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Abstract
WiFi-based Human Activity Recognition (HAR) has emerged as a promising approach for monitoring and
analysing human activities in a non-intrusive manner, leveraging WiFi signals for activity classification. Despite
advancements, existing WiFi-based HAR research lacks consideration of subject (human) bias. This results in
learning models performing well on individuals used in the training samples but failing to generalise to new/unseen
subjects, in contrast to known good practices in machine learning. In this paper, we address this oversight directly
by systematically examining the evaluation methodology for the WiFi-based HAR context. Specifically, we
investigate the impact of Leave-One-Subject-Out Cross-Validation (LOSOCV) in a hybrid architecture combining
Convolutional Neural Networks (CNN) and Attention-based Bidirectional Long Short-Term Memory networks
(ABiLSTM), designed to capture both spatial and temporal patterns in WiFi signals. However, our emphasis
remains on the application of LOSOCV as a method for improving generalization and reducing subject bias,
rather than on the architecture itself. The model’s effectiveness is evaluated using LOSOCV, and we compare its
performance against conventional hold-out validation and k-fold validation. Additionally, we utilize weighted
metrics for model evaluation to address class imbalance, ensuring a fair assessment across all activity categories.
Our results demonstrate the importance of LOSOCV in providing a realistic assessment of HAR model performance
and underscore that addressing subject bias is essential for the deployment of these systems in practical scenarios
such as healthcare monitoring, smart homes, and security applications.
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1. Introduction

Human Activity Recognition (HAR) has steadily emerged as one of the most prominent research areas
using different sensing technologies. HAR is involved in many applications including healthcare [1, 2],
fitness tracking [3, 4], elderly people care [5], and security and surveillance [6]. HAR techniques can be
separated into three categories based on the type of technology used in the data collection: vision-based,
sensor-based (including wearable sensors), and WiFi-based.

Sensor-based HAR uses sensors like accelerometers, gyroscopes, and wearable devices. Wearable
devices such as smartphones, and smartwatches are costly, privacy-intrusive, and inconvenient to
wear for some people, while HAR accuracy is affected by placement and calibration challenges [7].
Vision-based approaches use static cameras or built-in camera devices, but they have limitations due to
privacy intrusion, high energy consumption, lighting changes, camera perspectives, and background
clutter [8, 9]. Recent years have seen a significant increase in interest in WiFi sensing applications due
to the ubiquitous use of WiFi and the advancement of wireless communication technology [10].

WiFi signals have emerged as a leading technology in HAR applications due to their advantages in
privacy-preservation, low cost, and as well their its potential for passive environmental deployment [11].
WiFi signals can be analysed in a number of different ways, one prominent way is through the use of
Channel State Information (CSI) [12]. A CSI sample is a 2D matrix that captures the temporal and spatial
dynamics of the environment [13]. Each CSI sample captures the amplitude and phase information
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across multiple subcarriers and antennas over time, reflecting how the wireless signal changes as it
passes through or is obstructed by objects and people in the environment [14]. These variations in the
signal provide a rich source of information that can be used to identify different human activities, such
as walking, sitting, falling, or running. By analysing these CSI patterns, machine learning (ML) models
can be trained to recognize and classify human activities with high accuracy, even in environments
where direct visual observation is not possible, making WiFi-based HAR a powerful and non-intrusive
method for monitoring human behaviour.

A key challenge for WiFi-based HAR systems is their generalization capability across diverse subjects
(individuals). This capability is essential for any HAR system intended for large-scale or real-world
applications, as it must accurately recognize activities from new subjects without requiring the collection
of labelled data for each new user or retraining. In the context of WiFi signal monitoring, subject bias is
particularly significant, given that the physical characteristics of individuals—such as body size, shape,
age, gender, and even clothing—can profoundly impact signal propagation in monitored spaces, as
reported in [15]. Consequently, learning models trained on CSI measurements collected using a limited
number of individuals may struggle to perform well on unseen subjects, as these models often capture
subject-specific patterns that contribute to subject bias. This bias can lead to substantial variations in
system performance, depending on individual characteristics and movement patterns, which has been
highlighted in previous studies [16, 17].

