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Abstract

We propose a global post-hoc XAI method to interpret Long Short-Term Memory (LSTM) models for univariate
time series classification. Our approach integrates Symbolic Aggregate approXimation (SAX) to convert continu-
ous time series into symbolic representations during preprocessing. We then apply k-means clustering to the
activated hidden states of the LSTM, from which we extract Deterministic Finite Automata (DFA), which provides
a transparent and interpretable explanation of the model’s decision-making process. Experiments on synthetic
and real-world datasets demonstrate high fidelity between DFA and LSTM, with enhanced interpretability for
high-stakes domains like healthcare and power demand forecasting.
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1. Introduction

Deep learning, particularly recurrent neural networks (RNNs), has revolutionized sequential data
analysis in domains like speech and time series by effectively modelling temporal dependencies [1].
Among RNNs, Long Short-Term Memory (LSTM) networks are widely preferred due to their ability
to address the vanishing gradient problem and retain long-term dependencies through memory cells.
These features make LSTMs particularly suitable for time series classification tasks. However, their
LSTMs categorizes them as "black-box" models, making their decision-making processes challenging
to interpret. This lack of transparency hinders their adoption in critical fields such as healthcare
[2] and finance, where regulations like GDPR mandate explainable AI (XAI) [3, 4, 5]. Addressing
these challenges requires methods that enhance the interpretability of LSTMs without compromising
predictive performance.

This study introduces a global post-hoc XAI method that leverages Deterministic Finite Automata
(DFA) to provide interpretable insights into LSTM decision-making for univariate time series data. By
clustering the hidden states of an LSTM, we extract finite states to represent interpretable transitions,
offering a clear understanding of how the model processes sequential data. While prior studies have
shown the effectiveness of DFA in explaining RNNs [6, 7, 8], our work extends this approach to
LSTMs, focusing specifically on univariate time series. We employ Symbolic Aggregate approXimation
(SAX) [9] to transform continuous time series data into symbolic sequences, reducing the complexity
while preserving key temporal patterns. This integration of SAX preprocessing with DFA extraction
offers a structured and interpretable approach to understanding LSTM behavior [10], particularly in
applications like heart rate monitoring, stock price analysis, and power demand forecasting. Key
contributions include:
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+ A novel method for extracting DFA from LSTM models for univariate time series classification.
+ Integration of SAX preprocessing with DFA for interpretability, balancing complexity and tempo-
ral patterns.
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+ Quantitative evaluation of fidelity to validate the alignment between DFA and LSTM.

2. Related Work

Explaining the decisions of deep learning models, particularly RNNs like LSTM models, has emerged as
a prominent area of research. The challenge of interpreting these "black-box" models has driven the
development of XAI methods to enhance transparency and trustworthiness [4]. Interpretability makes
abstract model outputs meaningful, while explainability identifies key features influencing predictions
in human-understandable terms [11]. Among many ways, XAI methods can be generally categorized
into ante-hoc and post-hoc approaches:

« Ante-hoc methods integrate interpretability directly into the model’s architecture.
+ Post-hoc methods generate explanations after predictions and are further divided into:

— Local explanations: Methods like saliency maps, LIME, and attention mechanisms explain
individual predictions by highlighting input features affecting outputs [12, 13]. While
effective for specific instances, these methods struggle to capture global decision-making.

— Global explanations: These provide a holistic view of a model’s behavior across datasets,
making them essential for understanding state transitions and decision processes [14].

