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Abstract
Conversational avatars provide innovative platforms for enhancing therapist-patient interactions in speech
therapy by offering real-time feedback. However, the performance of Automatic Speech Recognition (ASR)
models on disordered speech, such as dysarthria and stuttering, remains underexplored. The effectiveness of
these systems hinges on the accuracy and processing speed of ASR models when transcribing pathological speech,
particularly in real-time scenarios. This study evaluates several pre-trained ASR models, including Whisper-large-
v3-turbo, Canary, DistilWhisper, and NVIDIA’s stt-en-fastconformer-ctc-large across three datasets: Common
Voice (standard speech), TORGO (dysarthric speech), and UCLASS (stuttered speech). We assess the models
using Word Error Rate (WER), Real-Time Factor (RTF), and BERTScore to measure transcription accuracy,
computational efficiency, and semantic congruence. The stt-en-fastconformer-ctc-large model demonstrates the
fastest processing speeds, achieving the lowest WER and highest BERTScores on both the Common Voice and
TORGO datasets, making it highly suitable for real-time therapeutic applications. However, all models struggle
with accurately transcribing stuttered speech from the UCLASS dataset. These results highlight the need for ASR
improvements for disordered speech, focusing on edge deployment to reduce latency and enhance accuracy with
multimodal inputs.
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1. Introduction

Conversational avatars are an innovative platform for therapist-patient interactions that hold significant
potential to improve speech therapy outcomes. By providing real-time feedback, these avatars aim to
revolutionise speech dysfunction therapy and enhance patient engagement [1]. However, the efficacy of
these avatars critically depends on the accuracy and speed of voice transcription, which is a challenging
task when dealing with disordered speech [2]. Disordered speech, which affects phonation, articulation,
and fluency, poses significant challenges for Automatic Speech Recognition (ASR) systems [2]. In the
context of conversational avatars, ASR serves as the foundational technology that enables the avatar to
understand and respond to the patient’s speech. Therefore, the performance of ASR systems is crucial
for seamless transcription and uninterrupted therapy sessions [3].

According to Georgescu et al. [4], ASR models in conversational therapy avatars need to bal-
ance transcription accuracy with hardware constraints, such as processor speed and memory usage.
Transformer-based models like Whisper [5] and Canary [6] have shown effectiveness in several speech
datasets by enhancing computational efficiency through parallel processing. However, their capacity to
handle disordered speech in therapeutic contexts remains underexplored. Speech disorders like apraxia
and dysarthria present unique challenges for ASR systems due to irregular pronunciation, distorted
phonemes, and variable speech rates [7], [8], often leading to transcription errors and delays that disrupt
the therapeutic interaction. These interruptions can hinder the effectiveness of therapy sessions [8],
indicating the need for fast and accurate ASR inputs to maintain patient engagement. Additionally,
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edge-based solutions are becoming increasingly essential in speech therapy applications as they process
and store data closer to the source. This reduces latency and ensures data privacy, which are critical
factors in therapeutic settings [9]. Deploying ASR models locally enables real-time processing without
the delays typically associated with cloud-based services, while also addressing privacy concerns by
keeping sensitive patient data on-site [10]. This justifies our focus on testing ASR models through local
deployments rather than relying on hosted services.

While prior research has examined ASR performance on disordered speech, dialectal speech, low-
resource languages, and children’s speech, they rarely address specific conversational challenges in
therapeutic applications, such as real-time dialogue management, error correction, and maintaining
patient engagement [7]. In this paper, we carefully benchmark state-of-the-art ASR models against
speech from patients with speech impairments, testing their feasibility in high-stakes, real-time speech
therapy scenarios. We provide a comprehensive evaluation of pre-trained ASR models on disordered
speech without fine-tuning, assessing their transcription accuracy, processing speed and semantic
congruence within the context of speech therapy applications. By highlighting the limitations of current
ASR models in handling different types of speech disorders, we analyse how these limitations impact
real-time therapeutic interactions. Furthermore, we emphasise the importance of edge-based solutions
for ASR in speech therapy, justifying the use of local model deployments to reduce latency and address
privacy concerns in clinical settings. Based on our findings, we offer insights and recommendations for
speech disorder ASR models and the integration of multimodal inputs, aiming to enhance semantic
comprehension and efficacy in conversational speech therapy applications.