Learning Model evaluation plays a crucial role in assessing the effectiveness of WiFi-based HAR
systems and in selecting the most suitable model architecture [17, 16]. WiFi-based HAR studies typically
adopt either a single model or a subject-specific model approach as in [18, 19, 20, 21]. The single
model approach involves building one model using data from all subjects, whereas the subject-specific
approach creates an individual model for each subject. In both scenarios, traditional hold-out or k-fold
cross-validation methods are used to evaluate the models. However, a significant limitation of these
conventional evaluation methods is that data from the same individual appear in both the training and
testing sets.

Previous works like Wi-Motion [18], adaptive antenna elimination-based model [22], Wi-Sense [19],
STC-NLSTMNet [23], THAT [24], ViT based HAR [25] demonstrated high accuracies up to 99.88% using
various learning models like support vector Machine (SVM), random forest (RF), convolutional neural
networks (CNN), spatio-temporal convolution with nested LSTM (STC-NLSTM), convolution augmented
transformer and vision transformers architectures (ViT). However, these models are evaluated under
conditions where all subjects are part of the training dataset using either traditional validation or k-fold
cross-validation, leading to potentially inflated performance metrics as it does not adequately test the
models’ ability to generalise to new or unseen subjects. This absence of evaluating the learning models
on new/unseen subjects raises concerns regarding the generalization capabilities of those models to
new/unseen subjects, as it fails to account for variability among subjects and the impact this variability
may have on model performance when applied to unseen individuals. Addressing subject bias is crucial
for ensuring that WiFi HAR models are robust and accurate across diverse users, making them reliable
for real-world applications.

While the importance of personalized models has been acknowledged [26], the ability of models to
generalise to new subjects remains important. One of the most effective ways to evaluate generalization
is through Leave-One-Subject-Out Cross-Validation (LOSOCV). LOSOCV rigorously tests the model’s
ability to generalise by training it on data from all but one subject and then evaluating it on the excluded
subject. This process is repeated for each subject in the dataset. By doing so, the model is exposed
to the data from every subject but evaluated in a way that simulates real-world scenarios where new,
unseen subjects would need to be recognized. This paper explores the significance of LOSOCV in
WiFi-based HAR and how it can ensure models perform well across diverse subjects, addressing the
pressing need for subject generalization in non-intrusive activity recognition systems. Consequently,
our contributions to this work are as follows:

• First, we review WiFi-based HAR research from the last three years. This review reveals that only
one paper has evaluated models using LOSOCV, highlighting a significant gap in the adoption



of subject-independent evaluation techniques within the field. This raises concerns about the
inflated accuracy of the majority of WiFi-based HAR models reported in the literature.

• Second, we propose a WiFi-based HAR model to detect and classify activities, with particular
emphasis on generalization across different subjects.

• Third, we perform a comprehensive comparison between LOSOCV and non-LOSO evaluation
methods using two public WiFi-based HAR datasets, quantifying the impact of subject bias and
demonstrating the advantages of subject-independent evaluation.

2. Related Work

In the context of WiFi-based HAR, subject bias arises when the performance of the recognition system
varies significantly based on the specific characteristics of the individuals being monitored. This can
include factors such as physical characteristics (e.g., height, weight, body composition), movement
patterns, and environmental context.

For example, WiFi-based HAR systems can be used for monitoring elderly patients or people with
mobility issues. Subject bias is particularly problematic here because patients may exhibit distinct move-
ment patterns depending on their physical conditions, leading to inaccuracies in activity recognition if
the model was trained on younger, healthier individuals.

Another example is WiFi-based HAR systems can be used in fitness centres or at home to track and
analyse users’ physical activities. Subject bias becomes an issue because individuals have different fitness
levels, body types, and workout styles. A model trained on a small subset of users might struggle to
accurately track exercises for users with different movement dynamics, potentially providing inaccurate
feedback on their performance.

