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Abstract
Blood cell analysis, an important component of modern medicine, provides critical insights into a range of
health conditions, right from minor infections to blood disorders such as leukemia. Traditional methods such as
flow cytometry have been very effective in blood cell counting but are often reliant on expensive instruments,
specialised reagents, and expert operators, thereby limiting their accessibility. To combat these challenges, this
research explores the use of advanced deep learning methods to develop a robust and scalable pipeline for
blood cell segmentation, classification, and counting. The proposed pipeline automates the entire process of
generating high-precision segmentation masks and classifying blood cells into red blood cells or white blood cells
by leveraging Meta AI’s Segment Anything Model and a Convolutional Neural Network. Apart from employing
a host of image processing operations, the study also addresses challenges such as low image quality and data
scarcity, which leads to class imbalance, by employing techniques such as image contrast enhancement and data
augmentation. The pipeline can provide accurate cell counting from simple blood smears. The pipeline was then
adapted to blood smear images collected by our research team through different instrumentation using transfer
learning applied to the deep learning classifier. With over 95% accuracy in blood cell counts across different
datasets, the pipeline exhibits a high degree of adaptability, which ultimately validates its potential for broader
clinical applications.
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1. Introduction

The rise of new and re-emerging diseases has placed immense pressure on modern medicine to develop
faster and more precise diagnostics, piling on top of the already existing issue of global health challenges
such as accessibility of cheap, quick, and quality healthcare. In this context, blood analysis is an essential
diagnostic and monitoring tool for a broad spectrum of illnesses. One of the most common tests is the
complete blood test (CBC), which gives vital details on the types and quantities of blood cells, namely
red blood cells (RBC), white blood cells (WBC), and platelets. Accuracy in blood cell counting is vital to
detect diseases like leukemia, anaemia, and infections, where any deviations from the expected cell
counts and morphologies could indicate underlying health issues.

Significant progress has been made in the traditional biotechnological methods of blood analysis,
especially in the area of cell cytometry. Counting and analyzing cells was initially a manual process
using instruments like hemocytometers, which was labour-intensive and prone to inaccuracy. These
techniques have developed into automated systems that leverage optical analysis, electrical impedance,
and image cytometry (Vembadi et al.[1]). By enhancing accuracy and throughput, these technologies
have radically transformed the cell counting process, thereby playing a crucial role in both clinical
and research settings. One popular method which permits the detailed multi-parametric analysis of
thousands of cells per second is flow cytometry. It enables accurate cell identification and quantification
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by using lasers to excite fluorochromes attached to cells and detectors to measure their fluorescence and
scatter properties. Despite its high accuracy and throughput, flow cytometry is often constrained by its
high cost, the requirement for specialised reagents, and the need for skilled operators to operate the
equipment and interpret the results. This restricts its scalability and accessibility, especially in settings
with limited resources or smaller laboratories with limited funding. This situation emphasises the need
for more accessible, user-friendly, and scalable blood analysis solutions.

In the meantime, the field of artificial intelligence (AI) grew by leaps and bounds, with remarkable
progress in the subfields of machine learning and deep learning. This naturally prompted the adoption
of AI in healthcare, more particularly haematological analysis. Early attempts at digital automation
employed classical image processing techniques such as thresholding, edge detection, and morphological
operations, which, although useful, often struggled with variations in cell shapes, sizes, and staining.
Then, machine learning (ML) provided a more sophisticated means of analyzing blood cells by learning
from labelled datasets [2, 3].

In recent years, deep learning (DL) has revolutionized the field of medical image analysis, particularly
through the use of Convolutional Neural Networks (CNNs). These models have the ability to automati-
cally learn and extract hierarchical features from images, leading to highly accurate classification and
segmentation of blood cells [4]. Building on these advancements, this study explores the integration of
the Segment Anything Model (SAM)[5], the latest open-source state-of-the-art deep learning based
segmentation tool created by Meta AI, and the previously proven CNN classifier to develop a compre-
hensive pipeline for blood cell analysis. This approach not only automates the process of blood cell
segmentation and classification but also addresses challenges such as class imbalance and the need for
contrast enhancement in low-quality images. By leveraging transfer learning and data augmentation,
the proposed method aims to provide a highly scalable and accurate module for blood cell analysis.

