemporary research this metric 
sometimes even not regarded (e.g. [16]). Thus, the question of the best distance remains open and 
need further investigation 

For the three different corpora that were used for the customizable models, we found that 
models using the BBC Subtitle corpus performed best on average (M = 0.314, SD = 0.146), followed 
by those using the BNC (M = 0.209, SD = 0.163), and then those using UKWAC (M =0.175, SD = 
0.146). It is perhaps surprising to see that the relatively small, but high-quality subtitle corpus 
outperforms the UKWAC corpus which is an order of magnitude larger.  

For embedding sizes, there is a notable increase in average performance for larger embeddings, 
with the strongest performance for LLMs with embedding sizes of 4,096 (M = 0.509, SD = 0.103) and 
5120 (M = 0.467, SD = 0.048). However, these mean values mask the fact that there are individual 
models with extremely good performance at almost all embedding sizes. For example, the best-
performing predict models with embedding sizes of only 50 and 100 have model performance of 
0.593 and 0.601 respectively.  

Similarly, for context window radius size, while larger radiuses perform better on average (e.g., 
radius 32768, M = 0.516, SD = 0.081; radius 4096 M = 0.485, SD = 0.094), the best-performing predict 
models with a radius of 5 and 10 had model performances of 0.578 and 0.601 respectively. Even the 
best performing predict model with a radius of only 1 had a correlation of 0.535 with the 
behavioural data.  

We compared the patterns observed in Sample A and Sample B and found very similar overall 
patterns. We found that the correlation between model performance between the two r > .99, with 
100% of Sample B correlations being within the 95% confidence intervals for the correlations of 
Sample A, demonstrating extremely high consistency across both samples. With more conservative 

Figure 1 
Distribution of correlations (a,b) and BIC change (c,d) between each LDM and mean RT in the four 
model families for all models (a,c) and top ten models (b,d). Each dark circle represents an individual 
model instantiation, while the violin outline areas represent the density of correlations in the overall 
distribution 



 
checks, some differences emerge across model families. Looking at the consistency of the sign of 
beta coefficients across samples, almost all models do well (>99% consistent), with the exception of 
the count probability ratio model (67%) and several n-gram models being less than 95% consistent.  
Looking at whether significant regression models are consistent across both samples, we find that 
certain models within each model family perform well, and overall LLMs and predict models are 
more consistent. Considering the change in BIC in both samples, LLMs show reasonable 
robustness, with 43% of models showing consistency across both samples, followed by predict 
(29%), count vector (26%), and lastly n-gram models trailing with 13%. All results for the models can 
be found in supplementary materials Table H. 
4. Discussion 

Language models and linguistic distributional information more generally have previously been 
used to demonstrate associations between the statistical regularities in language and people’s 
implicit biases. In this paper, we report the findings of a systematic analysis of a large range of 
language models in modelling human behaviour in a Gender–Career implicit association test. 
While large language models perform well in some cases, by other measures, higher BIC change 
are observed for less resource-intensive predict models, such as CBOW and Skip-gram models (in 
the top 10 models by decrease in BIC on sample A, 3 are CBOW and 5 are Skip-gram models, see 
supplementary materials Table H). It is worth noting that LLM values may be slightly elevated 
generally given that these models cannot be customised to the same extent as the other models, 



meaning we cannot create LLM variants with much smaller embedding sizes or context windows, 
as we can with the other model families. Results also reveal that high-quality corpora can 
outperform larger, but noisier corpora. For example, the relatively small Subtitle corpus (200 
million words), resulted in better model performance than UKWAC (2 billion words), and even 
larger corpora like those used in GloVe (6 billion words) and the LLMs (trillions of words). For 
distance measures, we found that there were good performing models with all measures 
(Euclidean, cosine and correlation measures), but that the best forming models tended to use 
Euclidean distance. While there was a general trend for larger embedding and context window 
radius sizes to do better, we found that there are models with very strong performance at even the 
smallest of embedding and radius sizes. Our robustness analyses found that there was generally 
very good correspondence with model performance across the A and B samples of the dataset, with 
very high correlations between observed effects, although more conservative measures highlight 
some differences across model families.  

What do these patterns suggest? The patterns certainly go counter to a “bigger is better” 
intuition people often have about language models, and the seemingly constant drive to produce 
larger and larger models with higher and higher resource requirements. The findings suggest that 
appropriately tailored non-LLMs can perform as well as, if not better than, LLMs in certain cases.  
This pattern reflects recent findings indicating that larger LLMs may actually be less reliable than 
smaller language models [42]. Given that even the simplest of language models can give rise to 
good model performance in capturing behaviour in Gender–Career implicit association test, it also 
suggests that biases are encoded very generally in linguistic information, and therefore do not 
specifically require LLMs for them to be uncovered. Thus, although LLMs do well in the current 
study, despite their massively greater complexity and resource requirements [e.g., 20], they do not 
do significantly better than the leaner, more efficient, less resource-intensive predict and even 
some count-vector models. If one is additionally concerned with the cognitive plausibility of the 
models being examined, then LLMs are also left wanting in terms of plausible learning 
mechanisms, training data that is orders of magnitude greater than what people can experience 
during a lifetime, and general lack of grounding in broader sensorimotor experience, which is also 
critical to people’s acquisition of semantic knowledge [22].  