2. Related Work

Automatic Speech Recognition (ASR) systems face significant challenges when processing disordered
speech, such as stuttering, dysarthria, and apraxia, due to variations in fluency, articulation, and
phonation. These differences hinder the performance of conventional ASR models, which are typically
trained on fluent speech data. In exploratory research, Green et al. [11] developed ASR models
specifically tailored for individuals with speech impairments using the TORGO [12] and UCLASS [13]
datasets. While these models showed improved comprehension in controlled environments—such as
isolated word or phrase recognition, they struggled significantly in conversational scenarios where
speech is more spontaneous and variable, limiting their practical application in real-world settings [8].
ASR systems have also been studied in the context of speech therapy applications, particularly with
conversational avatars and voice assistants. Mitra et al. [14] explored the impact of fluency issues on
ASR performance within a voice assistant system and found that traditional ASR models struggled to
accurately process stuttered speech, resulting in misunderstandings and communication breakdowns.
By employing hybrid ASR models with modified decoding parameters, they improved transcription
accuracy for moderate to severe stuttering, enhancing the usability of voice assistants for individuals
with fluency disorders. Mulfari and Villari [15] focused on optimising ASR for edge devices for users
with speech impairments. They fine-tuned models like Whisper for edge computing nodes, improving
ASR performance for impaired speech by enabling more efficient on-device processing, which is critical
for real-time applications and ensuring user privacy.

Clinically, transcription precision is critical for conveying speaker intent and enabling meaningful use
of assistive technologies. Tobin et al. [16] explored the use of conversational avatars for providing real-
time therapy feedback and found that while personalised ASR models performed well with short, scripted
phrases, they faced challenges with spontaneous conversational speech, particularly for individuals
with severe speech impairments. Mitra et al. [14] and Mulfari et al. [15] highlighted the potential to
optimise ASR systems for specific applications without requiring extensive retraining. By adjusting
decoding parameters for Whisper [5] and utilising edge computing, these models can achieve a balance
between accuracy. Recent research has explored fine-tuning models like Whisper and Conformer on
disordered speech datasets using techniques such as data augmentation and transfer learning. While
models like Whisper [5] and Canary [6] excel at transcribing standard speech due to their capability to



model long-range dependencies in audio sequences, their performance on disordered speech remains
underexplored. Studies by Mitra et al. [14] and Tomanek et al. [17] suggest that adaptation strategies
can improve their effectiveness in this domain.

Despite advancements, significant limitations remain in the current state of ASR technology. Existing
models often struggle to accurately transcribe disordered speech in real-time therapeutic contexts,
where extensive fine-tuning with disorder-specific data is impractical due to data scarcity and privacy
concerns. The lack of generalisable models that perform well without fine-tuning limits ASR accessibility
in therapy. Additionally, balancing processing speed and accuracy on edge devices remains a challenge,
hindering the deployment of efficient real-time solutions in clinical environments. These challenges
highlight the need for comprehensive evaluations of pre-trained ASR models on disordered speech to
identify models suitable for therapy and guide the development of effective, practical solutions.

3. Datasets

To evaluate the performance of ASR models on both standard and disordered speech in therapeutic
applications, the Common Voice dataset [18] for standard speech, the TORGO dataset for dysarthric
speech [12], and the University College London Archive of Stuttered Speech (UCLASS) dataset [13] for
stuttered speech were selected. While other datasets of disordered speech exist, such as the Nemours
Database of Dysarthric Speech [19] and the USC-TIMIT database [20], we selected TORGO and UCLASS
because of their extensive use in prior research and the availability of annotations necessary for our
analysis.

The Common Voice dataset [18] is a massively multilingual collection of transcribed speech intended
for speech technology research and development. For this study, we extracted 600 samples to serve as a
benchmark for standard speech. This subset allows us to compare ASR model performance on typical
speech patterns against their performance on disordered speech, providing a baseline for evaluations
while ensuring computational feasibility.

The TORGO dataset [12] and the University College London Archive of Stuttered Speech (UCLASS)
dataset [13] provide speech recordings from individuals with dysarthria and stuttering, respectively. We
utilised 600 samples from TORGO, which includes a variety of speaking activities, from single words to
spontaneous speech. This subset captures the influence of neurological disabilities on speech patterns
and facilitates the evaluation of ASR models’ ability to transcribe dysarthric speech accurately. From
UCLASS, we used 31 long-form audio samples featuring speech characteristics such as prolongations
and repetitions across reading tasks, conversations, and monologues. The smaller number of samples
from UCLASS reflects the longer duration and complexity of the recordings, which are essential for
analysing ASR performance on stuttered speech in more naturalistic settings. In order to mitigate
potential distortions in WER calculations caused by repeated phrases or words that could unfairly
inflate error rates, repetitive transcriptions were filtered out during analysis. Both datasets provide
complete annotations and quality recordings, making them suitable for our analysis of ASR models on
disordered speech in therapeutic contexts.

