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Abstract
In this paper, we introduce a KLM-style framework for defeasible reasoning about formal concepts. This framework
can be used both for theoretical developments and in applications of non-monotonic reasoning about formal
concepts.
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1. Introduction

Non-monotonic logics are a class of logics which allow for inference relation to be non-monotonic,
i.e. such that adding more knowledge or preferences can lead to some inferences to be retracted. These
logical frameworks are intended to formally account for forms of reasoning which allow for exceptions
and revision of conclusions. Non-monotonic logics play a crucial role in several fields of artificial
intelligence, such as common-sense reasoning [1], ethical AI [2], and argumentation theory [3]. Various
formal frameworks for non-monotonic reasoning have been developed, including Default Logic [4],
AGM Belief Revision [5], Defeasible Entailment Reasoning [6], Conditional Logic [7], Circumscription
[8], Autoepistemic logic [9].

Formal Concept Analysis (FCA) [10] is an established mathematical framework used in Knowledge
Representation and Reasoning to study FCA hierarchies. The basic structures in FCA, namely formal
contexts and their associated concept lattices, have been systematically linked with—and used as
semantic environments of—a large family of lattice-based propositional logics, prominent examples
of which are lattice-based modal logics, and their theory has been developed as a family of logics for
reasoning about (formal) concepts in the context of data structures and information theory [11, 12, 13, 14].
Each logic in this family is defined in terms of a monotone consequence (or entailment) relation 𝐶1 ⊢ 𝐶2

between concepts, which is semantically interpreted as ‘𝐶1 is a subconcept of𝐶2’, that is, ‘all the objects
in the extension of 𝐶1 are in the extension of 𝐶2’, or equivalently, ‘all the features in the intension
of 𝐶2 are in the intension of 𝐶1’. On the basis of this framework, various more sophisticated logical
frameworks have been proposed, including epistemic logic for categories and categorization endowed
with a ‘common knowledge’ operator accounting for prototypicality [12], a basic environment for a
Dempster-Shafer theory of concepts [15], a unifying environment for Rough Set Theory and FCA [16],
many-valued logics accounting for vague categories [17], a specifically FCA-based description logic
for FCA [18, 19], and various proof-theoretic frameworks laying the foundations of the computational
theory of these logics [20, 21].

Deciding whether some concept inclusion is entailed by a given FCA knowledge base (e.g. a set of
concept inclusions) is an important reasoning task which can be efficiently carried out by lattice-based
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propositional logics such as those mentioned above. However, in many applications, especially in
context of large data, as well as in many real-life situations, a part of the available knowledge may be
defeasible (i.e. presented in form of concept-inclusions which allow for exceptions). Studying defeasible
entailment on concepts would allow us to infer knowledge from knowledge consisting of defeasible
concept-inclusions, and to capture, and hence implement, common sense reasoning about concepts. For
example, if a generic object (animal) 𝑎 is in thecategory of ‘mammals’, then we can reasonably conclude
that 𝑎 is viviparous. However, if we receive additional information that the animal is a platypus, then
we can conclude it is not viviparous.

Formally, we can define the following three defeasible counterparts of the monotone entailment
relation ⊢ discussed above: (1) Relation |∼𝐴 interpreted as ‘all the objects in 𝐶1, with some possible
exceptions, are in 𝐶2’ or ‘typical objects of 𝐶1 are in 𝐶2’, (2) relation |∼𝑋 interpreted as ‘all the objects
𝐶1 have all the features shared by 𝐶2, with some possible exceptions’ or ‘all the objects of 𝐶1 have
typical features of 𝐶2’, and (3) relation |∼𝐴𝑋 interpreted as ‘all the objects 𝐶1, with some possible
exceptions, have all the features of 𝐶2 with some possible exceptions’ or ‘all the typical objects of 𝐶1

have all the typical features of 𝐶2’. For example, let 𝐶1 and 𝐶2 represent the concepts of ‘mammals’
and ‘viviparous animals’, respectively. Since mammals are typically viviparous, we have 𝐶1 |∼𝐴 𝐶2.
However, if we introduce 𝐶3, representing the concept of ‘echidnas’, which are a kind of oviparous
mammal, we find that 𝐶3 ⊢ 𝐶1 (i.e., all echidnas are mammals), hence 𝐶3 |∼𝐴 𝐶1, but 𝐶3 ̸ |∼𝐴 𝐶2 (i.e.,
typically, echidnas are not viviparous).