Therefore, addressing subject bias is essential to ensure WiFi HAR models are robust, accurate, and
generalised across different users, making them reliable for real-world applications.

We reviewed the literature concerning WiFi-based HAR published in the last three years. We analysed
the evaluation methods used across different studies. Our focus is on understanding the variety of
validation techniques employed to assess the models’ ability to generalise, particularly when new or
unseen subjects are involved. We classify these evaluation approaches into four categories [17, 16]:
Hold-out Validation (HO), k-fold cross-validation (k-fold CV), Leave-One-Subject-Out (LOSO) validation,
and Leave-One-Subject-Out Cross-Validation (LOSOCV). However, not all of them are well-suited for
testing generalization across subjects. Notably, only three papers utilize LOSO alongside HO and k-fold
CV techniques in their evaluations, while only one paper applies the LOSOCV method in addition to
the k-fold CV technique.

Table 1 summarizes the WiFi-based HAR previous studies in the last 3 years, highlighting the
publication year, the number of subjects involved, the evaluation methods applied, and the accuracy
reported in each study. This table serves as an overview of the state-of-the-art evaluation practices in
the WiFi-based HAR domain during the last 3 years. The four evaluation techniques can be explained
as follows [17, 16]:

• Hold-out Validation (HO): This method splits the dataset into training and testing sets, but if the
subjects in the training and test sets overlap, the model may perform well due to memorizing
subject-specific patterns, rather than generalizing to new individuals. The HO technique requires
less computational power as it only runs a single time; however, if the data is split again, the
model’s outcomes are likely to vary. The HO technique was extensively employed in numerous
WiFi-based HAR studies [8, 20, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

• K-Fold Cross Validation (k-fold CV): In k-fold cross-validation, the dataset is divided into k
subsets (or "folds"), and the model is trained k times, each time using k-1 folds for training and
the remaining fold for testing. While this ensures that each data point is used for both training
and testing, it often does not fully account for subject diversity because subjects can be included
in both the training set and testing set. The k-fold CV technique was utilized in numerous
WiFi-based HAR studies [22, 21, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46].



• Leave-One-Subject-Out (LOSO): It is also called a subject-specific validation, a single, specific
subject is selected for testing, while the model is trained on data from all other subjects. This
method aims to measure how well the model can generalise to a specific unseen subject. Unlike
methods like k-fold or hold-out validation, subject-specific validation guarantees that the selected
subject’s data is excluded from the training process, which helps assess the model’s true ability
to generalise to a new individual. By focusing on just one specific subject for testing, this method
does not provide a comprehensive view of how well the model generalises to a broader population.
The performance may vary significantly among different subjects, and a single evaluation may not
capture these variations. This could lead to misleading conclusions about the model’s performance.
The LOSO technique is utilized in a limited number of WiFi-based HAR studies [47, 32, 37].

• Leave-One-Subject-Out Cross Validation (LOSOCV): This technique is particularly valuable for
evaluating generalization in WiFi-based HAR. In LOSOCV, the model is trained on data from all
subjects except one and then tested on the excluded subject. This process is repeated for each
subject in the dataset. LOSOCV provides a rigorous evaluation of the model’s ability to generalise
to unseen subjects, which is crucial for the real-world deployment of HAR systems. Unlike other
techniques, LOSOCV prevents data from the same subject from appearing in both the training
and test sets, ensuring that the model is not simply learning subject-specific features. LOSOCV
technique is only applied in one paper [46].

3. Methodology

In this section, we present our proposed approach for HAR using WiFi signals which we used to
investigate the impact of different evaluation techniques and the influence of subject bias. Our approach
involves using two distinct public datasets to comprehensively assess model performance. The approach
includes a data collection phase, data pre-processing methods, the development of an activity classifier
and the evaluation. By evaluating the activity classifier performance with HO, k-fold CV and LOSOCV,
we aim to determine the extent of subject bias present and evaluate the model’s ability to generalise to
new users. This approach provides a rationale for understanding how different evaluation techniques
affect the robustness and reliability of HAR systems.