4. Evaluation Metrics

To evaluate the performance of Automatic Speech Recognition (ASR) models on pathological speech, we
employed three key metrics: Word Error Rate (WER), Real-Time Factor (RTF), and BERTScore. These
metrics provide insights into transcription accuracy, computational efficiency, and semantic similarity,
all crucial in applications where both precision and speed are vital. Word Error Rate (WER) is a standard
metric for assessing transcription accuracy by comparing the ASR output to a reference transcription.
It is calculated as:

WER =
S +D + I

N
(1)



where S is the number of substitutions, D is the number of deletions, I is the number of insertions,
and N is the total number of words in the reference transcription. Lower WER values indicate better
transcription accuracy, which is particularly important for speech conditions such as stuttering and
dysarthria.

Real-Time Factor (RTF) measures the processing speed of an ASR system relative to the duration of
the input audio. An RTF value less than 1 indicates that the system processes audio faster than real-time,
which is crucial for applications that require immediate feedback. Lower RTF values are preferred, as
they signify higher computational efficiency and faster processing.

RTF =
Processing Time
Audio Duration

(2)

While WER and RTF assess transcription accuracy and processing speed, they do not capture the
semantic similarity between the ASR output and the intended message. This is particularly relevant in
disordered speech applications, where conveying the correct meaning is more important than exact
word matching. To address this, we employed BERTScore as an additional evaluation metric. BERTScore
leverages contextual embeddings from the Bidirectional Encoder Representations from Transformers
(BERT) model [21] to evaluate semantic similarity between the predicted transcription and the reference.
In the context of disordered speech, traditional metrics like WER might penalise transcriptions where
the wording differs but the meaning is preserved. BERTScore addresses this by capturing semantic
content, making it relevant for assessing ASR systems handling non-fluent speech [22]. BERTScore
operates by generating contextual embeddings for each token in both the candidate (ASR output)
and the reference transcription using a pre-trained BERT model. Higher BERTScore values indicate
greater semantic similarity between the ASR output and the reference. The similarity between tokens
is measured using cosine similarity:

sim(xi, yj) =
xi · yj

|xi|, |yj |
(3)

where xi and yj are the embeddings of the i-th and j-th tokens in the candidate and reference,
respectively. For each token in the candidate, the most similar token in the reference is identified, and
vice versa. Precision (P ) and recall (R) are computed as the average of these maximum similarities:

P =
1

|C|
∑
xi∈C

max
yj∈R

sim(xi, yj) (4)

R =
1

|R|
∑
yj∈R

max
xi∈C

sim(yj , xi) (5)

where C and R are the sets of tokens in the candidate and reference transcriptions, respectively. The
final BERTScore is the F1 score combining precision and recall.

BERTScore = 2× P ×R

P +R
(6)

5. Experimental Setup

Experiments were conducted on a Linux virtual machine equipped with an NVIDIA A100 GPU, 83.5
GB of system RAM, and 40.0 GB of GPU RAM, using CUDA 12.1. We utilised PyTorch, Hugging Face
Transformers, and librosa for audio processing. The Word Error Rate (WER) was calculated using
the jiwer library, while the BERTScore was calculated using the bert-score library. The pre-trained
ASR models evaluated range from large transformer-based architectures, Whisper-large-v3-turbo and
DistilWhisper, as well as conformer-based models, NVIDIA’s Canary and stt-en-fastconformer-ctc-large.

The datasets used were Common Voice for standard speech, TORGO for dysarthric speech, and
UCLASS for stuttered speech. Preprocessing was minimal, involving conversion of audio arrays and



bytes audio data to WAV format using librosa for compatibility with the ASR models. The aim was to
assess the models’ out-of-the-box performance on raw audio data. To simulate real-time conditions,
each audio file was processed individually rather than in batches. This approach mirrors live therapeutic
settings where immediate transcription is required without the benefits of batch and enables an in-depth
assessment of each audio. We measured transcription accuracy (WER) and processing speed (RTF)
under these conditions to objectively compare model performance across the datasets. Finally, the
BERTScore for each model across the different datasets was calculated.