This study was motivated by the persistent challenges in medical diagnostics, particularly in the field
of haematology. Accurate measurement and classification of blood cells are necessary for the diagnosis
of many diseases, from minor infections to serious conditions like leukemia. Despite their effectiveness,
traditional methods have certain disadvantages. They are expensive, necessitate specific equipment,
and depend on skilled laboratory technicians. These challenges may result in delayed diagnosis and
suboptimal patient outcomes, especially in areas with limited resources. Artificial intelligence and deep
learning have the potential to promote access to high-quality blood analysis through the development
of more scalable and economical systems. Therefore, the goal is to use these techniques to alleviate the
challenges encountered in the healthcare industry.

2. Literature Review

Significant advancements in blood cell image analysis have been made possible by the incorporation
of cutting-edge machine learning algorithms, which have fuelled the creation of exact and effective
diagnostic instruments. Tai et al.[2] pioneered a hierarchical classification technique for blood cell
identification and categorisation that makes use of multi-class SVM. Their method extracts geometric
elements from digital images to successfully segment blood cells and aid in distinguishing between dis-
tinct cell types such as erythrocytes, leukocytes, and thrombocytes. This approach showed the potential
to be used in clinical diagnostics because it not only automated the labour-intensive and historically
labour-intensive blood cell counting process, but it also showed excellent accuracy when compared
to expert evaluations. Huang et al.[3] concentrated mainly on the segmentation and identification
of leukocyte nuclei within blood-smear pictures, building on the groundwork established by these
methods. Their technique uses multilevel Otsu thresholding to segment the image after enhancing the
leukocyte nucleus with a specialised enhancer. For classification, a genetic algorithm-based k-means
clustering method is employed, with a dimensionality reduction step using Principal Component Analy-
sis (PCA). This method achieves a high recognition rate and shows promise in automating the leukocyte
differential counting procedure, which is critical for identifying many diseases. It also proves to be
particularly resistant to fluctuations in staining conditions and image quality. Ruberto et al.[6] overcame



the difficulties caused by different lighting and colour circumstances by creating an automated system
specifically designed to segment and count WBCs in blood smear images. The method divides the blood
cells into groups according to pixel-wise characteristics in a non-linear feature space by using a SVM.
After that, the WBCs are precisely counted using the Circular Hough Transform even when cells are
clumped together. This system was tested on several public datasets and demonstrated its robustness
and effectiveness in various imaging situations with a remarkable accuracy of 99.2%. Finally, Tavakoli et
al.[7] made further advancements in this area by creating a unique strategy combining feature extraction
and segmentation exclusively for WBCs in peripheral smear pictures. Their technique presents a novel
algorithm for precisely identifying the cytoplasm and segmenting the nucleus, after which form and
colour information are extracted. This method, which uses a SVM model for classification, performs
better than conventional CNN-based techniques, exhibiting high accuracy and good generalisation over
a variety of datasets. This development emphasises how useful it could be as a clinical diagnostic tool.

The merging of deep learning and sophisticated machine learning algorithms has led to notable
progress in blood cell image analysis in recent years. Mohamed et al.[8] employed a two-stage hybrid
approach that blends conventional machine learning classifiers with pre-trained deep learning models to
improve WBC categorisation. With a classification accuracy of 97.03%, this method showed exceptional
accuracy, especially when combining MobileNet-224 with logistic regression. The study demonstrates
how well deep learning characteristics may be combined with traditional machine learning models
to improve WBC classification reliability. Kaza et al.[9] proposed the use of conditional Generative
Adversial Networks (cGAN) for virtual staining of single channel deep-ultraviolet (UV) images to mimic
Giemsa staining. For the segmentation of WBCs, two independent CNNs are used to segment cellular
and nuclear regions, and for classification, a pre-trained ResNet-18 model is used to classify WBCs into
five subtypes. Using the recently created RV-PBS dataset, the research by Pal et al.[10] presents a novel
method for automating the segmentation and categorisation of WBCs. The research tackles the issues
of class imbalance and small sample numbers by utilising Mask R-CNN, for instance, segmentation and
domain adaption strategies. Significant gains in precision, recall, and F1-score were obtained when the
RV-PBS and PBC datasets were combined, highlighting the method’s potential to increase diagnosis
accuracy in clinical settings.