3.1. Data Collection

In our experimental evaluation, we used two distinct public datasets that have multiple rooms or
environments: GJWiFi[48] and OPERAnet [29]. The GJWiFi is a dataset for WiFi-based human activity
recognition in line-of-sight and non-line-of-sight indoor environments. This dataset was collected at
the German Jordanian University. So, We refer to this dataset as GJWiFi 2. GJWiFi dataset was gathered
across three distinct spatial environments: a Laboratory (denoted as E1), a Hallway (denoted as E2),
and a Hybrid environment (denoted as E3) that combines the Laboratory and Hallway environments
with an 8 cm thick barrier in between. Environments E1 and E2 are configured for Line-of-Sight (LOS)
conditions, while E3 is set up for Non-Line-of-Sight (NLOS) conditions.

The authors of [48, 49], who are part of the dataset authors’ group, identified 12 activity classes
across the five sessions and consolidated them into six labels for HAR. In this work, we adopted this
six-class labelling approach, following the data providers’ method. The six activities classes are no
movement, sitting down / standing up, walking, turning and picking up a pen from the ground. In each
environment, 10 subjects voluntarily participated in the data collection, performing each activity 20
times. Each received packet contains 90 complex CSI values (1 transmit antennas x 3 receive antennas x
30 subcarriers). GJWiFi has been used widely in previous works [49, 36, 22, 20].

1WiFi-based HAR publicly available datasets with links are available in this URL: https://github.com/amakelany/
Public-WiFi-Based-HAR-datasets.

2The GJWiFi dataset directories are provided by the original authors in this URL: https://data.mendeley.com/datasets/
v38wjmz6f6/1

https://github.com/amakelany/Public-WiFi-Based-HAR-datasets
https://github.com/amakelany/Public-WiFi-Based-HAR-datasets
https://data.mendeley.com/datasets/v38wjmz6f6/1
https://data.mendeley.com/datasets/v38wjmz6f6/1


Table 1
Summary of WiFi-based HAR Studies in the recent 3 years, highlighting the lack of subject bias
considerations. SC is an abbreviation for a self-collected dataset by the authors of the paper cited,
which is private. StanWiFi, Wiar, GJWiFi, ARIL, Widar3.0, NTU-FI, UT-HAR, SignFi, SAR, CSI HA, CSI
HAR, and 5G-HAR are names of WiFi-based HAR publicly available datasets1.

Ref. Publication
Year

Number of
Subjects

Evaluation
Method

Performance
(Accuracy %)

Addresses
Subject
Bias?

[43] April 2021
6 in StanWiFi,
7 in SC dataset

10-fold CV
StanWiFi→ 97.34,
SC dataset→ 98.95

No

[24] May 2021 6 HO 98.55 No
[44] Oct. 2021 3 10-fold CV 96.55 No
[35] Oct. 2021 6 HO 85 No
[8] Oct. 2021 3 HO 95 No

[45] Nov. 2021
6 in StanWiFi,
5 in SignFi

10-fold CV → StanWiFi,
5-fold CV → SignFi

ARIL → 98.20,
StanWiFi→ 98,
SignFi→ 95.42

No

[46] Jan. 2022 20 10-fold CV and
LOSOCV

10-fold CV→ 94.00,
LOSOCV→ 91.27 Yes

[34] Jan 2022 6
10-fold CV,
and HO

10-fold CV→ 99.33,
HO → 100

No

[33] Feb 2022 9 HO 90 No

[47] Feb. 2022
5 in SignFi

4 in SC dataset
HO and LOSO

SignFi →92.80,
SC dataset→ 93.92

No

[28] March 2022 Not stated HO 98.10 No
[42] April 2022 6 10-fold CV 92 No
[27] Aug. 2022 20 HO 98 No
[29] Aug. 2022 6 HO 93.50 No