Although attention mechanisms and saliency maps identify critical features, they cannot explain
how LSTMs process sequential data or transition between states. Symbolic representations like DFA
address this gap by offering a structured, interpretable global explanation of state transitions [6]. DFA
extraction visualizes LSTM decision-making as finite state machines, providing a broader perspective
on model behavior [7, 8]. This study extends DFA-based interpretability to univariate time series,
integrating SAX preprocessing [9] to reduce data complexity while preserving temporal patterns. The
SAX-DFA combination provides symbolic, global post-hoc explanations for LSTMs, particularly in
applications like power demand forecasting and heart rate monitoring [10]. Unlike local methods, DFA
captures high-level transitions, offering a comprehensive understanding of LSTM behaviour. Table 1
compares common interpretability techniques for time series and LSTMs, highlighting their strengths
and limitations. SAX-DFA addresses key gaps by offering structured, global explanations of state
transitions. Besides qualitative metrics of explainability [15], more objective metrics such as fidelity

Table 1
Comparison of Interpretability Techniques for Time Series and LSTMs
Method Scope Strengths Limitations
Attention Local Highlights important input regions  Limited global insights into tempo-
Mechanisms [13] for predictions. ral dependencies.
Saliency Maps [13] Local Visualizes input-output sensitivity.  Noise-sensitive; lacks  state-
transition insights.
LIME [12] Local Simplifies predictions with surro- Explanations may not generalize
gate models. globally.
SAX-DFA Global  Structured, symbolic insights into  Requires careful SAX bin and clus-
(Proposed) transitions. tering tuning.

and robustness are crucial for evaluating XAI methods. Fidelity ensures explanations align with the
original model’s predictions, while robustness examines consistency across data points [16, 17]. These
metrics guide the development of reliable, interpretable models. Existing XAl techniques for time series
have underexplored global interpretability, creating an opportunity for SAX-DFA to address these gaps.
This paper contributes to advancing global post-hoc interpretability for LSTMs by combining SAX
with DFA. This approach generates state-transition explanations that accurately mirror the LSTM’s
decision-making process while maintaining high fidelity and robustness. Unlike local methods, SAX-DFA
provides a dataset-wide perspective, enabling insights into temporal patterns and transitions.



3. Methodology

This section introduces the proposed post-hoc XAI method to explain the internal decision-making
processes of LSTM models trained on univariate time series data. The methodology is organized into
three phases, which align with the four major steps shown in the pipeline (Figure 1).

3.1. Phase 1: Preprocessing and Model Training

This phase involves transforming time series into symbolic sequences and training the LSTM model.

SAX Preprocessing SAX discretizes continuous time series into symbolic sequences, reducing
complexity while preserving critical temporal patterns. We evaluated SAX bin sizes (Vpi, = 3,5,7)
and found a balance between interpretability and fidelity at Ny, = 5. The quantile strategy was
chosen for its ability to ensure balanced symbol distribution, which improved generalization and DFA
interpretability.

LSTM Training The SAX-encoded sequences were used to train an LSTM model. Hyperparameters,
such as hidden size (16, 32, 64) and layers (1 or 2), were tuned for optimal performance (Table 3).
The Adam optimizer (Ir = 0.0001) and cross-entropy loss were used, with early stopping to prevent
overfitting. These settings ensured accurate classification while preserving the "black-box" nature of
the LSTM for interpretability experiments.

3.2. Phase 2: DFA Extraction

This phase transforms the trained LSTM’s hidden state dynamics into a DFA for interpretability. A DFA
is formally defined as a 5-tuple: A = (Q, X, S, F, 0) where:

« ( is the finite set of states.

« Y is the alphabet, i.e., the set of symbols generated from the SAX preprocessing.

+ S € @ is the start state, representing the initial state.

« I C (@ is the set of accepting states linked to classification outcomes.

¢ 0 :Q x X — Q is the transition function, for state changes based on input symbols.

The LSTM’s activated hidden states are extracted at each time step and visualized using t-SNE
for dimensionality reduction. K-means clustering groups these states into K clusters, which form
the finite states of the DFA. Transition frequencies between clusters, triggered by SAX symbols, are
recorded in a transition matrix 7', defined as: T'(4, j) = arg max, Ns;(i, k) where T'(i, j) represents
the state transition from ¢ upon input of symbol s;. Clusters most frequently visited at the end of
sequences are designated as the DFA’s accepting states, providing an interpretable representation of
LSTM decision-making.