The difficulty of domain variability in blood cell categorisation was further addressed by Li et al.[11]
by introducing a domain-invariant representation learning (DoRL) framework. Their DoRL approach
combines a cross-domain autoencoder (CAE) for domain-invariant feature extraction with a LoRA-
based Segment Anything Model (LoRA-SAM) for segmentation. This approach greatly outperformed
previous models and offered a reliable means of classifying blood cells in a variety of clinical settings,
where variations in imaging circumstances and laboratory protocols have historically weakened model
performance. Abdulkadir et al.[12] presented a hybrid approach for the classification of WBCs in blood
smear images that further combines machine learning and image processing. Their method uses a
combination of deep learning models and conventional image processing approaches, making use of
both shape-based data and deep features taken from a CNN model that has already been trained. After
that, a Long Short-Term Memory (LSTM) network is used for classification. With an accuracy of 85.7%,
this hybrid approach proved how well-suited it is to combine conventional approaches with state-of-
the-art deep learning techniques for WBC categorisation. When taken as a whole, these developments
mark a substantial improvement in blood cell analysis automation and accuracy, opening the door to
more dependable and effective clinical diagnostics. Lastly, Hemalatha et al.[13] introduced an Enhanced
Convolutional Neural Network (ECNN) that targets both WBCs and RBCs in an effort to increase the
accuracy of blood cell classification. Their ECNN model, which uses sophisticated feature extraction
and pre-processing methods, including K-means clustering for segmentation, produced a classification
accuracy of 95%. This method shows how deep learning may greatly improve blood cell analysis’s
precision and effectiveness, making it a useful tool for medical applications requiring early detection.



3. Methodology

This section initially provides a brief explanation of the proposed pipeline along with an overview of
the datasets used. Then, each stage of the pipeline is broken down into separate sections, starting with
preprocessing, proceeding with segmentation and classification, and terminating with counting and
metrics used to evaluate the pipeline’s efficacy.

Figure 1: Flowchart of the pipeline process



The pipeline proposed for automated analysis of blood smear analysis integrates both a training and
execution branch as indicated in Figure 1. This pipeline uses a common pre-processing and segmentation
stage to ensure consistency across the entire workflow. The goal of this pipeline is to generate an
instance segmentation mask for the blood smears and accurately count RBCs and WBCs. It begins
with the preprocessing step of dividing the input image into smaller, non-overlapping patches using a
grid-based approach. This step is crucial as it aids in detailed analysis and segmentation of individual
patches rather then the entire image at once. SAM operates on these individual patches and generates
binary masks to identify cellular regions. Now, Mask filtering is performed by removing repetitive and
overlapping masks. These refined masks serve as a foundation for training the classification model and
executing the instance segmentation and cell counting process.

Training the classification model is necessary prior to executing the overall pipeline. So, in the
training branch, the binary masks generated by SAM are used to create image cutouts, which are
essentially smaller images containing isolated cellular regions. To build the training dataset, the cutouts
are labelled as either RBCs or WBCs. Data augmentation is applied specifically to the WBC cutouts
to enhance the diversity of the training set. The augmented and original data are then used to train a
CNN classifier to distinguish between RBCs and WBCs.

In the execution branch, image cutouts are generated from these refined masks following the same
pre-processing step, mask generation by SAM, and mask filtering. The cutouts are then passed through
the trained CNN classifier, which labels each cutout as either RBC or WBC. Finally, in the post-processing
stage, these labelled cutouts are compiled to produce a final segmentation mask, and the RBC count is
adjusted by analyzing the distribution of cell areas. The final output, including the segmented image,
RBC and WBC counts, are made available to the user. This chapter deals with each stage of the pipeline
individually. For the sake of reproducibility, the code implementing the full pipeline has been made
available 1.