A finding that language models can predict human behaviour in IATs demonstrates that 
cultural biases are reflected in the statistical properties of language, however it is also the case that 
biases in language – the medium through which much information about the world is obtained – 
reinforce psychological biases in humans [13]. With LLMs playing an ever-larger role in mediating 
information, and in the production of new linguistic material, biases in statistical language models 
risk entering a vicious, self-reinforcing cycle with potential real-world consequences [43]. 
4.1.1. Limitations, challenges, and deviations from preregistration 

Despite the general trend for good model performance across a range of model families and 
parameter settings, there are of course important limitations to highlight in the current work. 
Furthermore, we would like to note some minor deviations from the original preregistration of this 
study.  

First, although we were able to use a large sample of participant data from Project Implicit 
(>800K participants, following preprocessing), our focus was only on one specific IAT topic, and 
therefore only on one set of stimuli. While the current findings are suggestive of the capacity of 
language models generally to reflect human behavioural biases, our future work will need to 
consider extending the stimuli and range of topic areas addressed in our modelling work. Given 
findings elsewhere [e.g., 11,13], we are hopeful that these findings will extend well to other areas of 
implicit bias.  

During the process of testing the large range of models, we also observed some surprising 
patterns in terms of the relationship between model output and the behavioural responses in the 
IAT. Most models produced results in an intuitive and expected way, with higher model values 
showing a positive relationship with the behavioural responses. However, for the large language 
and GloVe models, we consistently observed negative correlations. Thus, while the relationships 
between model and behaviour were often strong, they were in the opposite direction to those 
observed for most other models. It is unclear exactly why this is the case, but there are a number of 
possible explanations.  First, the majority of LLMs, including the Llama2 and Mistral models used 
here, include not only a language-model component, but also a further reinforcement learning 



from human feedback (RLHF) component that fine-tunes the original language model. This is 
similar to the approach used with the ChatGPT family of models. However, it remains unclear 
what the specific impact is of this reinforcement learning stage on the linguistic representations 
within the models. One of the aims of the reinforcement learning stage of LLMs is to counteract 
known biases, such as those associated with race and gender, thereby potentially altering the 
internal representations and leading to unexpected negative correlations.  

Related to this issue, in the current study, we focus only on the semantic similarity of individual 
words within language models. However, Zhang and colleagues [17] suggest that focussing on the 
word level can be problematic and give rise to anomalous results. Considering metrics of gender bias 
specifically, Zhang et al. suggest that in addition to semantic similarity, two other factors can be 
responsible for smaller distances in embeddings space: sociolinguistic factors and mathematical 
properties of vectors [17]. Regarding mathematical properties of vectors Zhang et al. argue that cases 
where there are very high similarity scores between vectors, can make it very difficult to properly 
evaluate bias. For example, words and their plurals can be assigned opposite bias directions due to 
vector multiplication, even though they should be considered conceptually in the same way. In our 
case, we can speculate that in cases of a very high cosine similarity between base words (e.g., in 
Glove 6b model cosine similarity between “female” and “male” equals to 0.894) smaller distances can 
be observed by chance, rather than due to gender bias per se. Additionally, we could also expect 
some sociolinguistic factors to impact the representation of bias within models. For example, we 
might expect that distance between “family” and “business” will be lower not because of any Gender–
Career bias, but because of the relatively high frequency of co-occurrence phrases like “family 
business”. For example, in the GloVe model used here, the cosine distance between “business” and 
“family” is lower (.632) than that between “business” and “career” (.673). Zhang and colleagues 
suggest that focusing on the conceptual level (e.g., examining clusters of concepts related to the core 
concepts of “family” and “career”) may give rise to more robust results when considering bias, 
although the feasibility of this approach may depend on the modelling context [17].  

Many of the language models we tested here are fully transparent and fully customisable. 
However, LLMs rarely offer the same levels of transparency, which is problematic for researchers.  
We overcome this issue somewhat by using  publicly available models like Llama2 and Mistral, 
which for LLMs, offer some of the greatest visibility into their behaviour and underlying 
representations. However, even with these models we don’t have complete information on 
constituency and size of the training data used. In an ideal world, researchers would have complete 
access to all aspects of these models to fully and fairly assess their performance. In addition, the 
field of LLMs continues to develop rapidly, and LLMs included in this study are now classified by 
researchers as S(mall)LLMs. Furthermore, in this study we used heavily quantized (Q4) models 
potentially reducing precision. Thus, results of this study should be regarded with care and for 
better generalization of fundings more research with an extended set of models is needed. 

In terms of preregistration deviations, our primary analyses and treatment of the data follow 
our original plan very closely. However, in our original plan we included a smaller number of 
models and model families. This was primarily because this work was originally proposed more 
than 2 years ago, meaning that we originally included only n-gram, count vector and predict 
models. However, given the pace of change in the world of AI and language models, we felt it was 
important to include newer large language models, and so added the Llama 2, Mistral, and GloVe 
models to provide a more complete picture of language models in this domain.  

Finally, it is worth mentioning that "gender" is descriptive of a broad phenomenon which 
extends beyond simply "male" and "female". Existing gender-based IATs employ a strict 
male/female binary, which we have therefore followed in the present analysis. Gender-based 
stereotypes and biases relating to transgender and non-binary identities, and particularly their 
reflection language, remains an under-studied topic [44,45]. 
4.1.2. Conclusion 

Overall, we find that a range of language models can capture human behavioural performance 
in relation to Gender–Career implicit biases. While LLMs perform well, their additional resource 
requirements may not be warranted as they do not reliably outperform much simpler and more 
cost-effective models.  
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