In the present paper, we propose to extend the framework of Kraus, Lehmann, and Magidor (commonly
referred to as the KLM framework) [6] to formalize defeasible entailment between concepts.

Since FCA does not have a natural notion of negation on concepts, the KLM framework cannot be
directly applied to the FCA environment. Nonetheless, it can be suitably extended to FCA. Specifically,
we define the FCA-counterparts of classical non-monotonic entailment relations such as the cumulative
entailment C, and the cumulative entailment with loop CL. These counterparts are the three defeasible
entailment relations |∼𝐴, |∼𝑋 , and |∼𝐴𝑋 mentioned above. We do not include the preferential entail-
ment system P, as the counterpart of the rule OR in classical defeasible reasoning depends on the fact
that the semantic counterpart of classical disjunction is the set-theoretic union, while in FCA disjunction
is interpreted as the closure of the union. In fact, unlike what is the case in the classical setting, the
FCA-counterpart of C is already complete w.r.t. the class of FCA preferential models (cf. Theorems
1, 2, 2). Moreover, as the language of FCA does not have a natural notion of negation for concepts,
FCA-counterparts of axioms such as rational monotonicity are not available. It would be interesting for
future research to explore whether some FCA counterparts of such rules can be defined.

Open directions on the front of semantic investigations concern the definition of the FCA-counterparts
of cumulative models, cumulative ordered models, preferential models, and preferential ordered models
and the proof of completeness theorems for different reasoning systems w.r.t. these classes of models.
An interesting aspect of this research concerns exploring the similarities and differences between—as
well as the relationships among—the defeasible consequence relations |∼𝐴, |∼𝑋 , and |∼𝐴𝑋 .

2. KLM framework for reasoning on concepts

In [22], the first steps were taken for developing the KLM framework in the setting of FCA, by introducing
only the defeasible entailment relation |∼𝐴 on formal concepts. Here, we start by recalling this
framework and the results proved there.

To generalize the cumulative reasoning to the FCA setting, we modify the original framework [6]
as follows: In [6], the language of underlying logic is assumed to be closed under all the classical
connectives including negation and implication. However, lattice-based propositional logic does not
have negation and implication in its language. Thus, we replace the formula 𝜑→ 𝜓 in the rules and
axioms of C with the sequent 𝜑 ⊢ 𝜓, which encodes the entailment at a meta-logical level, rather
than at the object language level. For any formal context P = (𝐴,𝑋, 𝐼), a model based on P is a tuple
M = (P, 𝑉 ) s.t. 𝑉 : ℒ → P+ is a homomorphism from the term algebra ℒ of the propositional logic



of lattices into the concept lattice P+ associated with P. For any 𝜑 ∈ ℒ, we let [[𝜑]]M (resp. ([𝜑])M)
denote the extension (resp. intension) of 𝑉 (𝜑) (dropping the subscripts when the context is clear), and
M |= 𝜑 ⊢ 𝜓 iff [[𝜑]]M ⊆ [[𝜓]]M iff ([𝜓])M ⊆ ([𝜑])M.