3.3. Phase 3: Fidelity Evaluation

In the final phase, the fidelity of the DFA is quantitatively evaluated to assess its accuracy in replicating
the LSTM’s classifications. Fidelity measures the proportion of instances where the DFA and LSTM
agree on their classification outcomes.

4. Experimental Settings

We use synthetic and real-world datasets to evaluate the proposed method, employing preprocessing,
model training, and evaluation strategies.
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Figure 1: Pipeline of the proposed XAl method. The steps—(1) SAX preprocessing, (2) LSTM training, (3) hidden
state clustering, and (4) DFA construction—are organized into three phases for clarity.

Table 2
Summary of Datasets Used in the Experiment
Name Data Size No. Classes Length
Synthetic Dataset 1000 2 50
Italy Power Demand 1096 2 24

4.1. Datasets

We evaluated the proposed method on synthetic and real-world datasets, as described below, with a
summary available in Table 2.

Synthetic Noisy Sine Wave Dataset A synthetic noisy sine wave dataset was created to simulate
real-world time series complexity. It contains 1000 points divided into 20 sequences of 50 time steps
each. Sine waves were generated with added Gaussian and low-frequency noise, labeled as Class 1 if the
maximum amplitude exceeds 0.5 and Class 0 otherwise. This dataset offers a controlled environment
for benchmarking DFA interpretability against ground-truth metrics [18].

Italy Power Demand Dataset The Italy Power Demand dataset [19] records daily electrical power
demand for colder (October-March) and warmer (April-September) months. With 67 training and 1029
testing instances of 24 time steps each, it serves as a benchmark for time series classification. Figure 2
shows the dataset’s distribution. A summary is provided in Table 2.

Train Dataset Test Dataset

Value

(a) Train Dataset (b) Test Dataset (c) Combined Dataset

Figure 2: Italy Power Demand dataset grouped by the training and testing sets and the combined data.

4.2. LSTM Training

LSTM models were implemented in PyTorch and trained using SAX-encoded sequences. The architecture
was optimized through hyperparameter tuning, varying hidden units (16, 32, 64), layers (1, 2), and
SAX bin sizes' (3,5, 7) for the quantile strategy. These parameters were selected based on empirical
observations to balance interpretability and fidelity. Models were trained using a 70/15/15 split for

'The choice of SAX bin sizes was guided by empirical observations and the need to balance interpretability and fidelity



training, validation, and testing, with early stopping applied to avoid overfitting. Table 3 lists the key
hyperparameters.

Table 3
A summary of the LSTM architecture’s hyperparameters

Hyperparameter Values

Bin Size (SAX) 3,57

Input Size 1 (Univariate)
Hidden Size 16, 32, 64

Output Size 2 (Binary)

Layers 1,2

Optimizer Adam (LR: 0.0001)
Epochs 50

4.3. Learning DFA

After training the LSTM model on the SAX-encoded time series, k-means clustering was applied to
the activated hidden states at each time step. These clusters represent the finite set of states for
constructing the DFA. In this study, the DFA was built using the validation set to ensure it captures the
model’s general behaviour and decision patterns, allowing for interpretable insights into the LSTM’s
performance on unseen data. The Neighbouring Matrix N s tracks transition frequencies between
clusters for each symbol in the sequence, where each entry Ns(i, k) represents the number of transitions
from state i to state k based on the input symbol.The transition matrix 7" is then derived as follows:
T(i,j) = arg maxy, Ns;(i, k) Here, T'(i, j) represents the state transition from state ¢ when inputting
the symbol s;. The DFA’s accepting states were determined by identifying the state most frequently
visited at the end of each sequence during LSTM processing. The state with the highest occurrence for
a given sequence was marked as the final accepting state.

4.4. Evaluation Metrics

The proposed method was evaluated using:

« Accuracy: Proportion of correctly classified instances.

« Macro and Micro F1 Scores: Macro F1 measures the unweighted average of class-specific F1
scores, while Micro F1 weights scores by class prevalence.