[37] Sept. 2022 5 HO and LOSO
HO → 93.60,
LOSO→ 92.88

No

[30] Feb. 2023 30 HO
LOS → 96.39,
NLOS → 95.09

No

[36] Apr 2023
10 in Wiar
30 in GJWiFi

HO
Wiar→ 96,

GJWiFi → 94.33
No

[40] July 2023
3 in CSI-HAR,
6 in StanWiFi

5-fold CV
CSI-HAR → 99.62
, StanWiFi → 97.88

No

[31] July 2023
10 in Wiar,
9 in SAR,

5 in Widar3.0
HO

Wiar→ 99.40,
SAR → 99.30,

Widar 3.0 →99.30
No

[21] July 2023
3 in CSI HAR,
1 in CSI HA,
4 in 5G-HAR

5-fold CV
CSI HAR→ 97.90
CSI HA → 98.30
5G-HAR → 98.60

No

[41] Aug. 2023 2 10-fold CV 83.39 No

[32] Aug. 2023
5 in SignFi,
1 in ARIL,

3 in CSI-HAR
HO and LOSO

SignFi→ 93.50 ,
ARIL→ 97.50 ,

CSI-HAR → 99.50
No

[22] Sept. 2023
6 in StanWiFi,
30 in GJWiFi

10-fold CV
StanWiFi → 99.84 ,

GJWiFi(LOS) → 97.65,
GJWiFi(NLOS)→ 93.33

No

[38] Jan 2024 6 10-fold CV 98.44 No

[25] March 2024
6 in UT-HAR,
20 in NTU-FI,

HO
UT-HAR → 98.78,
NTU-Fi → 98.20

No

[20] June 2024
20 in NTU-FI,
10 in Wiar,
30 in GJWiFi

HO
NTU-Fi→ 99.82,
Wiar→ 99.56,
GJWiFi→ 99.10

No

[39] July 2024 64 10-fold 99.42 No



We also used the public dataset called OPERAnet3 which is described in detail in [29] to train our
models. While OPERAnet includes different RF signals other than the CSI, in this work, we will use only
the CSI measurements extracted from the WiFi signals. OPERAnet includes samples for six activities:
walking, sitting on a chair, standing from a chair, lying down on the floor, standing up from the floor, and
rotating the upper half of the body. Six subjects of different ages conducted these activities. OPERAnet
dataset includes CSI measurements for two different furnished rooms, with desks, chairs, screens, and
other office objects lying in the surroundings. Additionally, It is used by other researchers for HAR
[50, 29]. The WiFi signals were collected from the two rooms using two receivers: the LOS receiver
(NUC1), and the NLOS receiver (NUC2) placed in a bi-static configuration (90°) with respect to the
transmitter. Each received packet contains 270 complex CSI values (3 transmit antennas x 3 receive
antennas x 30 subcarriers).

3.2. Data Preprocessing

Preprocessing WiFi signals is a crucial step performed on raw data before feeding it into the training
model, as highlighted in [13]. This data preprocessing consists of four main stages: CSI extraction, data
denoising, normalization and windowing.

The first stage is CSI extraction from WiFi signal packets. Channel State Information (CSI) values are
the complex values which represent amplitude attenuation and phase shift. For the training process,
only the amplitude is considered, as noted in [51, 52], leading to the conversion of these complex values
into real values.

The second stage is data denoising, which involves applying a Hampel filter [53] to both datasets for
outlier detection and removal in each CSI sequence, resulting in denoised sequences, as described in
[18]. The GJWiFi dataset has a sampling rate of 320 packets per second, while the OPERAnet dataset has
a significantly higher sampling rate of 1600 packets per second. Since learning models trained on high-
frequency data are more prone to capturing noise rather than meaningful patterns, we downsampled
the OPERAnet dataset to 320 packets per second as in [8]. This downsampling not only reduces noise
but also mitigates the risk of overfitting by simplifying the CSI measurements, allowing the model to
focus on the underlying patterns.