3.1. Datasets

Two datasets were utilized in the overall implementation of this project. The first dataset is sourced
from the study performed by Ojaghi et al.[14], where the researchers focus on developing a method
for analysing blood cells without the need for staining or labelling, which is common in traditional
haematology techniques. This dataset is publicly available2. This method employs ultraviolet (UV)
microscopy to perform haematological analysis, offering a label-free approach. However, to ensure
the validity and comparability of their results, the researchers also included brightfield images in their
dataset. These traditional microscopy-created images provide a benchmark for comparison.

The blood smears used to create the brightfield images had their cells and constituent parts dyed
with Giemsa dye, which allowed for their visualisation under a brightfield microscope. As is common in
conventional blood smear examinations, the samples were fixed with methanol before staining. These
rich, colourized images are crucial for verifying the unique UV microscopy approach since they make
cellular features easily visible. An example of a brightfield blood smear from this dataset is shown in
Figure 2a.

The second dataset is used for testing and adapting the pipeline, and includes 118 images, each of
dimensions 3264x1840 was collected internally. Anticoagulant added Whole Blood (WB) sample was
collected from a patient. Blood smears were prepared by dropping approximately 10-20ul of the WB on
an uncoated quartz slide, then evenly spread out with a second spreading slide to form a monolayer of
non-overlapping blood cells. The sample was then stained with polychrome stains (Wright-Giemsa)
using Sysmex’s automated slide preparation unit SP-50 so as to accentuate the nuclei structure for cell
differentiation. Images were then acquired with a MICON BM2 microscope using a x20 objective lens
under white-light illumination. Images from this dataset will be referred as the new dataset of blood
smears for the rest of this study. The pipeline classifier is adapted to this new dataset which allows the
evaluation of the generalisability and effectiveness of the pipeline to this data. A typical blood smear

1https://github.com/Abhi21298/Thesis-Blood-Smears
2https://osf.io/ayw4j/
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image from this new dataset is shown in figure 2b. This study has been reviewed and approved by
CREC (Clinical Research Ethics Committee) under protocol number ECM 4 (m) 10/09/2024.

Figure 2: a) Giemsa stained blood smear from Brightfield microscope [14] b) New dataset blood smear image

3.2. Preprocessing

This is the first stage of the pipeline wherein an input image of WxH dimensions is divided into smaller
patches. Here, W and H denote the width and height of the image, respectively. This step aims to
handle large images effectively and ensure that each patch is small enough to be handled efficiently. The
input image is split into non-overlapping patches to avoid processing repetitive information and allow
focused analysis. Each patch is typically of the size 512x512 pixels. However, for images whose width
and height are not perfectly divisible, the remaining portions of the patch are extracted to facilitate
further analysis. Figure 1 provides an example of an image and its corresponding patches.

3.3. Segmentation

SAM [5] is utilized to generate semantic segmentation binary masks for each blood smear image patch
acquired previously. It analyzes each image patch to identify and segment individual cells, particularly
RBCs and WBCs and creates distinct binary masks automatically for each detected cell, allowing for
the separation of individual instances, even when cells with distinct boundaries are clustered together.
For each patch, SAM produces several binary masks that outline the boundaries of each detected cell.
Example binary masks are shown in Figure 1. Alongside these masks, a metadata file is generated,
containing critical information such as its ID, bounding box coordinates, cell area, and Intersection over
Union (IoU) values for each mask. This metadata is essential for further filtering and analysis. Once
the segmentation is complete, redundant and overlapping masks are removed from the binary masks
created for the image patches using filtering. This ensures that each segmented cell is represented only
once, improving the accuracy of further analysis.