+ DFA-LSTM Fidelity: Proportion of instances where the DFA matches LSTM predictions, mea-
suring how well the DFA replicates LSTM behavior (Table 4).

Table 4
Quantitative evaluation metrics for DFA-based explanations

Metric Definition Formula

DFA-LSTM Fidelity | Ratio of instances where the DFA agrees | F = %, where a is the number of in-
with the LSTM model, divided by the total | stances where the DFA agrees with
number of validation sequences. LSTM, and N is the total number
of sequences.

5. Results and Discussions

The proposed global post hoc XAI method was evaluated on synthetic and real-world datasets (Italy
Power Demand) to assess its ability to mimic the inferential process of LSTM models trained on univariate



time series data. Key results focus on SAX preprocessing, LSTM performance, DFA extraction, and
quantitative fidelity evaluation.

5.1. Impact of SAX Preprocessing

SAX algorithm transformed continuous time series into symbolic representations with varying bin
sizes (3, 5, 7) and strategies (quantile, uniform, and normal).

The quantile strategy outperformed alternatives by ensuring balanced symbol distributions, particu-
larly in datasets with skewed patterns or outliers. This balance improved LSTM classification accuracy
and DFA interpretability by preserving key temporal features.

Figure 3 demonstrates how different bin sizes influence SAX-encoded sequences and symbol distri-
butions. Bin size Ny, = 5 emerged as optimal, balancing fine-grained temporal representation with
interpretability. Larger bin sizes (N, = 7) coarsened data patterns, while smaller bins (NVpy, = 3)
increased complexity without significant performance gains.

for Class 1 (Strategy: quantie, Bins: 3) SAX-encoded Data fo Class 1 (Strategy: quantile, Bins: 5)

(a) SAX-encoded Time Series (b) SAX-encoded Time Series (c) SAX-encoded Time Series
(3 Bins) (5 Bins) (7 Bins)

Histogram of SAX Symbols for Class 1 (Strategy: quantile, Bins: 3) Histogram of SAX Symbols for Class 1 (Strategy: quantile, Bins: 5) Histogram of SAX Symbols for Class 1 (Strategy: quantile, Bins: 7)
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Figure 3: Effect of SAX bin size on time series encoding and symbol distribution for class 1 of the Italy Power
Demand dataset. The figure shows how different bin sizes (3, 5, 7) in the SAX algorithm, using the quantile
strategy, affect the representation of time series data and the resulting symbol distributions. Subfigures (a), (c),
and (e) depict the SAX-encoded time series, while subfigures (b), (d), and (f) show the corresponding symbol
distribution histograms.

5.2. LSTM Performance Across Configurations

LSTM models were trained with varying configurations of hidden units (16, 32, 64), layers (1, 2), and
SAX bin sizes (3, 5, 7). Performance was evaluated using accuracy and F1 scores (Tables 5, 6, 7).
Key findings include:

+ A hidden size of 32 and one layer consistently achieved high accuracy across datasets.

« SAX bin size Npy, = 5 provided the best trade-off, with peak test accuracy of 96.36% on the Italy
Power Demand dataset.

« Larger bin sizes (Npi, = 7) improved DFA-LSTM fidelity by capturing broader temporal patterns,
while smaller bins (N, = 3) risked overfitting.



Table 5

Performance of LSTM Model with SAX Bin Size = 3; Dataset- Italy Power Demand

Hidden Num of | Test Accu-| Test Macro F1 | Test Micro F1 Score
Size Layers racy Score
16 1 0.9636 0.9631 0.9636
16 2 0.9576 0.9568 0.9576
32 1 0.9576 0.9568 0.9576
32 2 0.9455 0.9446 0.9455
64 1 0.9394 0.9387 0.9394
64 2 0.9576 0.9568 0.9576
Table 6
Performance of LSTM Model with SAX Bin Size = 5 ; Dataset- Italy Power Demand
Hidden Num of | Test Accu-| Test Macro F1 | Test Micro F1 Score
Size Layers racy Score
16 1 0.9394 0.9386 0.9394
16 2 0.9515 0.9507 0.9515
32 1 0.9636 0.9630 0.9636
32 2 0.9636 0.9630 0.9636
64 1 0.9515 0.9506 0.9515
64 2 0.9576 0.9568 0.9576