A lattice-based cumulative logic consists of an entailment relation, i.e. a set of ℒ-sequents 𝜑 ⊢ 𝜓
closed under all axioms and rules of lattice-based propositional logic, and a cumulative entailment
relation, i.e. a set of ℒ-sequents 𝜑 |∼𝐴 𝜓 closed under the Reflexivity axiom 𝜑 |∼𝐴 𝜑 and the rules

Left Logical Equivalence (LLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜑 |∼𝐴𝜒

𝜓 |∼𝐴𝜒
𝜑⊢𝜓 𝜒 |∼𝐴𝜑

𝜒 |∼𝐴𝜓
Right Weakening (RW)

Cautious Monotonicity (CM)
𝜑 |∼𝐴𝜓 𝜑 |∼𝐴𝜒

𝜑∧𝜓 |∼𝐴𝜒
𝜑∧𝜓 |∼𝐴𝜒 𝜑 |∼𝐴𝜓

𝜑 |∼𝐴𝜒
(Cut).

From (LLE) and (RW) it follows that logically equivalent formulas are |∼𝐴-entailed by the same formulas.
A cumulative entailment relation |∼𝐴 is loop-cumulative if it satisfies the following rule.

𝜑0 |∼𝐴𝜑1 𝜑1 |∼𝐴𝜑2 ... 𝜑𝑛−1 |∼𝐴𝜑𝑛 𝜑𝑛 |∼𝐴𝜑0
𝜑0 |∼𝐴𝜑𝑛

(Loop)

Let us define the FCA-counterparts of the models of defeasible reasoning by suitably adapting the
approach used in [23] to define KLM-style modal logics.

A pointed model is a tuple M𝑎 = (P, 𝑉, 𝑎), where M is a model, and 𝑎 ∈ 𝐴. Let ℳ = (𝑆, 𝑙,≺) be a
tuple s.t. 𝑆 is a non-empty set (of states), 𝑙 : 𝑆 → 𝒫(𝒰) maps each state to a set of pointed models, and
≺ is a binary relation on 𝑆. For any 𝜑 ∈ ℒ and 𝑠 ∈ 𝑆, 𝑠 |= 𝜑 iff 𝑎 ∈ [[𝜑]]M for all M𝑎 ∈ 𝑙(𝑠). ℳ is a
cumulative model if, for any 𝜑 ∈ ℒ, the set ̂︀𝜑 := {𝑠 | 𝑠 ∈ 𝑆, 𝑠 |= 𝜑} is smooth (i.e. for any 𝑡 ∈ ̂︀𝜑, either 𝑡
is ≺-minimal in ̂︀𝜑, or 𝑠 ≺ 𝑡 for some ≺-minimal element 𝑠 ∈ ̂︀𝜑). A cumulative model ℳ = (𝑆, 𝑙,≺)
is strong if ≺ is asymmetric (i.e. 𝑠 ≺ 𝑡 implies 𝑡 ̸≺ 𝑠 for all 𝑠, 𝑡 ∈ 𝑆) and ̂︀𝜑 has a minimum for every
𝜑 ∈ ℒ; is ordered if ≺ is a strict partial order; is preferential if 𝑙 assigns a single pointed model to each
state. Any cumulative model ℳ defines a cumulative entailment |∼ℳ by: 𝜑1 |∼ℳ 𝜑2 iff for any 𝑠, if 𝑠
is minimal in ̂︁𝜑1, then 𝑠 ∈ ̂︁𝜑2.

It is easy to check that |∼ℳ is a cumulative entailment relation. Reflexivity follows from min(̂︀𝜑) ⊆ ̂︀𝜑.
(LLE) holds since ̂︀𝜑 = ̂︀𝜓 implies min(̂︀𝜑) = min( ̂︀𝜓). (RW) holds since min(̂︀𝜒) ⊆ 𝜑 and ̂︀𝜑 ⊆ ̂︀𝜓 imply
that min(̂︀𝜒) ⊆ 𝜓. As to (CM), if min(̂︀𝜑) ⊆ ̂︀𝜓, min(̂︀𝜑) ⊆ ̂︀𝜒, and 𝑠 ∈ min(ˆ︂𝜑 ∧ 𝜓), then, if 𝑠 /∈ min(̂︀𝜑),
by smoothness, 𝑠′ ≺ 𝑠 for some 𝑠′ ∈ min(̂︀𝜑). Hence, as min(̂︀𝜑) ⊆ ̂︀𝜓, 𝑠′ ∈ ˆ︂𝜑 ∧ 𝜓, contradicting the
minimality of 𝑠. The soundness of (Cut) is shown similarly.