In the third stage, the denoised sequences from both datasets are normalized using Min-Max normal-
ization to ensure that all CSI measurements have a consistent scale. By doing so, the normalization
process eliminates any discrepancies caused by differing value ranges across datasets, thus preventing
these variations from impacting the recognition accuracy of the model [54].

Lastly, in the windowing stage (data transformation or segmentation), the resultant data samples
are divided into windows, similar to HAR studies [17, 55, 51]. Each window has a size of one second
and is labelled with the most frequently occurring label within its samples. Additionally, a 10% overlap
between consecutive windows is utilized to ensure that each row in the transformed vector incorporates
information from the preceding window, thereby capturing more continuous and detailed temporal
dependencies [56].

3.3. Activity Classification

Inspired by the deep learning model’s architecture presented in [51, 8, 57, 58], we apply a model
which combines the Attention-Based Bidirectional Long Short-Term Memory (ABiLSTM) network and
Convolutional Neural Networks (CNN) to capture both local spatial patterns and long-term dependencies
in the data. We refer to this model as CNN-ABiLSTM. The CNN-ABiLSTM model Leverage the strengths
of attention and sequential learning to improve performance in activity classification. The CNN
component excels at capturing local spatial patterns and features within the data, making it particularly
effective for tasks that involve analysing structured inputs such as time series or image data. The
addition of the BiLSTM layer enables the model to maintain and leverage temporal information from

3The OPERAnet dataset directories are provided by the original authors in this URL https://doi.org/10.6084/m9.figshare.c.
5551209.v1.
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https://doi.org/10.6084/m9.figshare.c.5551209.v1


the sequence, while the attention mechanism further refines this process by emphasizing key parts of
the input. Therefore, CNN-ABiLSTM efficiently learns both local features and long-term dependencies,
all while focusing on the most relevant segments of the input data. To address the issue of overfitting,
key techniques such as dropout layers and early stopping are incorporated into the CNN-ABiLSTM.

3.4. Data Splitting and Experimental Setup

We will compare the performance of the LOSOCV approach with that of HO validation and 10-fold
cross-validation to evaluate the robustness of the model to generalise to new subjects. We evaluated the
CNN-ABiLSTM model in each environment in the GJWiFi dataset and OPERAnet dataset independently.
The Models were implemented using TensorFlow and trained using the Adam optimizer with a batch
size of 64 and an initial learning rate of 10−3 to minimize the loss function. To ensure a more balanced
evaluation, we employ weighted precision, recall and F1-score metrics for model assessment. These
metrics address class imbalance by assigning weights to each class according to its frequency in the
dataset.

4. Results

The results presented in Table 2 showcase the performance of the CNN-ABiLSTM model on the GJWiFi
dataset under three different evaluation methods: HO with an 80% training and 20% testing split, 10-fold
CV, and LOSOCV. The performance metrics for the 10-fold CV are averaged across the folds, while the
LOSOCV results are averaged across the number of subjects. This comparative analysis provides insight
into how different validation techniques influence the model’s precision, recall, and F1-score, ultimately
highlighting the strengths and limitations of each approach in the context of WiFi-based HAR.

In the HO evaluation, the model achieves high precision 97.96%, recall 97.83%, and F1-score 97.42%.
These values indicate the model performs well on unseen data when a simple train-test split is used.

The results using a 10-fold CV indicate the model’s most consistent performance across the three
environments with equal average precision, recall, and F1-score all achieving 99.40%. The model benefits
from being trained and validated multiple times over different splits, which likely mitigates the risk of
overfitting and underfitting. These results suggest that, in WiFi-based HAR, a 10-fold CV is particularly
effective for evaluating the model’s generalisation capabilities across different activities.