6. Results and Analysis

The Word Error Rate (WER) and Real-Time Factor (RTF) for each model across the datasets are presented
in Table 1. On the TORGO dataset, which contains dysarthric speech, the stt-en-fastconformer-ctc-
large model achieved the lowest WER of 0.49, indicating better transcription accuracy for dysarthric
speech compared to the other models. DistilWhisper and Whisper-large-v3-turbo had slaightly higher
WERs of 0.64 and 0.65, respectively, while Canary had the highest WER at 0.70, suggesting significant
challenges in transcribing dysarthric speech. After filtering out audio files with repetitive transcriptions
identified in the TORGO dataset to ensure a fairer evaluation, such as instances where the ASR model
generated repeated phrases, if included, would artificially inflate the WER and distort the model’s true
transcription capabilities.

Removing these files allows for a more accurate assessment of the ASR system’s performance
by focusing on its ability to transcribe natural speech patterns effectively without being skewed by
redundant transcription errors. Canary had the second lowest WER at 0.63 after stt-en-fastconformer-
ctc-large. On the UCLASS dataset, featuring stuttered speech, Whisper-large-v3-turbo and DistilWhisper
achieved the lowest WER of 0.48. The stt-en-fastconformer-ctc-large had a higher WER of 0.61, and
Canary again had the highest WER at 0.84. This indicates that the Whisper-based models performed
better on stuttered speech. On the Common Voice dataset, representing standard speech, Canary
performed best with a WER of 0.14, while the other models had slightly higher WERs of 0.18. This
demonstrates their effectiveness in transcribing typical speech, with Canary showing a slight advantage.

Regarding processing speed, the stt-en-fastconformer-ctc-large consistently demonstrated the lowest
RTF across all datasets, with values significantly less than 1, indicating it processes audio faster than
real-time. For instance, it achieved an RTF of 0.05 on the UCLASS dataset and 0.02 on the Common Voice
dataset. This efficiency makes it suitable for real-time applications. The WER for the TORGO dataset
(dysarthric speech) was higher than for UCLASS (stuttered speech), yet the BERTScores for TORGO were
significantly better. This difference reflects how WER focuses on surface-level transcription accuracy,
while BERTScore measures semantic similarity. In the TORGO dataset, despite higher WERs, the ASR
models were still able to capture the overall meaning of the speech, resulting in better BERTScores
while on the UCLASS dataset, the models had lower WERs but struggled to maintain semantic accuracy,
likely due to disfluencies like repetitions and prolongations that characterise stuttered speech.

Table 1
WER and Average RTF Across Datasets

Model TORGO UCLASS Common Voice

WER Filtered WER RTF WER RTF WER RTF

Whisper-large-v3-turbo 0.65 0.64 0.11 0.48 0.02 0.18 0.05
Canary 0.70 0.63 0.86 0.84 0.06 0.14 0.58
DistilWhisper 0.64 0.64 0.13 0.48 0.01 0.18 0.06
stt_en_fastconformer_ctc_large 0.49 0.49 0.04 0.61 0.05 0.18 0.02

The BERTScore analysis offers insights into the semantic similarity between the ASR outputs and
the reference transcriptions. Table 2 presents the average BERTScores (F1 scores) for each model
across the datasets. On the TORGO dataset, the stt-en-fastconformer-ctc-large model achieved the



highest BERTScore (0.7496), indicating a strong ability to preserve semantic meaning despite potential
word-level errors.Whisper-large-v3-turbo and DistilWhisper had moderate scores of 0.6395, while
Canary had a slightly higher score of 0.6746. On the UCLASS dataset, BERTScores were much lower
across all models, with negative values for Canary (-0.0357), highlighting the difficulty of capturing
semantic content in stuttered speech. This result reflects the challenges in transcribing speech that
include frequent disfluencies like repetitions and prolongations. In contrast, on the Common Voice
dataset, all models performed well, achieving high BERTScores, with Canary leading at 0.8719. These
high scores, consistent with the low WERs, indicate that the models were able to accurately transcribe
and preserve semantic content in standard speech.