3.4. Classification

For the classification task, a CNN model is used and manual labelling is required to assign each image
cutout as either RBC or WBC. Since cutouts are directly generated from corresponding image patches,
their labels are stored in the appropriate metadata. Once labelled, the dataset is split into training,
validation, and test sets in a 75:15:10 ratio, and it is applied separately to both RBC and WBC image
cutouts to ensure the CNN can generalise well. Owing to SAM’s zero-shot nature, segmentation does
not require data splitting and training, unlike CNN, which trains on labelled data. The architecture
consists of 3 convolutional layers, along with a ReLU activation function for each convolution layer. The
convolution layer extracts hierarchical features by producing feature maps, and ReLU adds non-linearity
for learning complex patterns. Each convolution layer is followed by a Max pooling layer with a window
size of 2x2. Max pooling reduces the spatial dimensions of the feature maps while retaining important
features [4]. Following the convolutional and pooling layers, the feature maps are flattened and passed



through a fully connected layer. This dense layer has a ReLU activation function as well. This layer
helps combine all the extracted features and aids in the final decision-making process. A dropout
layer is applied to prevent overfitting, randomly setting a fraction of the neurons in the dense layer to
zero during training. This encourages the network to not rely heavily on specific features. The final
layer consists of a single output neuron without an activation function, allowing a linear output before
applying the sigmoid activation function for binary classification [4]. The CNN architecture is displayed
in Figure 3.

Figure 3: CNN classifier architecture

Hyperparameters which are external mode configurations need to be tuned properly before training
the model. They are fixed and govern the behaviour of the learning process. Important hyperparameters
here include the number of epochs, learning rate, batch size, and dropout rate. These parameters were
tuned to tuned to optimal values to extract best classification results.

Data Augmentation

Data augmentation is a machine learning approach to perform several modifications on existing data
and artificially increase the size and variety of data ([15]). This is applied exclusively to WBC cutouts
due to the significant imbalance between RBCs and WBCs in the dataset, as RBCs outnumbered WBCs
by approximately 600:1. Techniques such as horizontal flips, vertical flips and rotations (up to 90 degrees)
were applied to inflate the WBC training data by tenfold. Then, some RBC cutouts were randomly
excluded from the training data to maintain an RBC to WBC ratio of 2:1 in the training dataset. These
steps were necessary to eliminate the bias towards predicting the dominant class by the CNN model.
Data augmentation is performed only on the training set to prevent data leakage, leaving the validation
and testing dataset untouched. This ensures proper evaluation of the model to unseen data. An example
of data augmentation is illustrated in Figure 1.

3.5. Post-processing

This process is part of the pipeline execution and is essential for generating instance segmentation
masks that accurately represent the cells identified in the image. After classification, the results are
updated in the metadata by associating each cutout’s classification label with its corresponding binary
mask and patch from which it was derived. After the binary masks for each image patch have been
labelled as either RBC or WBC, the next step involves creating a visual representation that combines
these masks into an interpretable format. This is done by creating instance segmentation masks for
each patch first and then “stitching” these masks together to form an overall instance segmentation
mask for the input image. During this process, each mask is assigned a colour based on its label. RBCs
are represented in red, while WBCs are represented in green. The resultant mask is a colour-coded
instance mask for each patch, which distinguishes between different types of cells, making it easier to
interpret the segmented results. The individual patch masks generated previously are stitched together
to create a full instance segmentation mask for the entire input image. This reverses the preprocessing
step of dividing the image into patches by combining the patches to recreate the original image with all
segmented cells represented in appropriate colours.



3.6. Counting

When an image is divided into patches, it is highly likely that some cells are split across multiple patches
and have separate binary masks respectively. So, basing the count on image cutouts alone would lead
to inflated cell counts, as some cells would be counted multiple times. Thus, cell counting is done after
image reconstruction to avoid such errors as the final instance mask resolves this issue by merging split
cells back into a single entity for accurate counting. For WBCs, the counting process is straightforward
as they are distinct and well-separated in the mask. Each green-coloured region is counted as one WBC.
For RBCs however, are high in number in comparison to WBC and have a high tendency of overlapping.
This leads to larger regions being counted as a single entity because overlapped cells are captured as
a single mask. To correct this, RBC areas are analysed. Larger areas likely represent multiple cells
overlapping and are therefore counts are inflated appropriately providing a more accurate RBC count.

3.7. Metrics

The metrics calculated for evaluating the CNN classifier’s performance include Binary Cross Entropy
(BCE) and Classification Accuracy. The BCE function is used as a loss function for binary classification
problems where the target outcome is a probability between 0 and 1. The model aims to reduce this
value during training to improve prediction accuracy. Classification accuracy measures the proportion
of correct predictions made by the model out of the total number of predictions. This accuracy is
calculated for training, validation and test datasets. The count accuracy of each blood cell type is
attributed to overall pipeline performance. It is computed as the ratio between the predicted number of
blood cells and the actual count.