The LOSOCV method, which specifically tests the model’s ability to generalise across different
subjects, shows a noticeable decrease in performance, with average precision, recall, and F1-score values
of 95.69%, 95.39%, and 94.92%, respectively. The reduction in performance metrics underscores that the
model may be capturing subject-specific patterns rather than generalised features of the activities. The
lower performance of CNN-ABiLSTM across the three evaluation techniques on E3 compared to E1 and
E2 can be attributed to E3 being conducted in an NLOS environment, where signal attenuation and
multipath effects lead to increased noise and variability in the WiFi signals. This results in reduced
model accuracy, as the features used for classification become less consistent and reliable in NLOS
conditions.

The results from the OPERAnet dataset presented in Table 3, highlight the performance of the
proposed CNN-ABiLSTM model across different evaluation methods: HO, 10-fold CV, and LOSOCV
under both LOS and NLOS scenarios. The precision, recall, and F1-score metrics indicate that the model
achieves its highest performance using a 10-fold CV, which shows superior results in both Room 1 and
Room 2 compared to the other evaluation methods.

In the LOS scenario, the 10-fold CV method achieves the highest F1-scores, with 98.12% in Room1
and 96.02% in Room2. This performance surpasses that of the HO method, which records F1-scores
of 97.19% in Room1 and 93.98% in Room2. LOSOCV, designed to mitigate subject bias, shows lower
F1-scores of 93.10% in Room1 and 91.78% in Room2.

For the NLOS scenario, the HO method shows F1-scores of 93.89% in Room1 and 93.67% in Room2.
The 10-fold CV method again shows superior performance with average F1-scores of 96.32% in Room1
and 95.54% in Room2. On the other hand, LOSOCV records even lower F1-scores of 91.23% in Room1



Table 2
Results of GJWiFi dataset using HO, 10-fold CV and LOSOCV.

Metric Evaluation Method E1 E2 E3 Average
Precision% HO 98.22 98.27 97.38 97.96

10-fold CV 99.71 99.34 99.16 99.40
LOSOCV 96.87 96.32 93.87 95.69

Recall% HO 97.90 98.25 97.35 97.83
10-fold CV 99.71 99.33 99.16 99.40
LOSOCV 96.84 95.90 93.43 95.39

F1-Score% HO 97.67 98.24 96.36 97.42
10-fold CV 99.71 99.33 99.16 99.40
LOSOCV 96.24 95.75 92.77 94.92

and 90.04% in Room2. The drop in performance across both rooms using HO, 10-fold CV and LOSOCV
in the NLOS scenario compared to the LOS scenario is due to signal variations and obstructions in the
NLOS setting.

Table 3
Results of OPERAnet dataset using HO, 10-fold CV and LOSOCV.

Receiver Metric Evaluation Method Room 1 Room 2 Average
Precision% HO 97.34 94.10 95.72

10-fold CV 98.19 96.45 97.32
LOSOCV 93.67 92.60 93.14

LOS Recall% HO 97.20 94.00 95.60
10-fold CV 98.12 96.12 97.12
LOSOCV 93.84 92.34 93.09

F1-Score% HO 97.19 93.98 95.59
10-fold CV 98.12 96.02 97.07
LOSOCV 93.10 91.78 92.44

Precision% HO 94.56 93.78 94.17
10-fold CV 96.68 95.73 96.21
LOSOCV 92.23 91.20 91.72

NLOS Recall% HO 94.40 93.48 93.94
10-fold CV 96.98 95.88 96.43
LOSOCV 91.34 90.72 91.03

F1-Score% HO 93.89 93.67 93.78
10-fold CV 96.32 95.54 95.93
LOSOCV 91.23 90.04 90.64

5. Discussion

The primary goal of this study is to assess how model selection and preprocessing influence an ML
model’s ability to classify activities for new users. To achieve this, LOSOCV was employed as the
evaluation method. A comparison between the results obtained using HO, 10-fold cross-validation and
LOSOCV for the same model reveals that the three approaches yield significantly different results.