Theorem 1. (cf. [22]) A consequence relation is cumulative (resp. loop-cumulative) iff it coincides with
|∼ℳ for some strong (resp. ordered) cumulative model ℳ, iff it coincides with |∼ℳ for some preferential
(resp. preferential ordered) cumulative model ℳ.

The defeasible entailment |∼𝑋 can be characterized by dualizing the rules for |∼𝐴, using the well
known fact that the order on concepts is defined by reverse inclusion on their intensions.

A lattice-based dually cumulative logic consists of the entailment relation ⊢ of a lattice-based proposi-
tional logic, and a dually cumulative entailment relation, i.e. a set of ℒ-sequents 𝜑 |∼𝑋 𝜓 closed under
the Reflexivity axiom 𝜑 |∼𝑋 𝜑 and the rules

Right Logical Equivalence (RLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜒 |∼𝑋𝜑

𝜒 |∼𝑋𝜓
𝜑⊢𝜓 𝜓 |∼𝑋𝜒

𝜑 |∼𝑋𝜒
Left Weakening (LW)

Dual Cautious Monotonicity (DCM)
𝜓 |∼𝑋𝜑 𝜒 |∼𝑋𝜑

𝜒 |∼𝑋𝜑∨𝜓
𝜒 |∼𝑋𝜑∨𝜓 𝜓 |∼𝑋𝜑

𝜒 |∼𝑋𝜑
Dual Cut (DCut).

The rules above are obtained from the rules for |∼𝐴 by switching the order of the consequence relation
and interchanging ∨ and ∧. This corresponds to the idea that the lattice of set of concept intensions
under set inclusion forms a complete lattice dual to the concept lattice. From (RLE) and (LW) it follows
that logically equivalent formulas |∼𝑋 -entail the same formulas.

Note that the rule loop is invariant under dualizing. A dually cumulative entailment relation is
loop-cumulative if it satisfies the rule Loop.

𝜑0 |∼𝑋𝜑1 𝜑1 |∼𝑋𝜑2 ... 𝜑𝑛−1 |∼𝑋𝜑𝑛 𝜑𝑛 |∼𝑋𝜑0
𝜑0 |∼𝑋𝜑𝑛

(Loop)

We can define models for the various types of dually cumulative relations (i.e. dually cumulative
models and their strong, ordered, and preferential subclasses) by replacing pointed models with dually
pointed models, i.e. tuples M𝑥 := (M, 𝑥) s.t. M is a model and 𝑥 ∈ 𝑋 . All other parts of the definitions
remain unchanged, including the dually cumulative entailment |∼ℳ associated with a dual cumulative



model ℳ. We can show soundness of all the above rules w.r.t. these models in a manner analogous
to soundness proof of |∼𝐴 rules. The proof of the following completeness theorem is similar to the
previous one.

Theorem 2. A consequence relation is dually cumulative (resp. dually loop-cumulative) iff it coincides
with |∼ℳ for some strong (resp. ordered) dually cumulative model ℳ, iff it coincides with |∼ℳ for some
preferential (resp. preferential ordered) dually cumulative model ℳ.

A lattice-based bi-cumulative logic consists of an entailment relation ⊢ for lattice-based propositional
logic, a cumulative entailment relation |∼𝐴 and a dually cumulative entailment relation |∼𝑋 . Such a
logic is loop-cumulative when both |∼𝐴 and |∼𝑋 are. Semantic models for these logics can be defined as
tuples ℳ𝐴𝑋 = (ℳ𝐴,ℳ𝑋), s.t. ℳ𝐴 is a cumulative model and ℳ𝐴 is a dually cumulative model; the
corresponding (strong, ordered, and preferential) subclasses are defined by imposing the corresponding
conditions on ℳ𝐴 and ℳ𝑋 , and the bi-cumulative logic associated with ℳ𝐴𝑋 is specified by |∼ℳ𝐴

and |∼ℳ𝑋
.1 The following is a straightforward corollary of the previous completeness results.