4. Experimental Results

4.1. Classification Accuracy

The process described from Section 3.2 to Section 3.4 is followed to have the image cutout data ready
for training the CNN model. Before training, pixel values for the image cutouts belonging to the train
dataset are scaled to values between 0 and 1. Hyperparameter tuning is performed to optimise the
model’s performance. To find the configuration that yields the best results, various values for the batch
size, learning rate, the number of epochs and dropout rate are tested using the grid search technique.
The search space for each hyperparameter for implementing the grid search technique and the optimal
hyperparameters determined are tabulated in Table 1 and Table 2 respectively.

Hyperparameter Values

Batch size [2, 4, 8]
Epochs [10, 20, 30]
Dropout Rate [0.1, 0.2, 0.5]
Learning Rate [1e−5, 1e−4, 1e−3, 0.01]

Table 1
Hyperparameter search space

Hyperparameter Assigned Value

Batch Size 4
Epochs 20
Dropout Rate 0.2
Learning Rate 1e−4

Table 2
Optimal Hyperparameters

Utilising the optimal hyperparameters, the CNN model yielded a validation accuracy of 98.5% and a
training accuracy of 100%. To ensure the validity of the model’s training, the trained model was tested
on the test image cutout dataset. Here, the model achieved an accuracy of 97.14%. This validates the fact
that the model learned the required features from the images to distinguish RBC and WBC effectively.
Table 3 summarizes the number of image cutouts present in training, validation and test datasets for
each type of blood cell, along with the corresponding predictions by the trained model. The table shows
that only one WBC image cutout was misclassified as RBC in the unseen or the test dataset.



Dataset Type Cutout Data Model Predictions

RBC WBC RBC WBC

Train (75%) 500
225

(After data
augmentation)

500 225

Validation (15%) 101 10 102 9
Test (10%) 66 4 67 3

Table 3
Data split and model performance for CNN

4.2. Pipeline Execution

The pipeline is executed on the blood smear image shown in Figure 2a. Preprocessing is performed to
generate patches and each patch is fed into SAM to generate binary masks along with its metadata.
Mask filtering is performed to remove repeated and overlapping masks. Then, image cutouts are
generated by using a bitwise operation between the binary mask and the corresponding image patch
it is associated with. The mask has varying dimensions dictated by the bounding box coordinates
presented in the metadata before being zero-padded to achieve a uniform size of 128x128 pixels. This
process is demonstrated visually in Figure 4.

Figure 4: a) patch image b) cell binary mask c) final cutout

Now, the trained CNN model classifies all the image cutouts. Since these cutouts are generated
from specific image patches, the classification results are mapped to their corresponding metadata file
generated previously by SAM. Later, post-processing is performed to create instance segmentation
masks. This is generated by assigning every binary mask a colour based on the label assigned by the
CNN (Red - RBC, Green - WBC) and combining all masks associated with a single patch. This process
is repeated across all patches. Ultimately, these instance segmentation masks are stitched together to
create an overall segmentation mask shown in figure 5.

Finally, cell counting is performed on the basis of this overall instance segmentation mask. While
WBC counting is straightforward, with each green-coloured region representing a single WBC, for
RBCs, there is a distinct possibility of multiple cells overlapping and posing as a single entity. To address
this, a histogram (Figure 6) of the segmented RBC segmented regions is generated with a gaussian
kernel density estimation curve (KDE) to smoothen the distribution. The KDE curve helps highlight the
key peaks that represent typical cell sizes.

The first peak in the KDE curve corresponds to the average area of a single RBC. Applying thresholds in
between the KDE curve’s successive peaks allows for the handling of larger regions in the segmentation
masks, which represent overlapping cells. These thresholds take into consideration the potential for
overlaps to cause many cells to appear as one. Since it is uncommon for more than four RBCs to
overlap, regions with areas over the first threshold are counted as two RBCs, those exceeding the second
threshold as three RBCs, and so on, up to four cells. This approach ensures the accuracy of both RBC
and WBC counts, providing reliable results even in cases of overlapping cells. In the test set, the pipeline
correctly identified 100% of the WBC and counted 2384 of the 2441 RBC (97.66% accuracy).