Table 2
Average BERTScores for Each Model and Dataset

Dataset Model Precision Recall F1 Score

TORGO

Whisper-large-v3-turbo 0.6829 0.6006 0.6395
Canary 0.7182 0.6363 0.6746

DistilWhisper 0.6829 0.6006 0.6395
stt-en-fastconformer-ctc-large 0.7374 0.7654 0.7496

UCLASS

Whisper-large-v3-turbo 0.4609 0.0764 0.2600
Canary 0.1836 -0.2309 -0.0357

DistilWhisper 0.4525 0.0740 0.2552
stt-en-fastconformer-ctc-large 0.1792 -0.0740 0.0492

Common Voice

Whisper-large-v3-turbo 0.8250 0.8165 0.8208
Canary 0.8784 0.8655 0.8719

DistilWhisper 0.8250 0.8165 0.8208
stt-en-fastconformer-ctc-large 0.7210 0.7405 0.7307

Table 3: Sentence-level BERTScores for ASR Models on Different Datasets

Dataset Model Prediction and Scores

Torgo Reference: except in the winter when the ooze or snow or ice prevents

Whisper-large-v3-
turbo

I’m still in the reading. The rules were still what I’d command.

Precision: 0.0651, Recall: -0.1521, F1 Score: -0.0442

Canary Except in the winning, we also use the experiments.
Precision: 0.1439, Recall: -0.1320, F1 Score: 0.0037

DistilWhisper I’m still in the reading. The rules were still what I’d command.
Precision: 0.0651, Recall: -0.1521, F1 Score: -0.0442

stt-en-fastconformer-
ctc-large

except in the wining we also po less human

Precision: -0.0958, Recall: -0.2074, F1 Score: -0.1504

Common
Voice

Reference: Wait for the end of the war.

Whisper-large-v3-
turbo

Wait for the end of the wall.

Precision: 0.6265, Recall: 0.6266, F1 Score: 0.6272

Continued on next page



Table 3 – continued from previous page
Dataset Model Prediction and Scores

Canary Wait for the end of the world.
Precision: 0.7143, Recall: 0.7144, F1 Score: 0.7148

DistilWhisper Wait for the end of the wall.
Precision: 0.6265, Recall: 0.6266, F1 Score: 0.6272

stt-en-fastconformer-
ctc-large

wait for the end of the war

Precision: 0.8996, Recall: 0.8647, F1 Score: 0.8823

UClass Reference: Um, U I go to Trinthoe School, and I like doing football, art, design,
technology, maths and, lots of other subjects. My best hobby is
football, I scored 18 goals um er last year, and. Er. (Interviewer):
Tell me about your friends at schools, your teachers, things you
like to do at school. Yeah. {Interviewer}. My best friend’s XXXX
XXXXXX. Um. Went round to his house, um, {block}about two days
ago. Um. Er We wernt out on our bikes, Um. M. (Interviewer). (S):
Lost World. Um. Lost World is my best film. Um, {block}IT was
quite scary, um. About dinosaurs. (I): What happened? (S): U it’s
sequel to Jrassic Park ANNNNN, there some dinosaurs escaped and,
well actually came back. Um. (I): What were they trying to do? (S):
Well they trying to catch them and, and going put them back um
in the right place. (I): How do they, what, how do they discover?
(S): They walking through the forest and they SSSS{block}- heard
noises and saw them. (I): Right, OK, that’s great.

Whisper-large-v3-
turbo

I go to Trinidad School and I like doing football, art, design technol-
ogy, maths and a lot of other subjects. My best hobby is football. I
scored 18 goals last year. Tell me about your friends at school and
teachers. Yeah. What do you like to do in school? My best friend,
Sean Waters, went around to his house about two days ago. What
did you do then? I went out on the bikes. Um... OK, tell me about
Lost World. Lost World. Um... Lost World’s my best film. Um... It
was quite scary, um... About dinosaurs. What happened? It was a
sequel to Jurassic Park and... ...and some dinosaurs escaped and...
...when she came back. Um... What were they trying to do? What
was going on? We were trying to catch them and... I think I put
them back in the right place. How did they discover them? They
were walking through the forest and they just heard noises and saw
them. Right. Okay, that’s great. Tell me about what you’ve been
doing today. I went out for the bandstand.
Precision: 0.4458, Recall: 0.2156, F1 Score: 0.3293

Canary I go to Chinnanhoe School and I like doing football, art, design,
technology, maths and a lot of other subjects. My best friend Sean
Waters, my best hobby is football. I scored eighteen goals last year.
Tell me about what you’ve been doing today.
Precision: 0.5696, Recall: -0.1899, F1 Score: 0.1631