Table 7

Performance of LSTM Model with SAX Bin Size = 7; Dataset- Italy Power Demand

These results underscore the importance of hyperparameter tuning to balance interpretability and

Hidden Num of | Test Accu-| Test Macro F1 | Test Micro F1 Score
Size Layers racy Score

16 1 0.9515 0.9512 0.9515

16 2 0.9576 0.9574 0.9576

32 1 0.9576 0.9574 0.9576

32 2 0.9576 0.9574 0.9576

64 1 0.9636 0.9635 0.9636

64 2 0.9515 0.9512 0.9515

classification performance.

5.3. DFA Extraction and Fidelity Evaluation

The DFA extraction process leveraged k-means clustering to translate LSTM hidden states into inter-
pretable states, with transitions defined by the SAX-encoded inputs. This subsection presents the results
of clustering, transition matrix construction, and fidelity evaluation, focusing on the insights derived
from the experiments.

5.3.1. Clustering and Transition Matrix Insights

The clustering of LSTM hidden states, visualized through t-SNE (Figure 4), revealed distinct clusters for
the training and validation sets, reflecting effective learning of temporal dependencies. However, the
test set clusters were more dispersed, indicating challenges in generalizing to unseen patterns. These
observations underline the LSTM’s ability to model temporal patterns while highlighting potential
areas for improving its robustness.

The number of clusters (k) played a pivotal role in DFA complexity and interpretability. For the
Italy Power Demand dataset, k = 6 provided an optimal balance between granularity and simplicity.



Transition probabilities were derived from SAX input sequences, and the most frequent transitions
were mapped into a transition matrix. Larger k values captured finer-grained transitions but risked
overfitting, while smaller k values offered simpler DFA representations but omitted subtle temporal
dynamics.

5.3.2. Impact of SAX Bin Size on Fidelity

The SAX bin size (Vi) significantly influenced the fidelity between the extracted DFA and the LSTM
model. Table 8 summarizes fidelity scores across configurations:

« Larger bin sizes (N, = 7) achieved the highest fidelity of 0.5854, as the DFA could effectively
capture broader temporal patterns while minimizing overfitting. These configurations were
particularly effective for the Italy Power Demand dataset, demonstrating a robust approximation
of LSTM behavior.

« Smaller bin sizes (N, = 3) yielded lower fidelity scores, such as 0.4756, due to coarser discretiza-
tion. This reduction in detail limited the DFA’s ability to distinguish between state transitions,
particularly for datasets with complex temporal patterns.

« Misalignment between k and Ny, where & > Ny, introduced invalid state transitions and
decreased fidelity. This mismatch was evident in configurations with Ny, = 3 and & = 6, where
fidelity improved moderately (0.5305) but remained suboptimal.

5.3.3. Evaluation of DFA Visualizations

Figure 5 illustrates the DFA visualizations for different SAX bin sizes and £ values. Configurations
with Npy, = 5 and k = 4 provided interpretable representations, focusing on dominant state transi-
tions. Larger bin sizes (N, = 7) resulted in more refined DFA structures, effectively capturing the
primary decision patterns while minimizing redundancy. The absence of certain transitions in these
configurations underscores the DFA’s ability to generalize and avoid overfitting.

These visualizations demonstrate the utility of the SAX-DFA method for interpreting LSTM behavior.
For example, DFA structures with larger bin sizes prioritized meaningful transitions, simplifying the
explanation process without sacrificing fidelity. The reduction in noise and unnecessary state transitions
improved the clarity of the extracted DFA, particularly for datasets with well-defined temporal patterns.