A critical insight from the evaluation is the implications of subject bias on the model’s performance.
The fact that 10-fold CV outperforms both HO and LOSOCV is significant. However, HO achieves
relatively high F1-scores across different environments in GJWiFi and OPERAnet datasets. It can lead
to inflated performance metrics due to its reliance on a limited training set. The 10-fold CV approach
benefits from the diversity of the training set, effectively capturing a wide range of activity patterns
and reducing the risk of overfitting to specific individuals. While LOSOCV, though designed to mitigate
subject bias, still shows lower scores across the metrics. The performance drop observed in LOSOCV
indicates that when the model is evaluated on unseen subjects, it struggles to maintain the same level



of accuracy achieved during training. This observation underscores the challenges of achieving true
generalization in HAR systems. This arises from individual differences in how activities are performed
or variations in the WiFi signal received by different users. Consequently, while LOSOCV is a valuable
method for assessing generalization, it may not completely eliminate subject bias, particularly if the
training data does not adequately represent the diversity of potential users.

It is important to note that LOSOCV is primarily an evaluation technique rather than a solution
for subject bias itself. To address subject bias more effectively, a comprehensive set of guidelines for
WiFi-based HAR systems can be considered. These guidelines should prioritize the creation of a diverse
training set that captures a wide range of user behaviours and environmental conditions, ensuring that
the model is exposed to varied examples of activity patterns. From a statistical standpoint, methods
such as data re-weighting and stratified sampling should be employed to balance the representation of
different user groups within the training data. This ensures that the model is not disproportionately
influenced by specific individuals or environmental contexts, ultimately fostering more equitable
predictions across all user groups. From an ML perspective, several advanced techniques can be
incorporated to reduce bias and improve generalization. Specifically, domain adaptation and transfer
learning can be leveraged to minimize performance disparities across different demographic groups.
These approaches enable a model to transfer knowledge gained from one dataset to another, effectively
reducing bias by allowing the model to adapt to new users or environments more efficiently. In addition,
fairness-aware algorithms can be integrated into the model’s learning process to address any disparities
in performance between different groups. For example, fairness constraints could be applied during
training to minimize the performance gap between users with varying WiFi signal strengths, physical
attributes, or environmental conditions. This ensures that the model’s predictions are equitable and
do not favour specific subgroups. Moreover, techniques like data augmentation could be explored to
mitigate subject bias further. By generating synthetic data that simulates the behaviour of diverse users
in various scenarios, data augmentation enhances the model’s ability to generalise to previously unseen
subjects. This is especially important in HAR systems, where limited data from diverse user groups may
otherwise lead to overfitting or underperformance on new users. These methods collectively contribute
to building more robust, fair, and generalizable models that can perform reliably across different user
demographics and real-world settings.

6. Conclusion and Future Work

In this study, we investigated the impact of different evaluation techniques on the performance of WiFi-
based HAR systems, focusing on addressing the issue of subject bias. We proposed a CNN-ABiLSTM
model and evaluated its performance using LOSOCV to measure its generalization capability across
unseen users. The results indicate that LOSOCV offers a more realistic assessment of model performance
compared to traditional evaluation methods such as hold-out validation and k-fold cross-validation,
which often fail to account for subject bias. Our findings emphasize the need for subject-independent
evaluation in WiFi-based HAR systems, as conventional methods may lead to inflated performance
metrics that do not reflect real-world applicability. This work highlights the critical role of evaluation
methodologies in developing robust and generalizable HAR systems for real-world scenarios.

A key area for future investigation is the impact of different preprocessing methods on the ability
of the learning model to classify activities for new users. Additionally, exploring more techniques to
address subject bias will be crucial. This includes employing domain adaptation and transfer learning
strategies to enable the model to generalise better across diverse user populations, as well as utilizing
ensemble learning to combine predictions from multiple models. By pursuing these research directions,
including both improved preprocessing methods and strategies to mitigate subject bias, we can enhance
the robustness and generalizability of WiFi-based HAR systems, ultimately contributing to more reliable
applications in diverse real-world settings.
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