Continued on next page



Table 3 – continued from previous page
Dataset Model Prediction and Scores

DistilWhisper I go to Trinidad School and I like doing football, art, design technol-
ogy, maths and a lot of other subjects. My best hobby is football. I
scored 18 goals last year. Tell me about your friends at school and
teachers and things you like doing in school. My best friend, Sean
Waters, went around to his house about two days ago. I went out
on the bikes. I went out on the bikes. OK, tell me about Lost World.
Lost World. Lost World is my best film. It was quite scary. About
dinosaurs. What happened? I was sequel to Jurassic Park and some
dinosaurs back in the right place. How did they discover them?
They were walking through the forest and they just heard noises
and saw them. Right. Okay, that’s great. Tell me about what you’ve
been doing today. I went out for the band’s town
Precision: 0.4827, Recall: 0.0843, F1 Score: 0.2771

stt-en-fastconformer-
ctc-large

oh got ch school and i love doing football design technology math
and subjects my best hobby is football a sco at eighteen goals last
year yeah the best friend showan waters went to his house about
two days ago bent on the bike los what my best film oh is quite
scary about doneances secre to jusic park ands escaped and where
she came back trying to catch them and put them back on in our
place i look at through to foolish the he noises and soom i went out
for the band stand
Precision: 0.0006, Recall: -0.2668, F1 Score: -0.1350

7. Discussion

The evaluation results demonstrate that while all models perform well on standard speech, their
effectiveness on disordered speech varies significantly. The stt-en-fastconformer-ctc-large model stands
out in its performance on dysarthric speech in the TORGO dataset, achieving the lowest WER and
highest BERTScore, indicating a strong ability to capture semantic content. Its capability to process
audio faster than real-time (low RTF) makes it particularly suitable for real-time therapeutic applications,
where timely feedback is essential for maintaining patient engagement and supporting therapeutic
progress. However, the stt-en-fastconformer-ctc-large struggles more with stuttered speech in the
UCLASS dataset, showing higher WER and lower BERTScore compared to the Whisper-based models,
which performed better in this context. This reflects the unique challenges posed by different speech
disorders, suggesting that no single model may be universally effective across all types of disordered
speech. It is important to note that the differences across datasets may also be partly attributed
to dialectal variations, such as British or American English, as well as other factors like recording
conditions, thus impacting ASR model performance.

The trade-off between transcription accuracy and processing speed is a key consideration. While
the Whisper models offer superior accuracy for stuttered speech, the stt-en-fastconformer-ctc-large
provides a better balance of accuracy and speed, making it more appropriate for dysarthric speech,
where preserving real-time interaction is critical. The relatively higher speed and competitive accuracy
of the stt-en-fastconformer-ctc-large across datasets emphasise its hardware efficiency, making it a
compelling option in scenarios constrained by processing power and latency requirements. Moreover,
the discrepancies between WER and BERTScore, particularly in the TORGO dataset, highlight the
importance of semantic evaluation in ASR systems for speech therapy. While WER is valuable for
measuring surface-level accuracy, BERTScore provides a more nuanced understanding of how well the
model captures the intended meaning, which is especially important in therapeutic contexts.



8. Conclusion and Future Work

This study evaluated pre-trained ASR models:Whisper-large-v3-turbo, Canary, DistilWhisper and
stt-en-fastconformer-ctc-large on both standard and disordered speech, focusing on WER, RTF and
BERTScore. The stt-en-fastconformer-ctc-large model excelled in dysarthric speech (TORGO dataset),
achieving the lowest WER and highest BERTScore while processing audio faster than real-time. This
balance between speed and accuracy makes it highly suitable for real-time therapeutic applications. In
contrast, Whisper-large-v3-turbo outperformed the other models on stuttered speech (UCLASS dataset),
achieving the lowest WER, although it was slower than stt-en-fastconformer-ctc-large on the TORGO
and Common Voice datasets.

These results highlight the need to select ASR models based on the specific speech disorder. While stt-
en-fastconformer-ctc-large performed well with dysarthric speech, Whisper-based models were more
effective for stuttered speech, though with higher computational demands. This suggests no single model
is ideal for all speech disorders, requiring a balance between accuracy and processing speed in real-time
applications. Future work should focus on fine-tuning models with disorder-specific data, improving
generalisation across different disorders and environments, and optimising for edge computing to
reduce latency and provide privacy required for therapeutic settings. Integrating multimodal inputs,
like visual cues, may also enhance recognition accuracy.
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