5.3.4. Comparison Across Datasets
The fidelity scores and visualizations reveal consistent trends across both datasets:

« For the Italy Power Demand dataset, Ny, = 7 and k = 6 achieved the highest fidelity, effec-
tively capturing the LSTM’s temporal dynamics. These configurations also provided the most
interpretable DFA visualizations, balancing complexity and accuracy.

« The synthetic sine wave dataset, despite its smaller size, demonstrated similar trends. However,
the reduced temporal complexity led to slightly lower fidelity scores for smaller bin sizes. For
instance, configurations with Ny, = 3 and & = 3 achieved comparable fidelity (0.5305) but
struggled to generalize transitions for noisier sequences.

5.3.5. Discussion and Limitations
The results highlight the strengths and limitations of the SAX-DFA method:

« Strengths: The method consistently achieved high fidelity with larger bin sizes and appropriate
clustering. DFA visualizations offered interpretable insights into the LSTM’s decision-making,
particularly for datasets with well-defined temporal patterns.

« Limitations: Smaller bin sizes reduced fidelity, and misalignment between k and Ny, introduced
invalid transitions. Addressing these challenges requires refining clustering techniques and
balancing SAX parameters to improve DFA accuracy and scalability.



Future work will explore advanced clustering methods, such as k-means++, to improve alignment
between clusters and SAX bins. Additionally, extending the methodology to multivariate datasets will
test its scalability and robustness across more complex scenarios.
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Figure 4: t-SNE visualizations of the activated hidden states extracted from an LSTM model with 2 layers and
64 hidden units for (a) the training set, (b) the validation set, and (c) the test set of the Italy Power Demand
dataset. The plots show clustering patterns in 2D: well-defined clusters in the training set indicate effective
learning, condensed clusters in the validation set suggest good generalization, and dispersed clusters in the test
set highlight challenges with unseen data.

Conversely, smaller bin sizes, such as Ny, = 3, struggled to achieve high fidelity scores, with some
configurations yielding values as low as 0.4756. This limitation likely stems from the coarse discretization
of time series data, which reduces the DFA’s capacity to distinguish between state transitions effectively.

Table 8
DFA-LSTM Fidelity Results Across Different Configurations

Bin Size (\Ny;,) Hidden Size Num Layers Cluster Size (K) DFA-LSTM Fidelity

3 16 1 6 0.5305
5 16 2 6 0.5244
7 16 1 6 0.5854
3 64 2 6 0.4756

6. Conclusion and Future Work

The need for interpretability in complex machine learning models, particularly in high-stakes domains
like healthcare and finance, has driven the development of XAl techniques. This paper presented a
novel global post hoc XAI method that integrates SAX preprocessing with DFA extraction to provide
interpretable insights into the decision-making processes of LSTM networks.

Our proposed method addresses key challenges in explaining LSTM behavior by transforming high-
dimensional hidden state representations into a symbolic, interpretable structure. The DFA, constructed
through clustering and state transition analysis, offers a clear visualization of temporal dependencies
and decision patterns within LSTM models. This work contributes to the growing body of research in
XAI by emphasizing global interpretability, a crucial aspect for understanding the overall behavior of
models applied to univariate time series data.

6.1. Summary of Findings

Experiments on both synthetic and real-world datasets demonstrated the effectiveness of the SAX-DFA
method:



(a) k=6, bin size=3

(c) k=4, bin size=7

Figure 5: (a) DFA extracted from an LSTM trained on the Italy Power Demand dataset with SAX-encoded data,
using a bin size of 3 and k£ = 6 for k-means clustering, consists of 6 states and transitions based on SAX input
symbols. The double-circled state represents the accepting state, indicating the final classification decision. (b)
DFA extracted using a bin size of 5 and k = 4, showing 4 states and structural changes due to the different bin
size. (c) DFA extracted using a bin size of 7 and k = 4, also with 4 states. The reduced transitions highlight the
model’s focus on key state transitions, preventing overfitting.