Figure 5: Overall Instance segmentation mask for Figure 2a

Figure 6: Area histogram of RBC cells in Figure 2a

4.3. Deployment to a new dataset

Adapting the pipeline to a new dataset involves two key modifications: contrast enhancement and
transfer learning.
Contrast Enhancement - SAM’s ability to effectively discern cell borders is restricted by the

new dataset’s lower brightness images. This is addressed by applying contrast enhancement, which
brightens the photos below a preset threshold of 140. After experimenting with several values, it was
determined that 140 would provide the best brightness for identifying the cells. Hence, this threshold
was manually chosen. If an image’s brightness is below this threshold, its pixel intensity is adjusted to
meet the threshold. This ensures that SAM generates accurate segmentation masks for RBCs and WBCs,
improving segmentation quality even in low-light conditions. Figure 7 shows the contrast-enhanced
version.

Transfer Learning - Once image cutouts are available from images belonging to the new dataset,
they are used to retrain the CNN classifier using transfer learning. Here, the CNN trained on the original
dataset is fine-tuned using the new dataset image cutouts. The model retains the pre-trained weights
and uses the same optimal hyperparameter values to train the model instead of training from scratch.
This procedure yielded a BCE loss of 0 for both training and validation data and correspondingly yielded
a 100% classification accuracy in train and validation datasets. The performance for training, validation
and test datasets is tabulated in Table 4. There was only one misclassification where one WBC was
identified as RBC in the test dataset. So, the test accuracy here is 96.5%.



Figure 7: Contrast enhanced version of Figure 2b

Dataset type Cutout Data Model Predictions

RBC WBC RBC WBC

Train (75%) 400 206 (After data augmentation) 400 206
Validation (15%) 80 7 80 7
Test (10%) 53 5 54 4

Table 4
Data split and Model performance for CNN after Transfer Learning

In the updated pipeline, this CNN model replaces the original CNN classifier to implement the pipeline
on blood smear images belonging to the new dataset. The final instance segmentation mask is generated
when the image is fed into the pipeline, and the cell count accuracy is determined. The pipeline correctly
identified all WBC and counted 1818 red blood cells, while a manual counting returned a 1864 value, an
accuracy of 97.54%.

5. Conclusions

In this research, we set out to address the challenges posed by traditional blood cell analysis methods
by developing a comprehensive and automated deep-learning pipeline for blood cell segmentation,
classification, and counting. This work adds to the evolution of medical diagnostics by addressing the
shortcomings of conventional approaches and expanding on information obtained from earlier studies.
It lays the groundwork for future developments by offering a viable, accessible, and reliable alternative
to existing techniques. A thorough review of previous research in this discipline revealed the advantages
and disadvantages of a number of techniques. Building on this foundation, we incorporated state-
of-the-art methodologies to overcome these limitations. SAM completely reshaped the segmentation
process by eliminating the necessity for manual mask creation, which is a common bottleneck in
conventional techniques. The pipeline implemented was both scalable and flexible because of SAM’s
zero-shot generalisation capability, which generated extremely accurate segmentation masks without
the need for additional training. The CNN model provides an accurate classification of RBCs and
WBCs. Addressing challenges such as class imbalance through data augmentation and improving image
quality via contrast enhancement were critical steps in ensuring the CNN model could perform reliably
across varied datasets. Additionally, the study demonstrated the pipeline’s adaptability through transfer
learning, which enabled the model to maintain high accuracy when applied to new blood smear datasets
with extremely limited amount of images.

This study’s outcomes of cell count accuracy reaching over 95% across different image datasets.
Given the variety of datasets comprising images made available from different preparation techniques,
this success is worthy of note. The pipeline’s effective implementation showcases its adaptability and
scalability, making it a promising tool for improving diagnostic accuracy and efficiency in haematology.
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