 High Fidelity: The method achieved a maximum DFA-LSTM fidelity score of 0.5854 for the
Italy Power Demand dataset with Ny, = 7, kK = 6, and hidden size = 16. This indicates a strong
alignment between the DFA and LSTM decision-making processes.

« Interpretable Visualizations: DFA structures provided clear insights into state transitions,
capturing dominant decision patterns while minimizing noise. Larger SAX bin sizes produced
refined DFA representations, balancing complexity and interpretability.

+ Generalizability Across Datasets: The method effectively captured LSTM decision patterns for
both datasets, demonstrating its robustness across different types of univariate time series data.

« Parameter Sensitivity: SAX bin sizes and cluster counts significantly influenced fidelity and
interpretability. Larger bin sizes captured broader patterns but required careful tuning to avoid
over-simplification.

These findings highlight the SAX-DFA method’s potential to enhance transparency in LSTM models
while maintaining high performance in time series classification tasks.

6.2. Key Contributions

This study advances the field of explainable AI through:

1. Development of a novel pipeline combining SAX preprocessing and DFA extraction for LSTM
interpretability.

2. Quantitative evaluation of DFA fidelity as a metric to assess the alignment between DFA and
LSTM decision-making.

3. Comprehensive analysis of SAX and clustering parameters, offering insights into their impact on
fidelity and interpretability.

4. Application to both synthetic and real-world datasets, demonstrating the method’s generalizability
and scalability.

6.3. Limitations and Challenges

While the proposed method showed promising results, certain limitations warrant further attention:



« SAX Parameter Sensitivity: The choice of bin size and clustering parameters heavily influenced
fidelity and interpretability. Suboptimal configurations reduced the DFA’s ability to capture
essential temporal patterns.

« Handling of Invalid Transitions: Mismatches between SAX bin sizes and cluster counts
introduced invalid state transitions, impacting classification accuracy and fidelity.

« Scalability: The method was validated on univariate datasets. Its applicability to multivariate
time series and datasets with longer sequences remains unexplored.

+ Local Interpretability Gap: While the DFA provides global explanations, it lacks mechanisms
for understanding specific individual predictions, which are crucial in certain domains.

6.4. Future Work

Building on the foundation of this study, future work will address these limitations and explore new
directions:

1. Parameter Optimization: Advanced clustering techniques, such as k-means++ or hierarchical
clustering, will be explored to better align SAX bin sizes and cluster counts, improving fidelity
and handling invalid transitions.

2. Scalability to Multivariate Datasets: The methodology will be extended to handle multivariate
time series, involving adaptations to SAX preprocessing and DFA construction to accommodate
higher-dimensional data.

3. Integration of Local Explanations: Hybrid approaches combining SAX-DFA with local in-
terpretability methods, such as SHAP, saliency maps, or attention mechanisms, will provide a
comprehensive framework for both global and local explanations.

4. Application to High-Stakes Domains: The SAX-DFA method will be applied to real-world
datasets in domains like healthcare (e.g., ECG analysis) and finance (e.g., stock price prediction)
to evaluate its practical utility in critical decision-making scenarios [2].

5. Enhanced DFA Structures: The DFA framework will be refined to incorporate probabilistic
transitions or weighted state connections, enabling a more nuanced representation of LSTM
behavior.

6. Evaluation Metrics: Additional evaluation metrics, such as robustness and completeness, will
be incorporated to assess the quality and reliability of explanations under varying conditions.

7. User-Centric Evaluation: Future research will focus on usability studies involving domain
experts to evaluate the interpretability and utility of DFA visualizations in real-world applications.

6.5. Concluding Remarks

In conclusion, the SAX-DFA method represents a significant step toward achieving global interpretability
for LSTM models in time series classification. By combining symbolic representations with finite
automata, this method offers a structured, interpretable view of complex decision-making processes.
While challenges remain, the findings of this study provide a robust foundation for advancing explainable
Al methodologies and fostering trust in machine learning models across diverse applications.
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