Theorem 3. A pair of entailment relations defines a (loop-cumulative) bi-cumulative logic iff it arises
from some (ordered) strong bi-cumulative model, iff it arises from some preferential (resp. preferential
ordered) bi-cumulative model.

Finally, we consider expanded bi-cumulative logics as bi-cumulative logics endowed with a third type
|∼𝐴𝑋 of defeasible entailment, closed under the following rules except (Loop); when satisfying also
(Loop), such a logic is loop-cumulative.

(LLE)
𝜑⊢𝜓 𝜓⊢𝜑 𝜑 |∼𝐴𝑋𝜒

𝜓 |∼𝐴𝑋𝜒
𝜑⊢𝜓 𝜓⊢𝜑 𝜒 |∼𝐴𝑋𝜑

𝜒 |∼𝐴𝑋𝜓
(RLE)

𝐶𝑜𝑚𝑏𝐴
𝜑 |∼𝐴𝜓
𝜑 |∼𝐴𝑋𝜓

𝜑 |∼𝑋𝜓
𝜑 |∼𝐴𝑋𝜓

𝐶𝑜𝑚𝑏𝑋

(CM𝐴)
𝜑 |∼𝐴𝜓 𝜑 |∼𝐴𝑋𝜒

𝜑∧𝜓 |∼𝐴𝑋𝜒
𝜓 |∼𝑋𝜑 𝜒 |∼𝐴𝑋𝜑

𝜒 |∼𝐴𝑋𝜑∨𝜓 (CM𝑋 )

(Cut𝐴)
𝜑∧𝜓 |∼𝐴𝑋𝜒 𝜑 |∼𝐴𝜓

𝜑 |∼𝐴𝑋𝜒
𝜒 |∼𝐴𝑋𝜓∨𝜑 𝜓 |∼𝑋𝜑

𝜒 |∼𝐴𝑋𝜑
(Cut𝑋 )

(Loop)
𝜑0 |∼𝐴𝑋𝜑1 𝜑1 |∼𝐴𝑋𝜑2 ... 𝜑𝑛−1 |∼𝐴𝑋𝜑𝑛 𝜑𝑛 |∼𝐴𝑋𝜑0

𝜑0 |∼𝐴𝑋𝜑𝑛

The intuition behind these rules can be explained in the following manner.

• (LLE) and (RLE): These rules simply say that |∼𝐴𝑋 respects logical equivalence. Note that
|∼𝐴𝑋 is not assumed to be monotonic in either argument. This is consistent with the intended
interpretation of 𝐶1 |∼𝐴𝑋 𝐶2 as ‘typical objects of 𝐶1 have typical features of 𝐶2’. As typicality,
which is a non-monotonic operator, is applied both to 𝐶1 and 𝐶2, it is natural to allow |∼𝐴𝑋 to
be non-monotonic in both arguments.

• Comb𝐴 and Comb𝑋 : These rules are sound under the intended interpretations of |∼𝐴, |∼𝑋 ,
and |∼𝐴𝑋 .

• CM𝐴 and CM𝑋 : These rules state that the condition 𝜑 |∼𝐴 𝜓 (resp. 𝜓 |∼𝑋 𝜑) is enough to
ensure the monotonicity of |∼𝐴𝑋 in the second (resp. first) argument.

• CutA andCutX: We can perform a cut on the formula which is the second (resp. first) argument
in a sequent containing |∼𝐴𝑋 using a sequent containing |∼𝐴 and |∼𝐴𝑋 .

• Loop: The loop rule behaves analogously to the loop rule for |∼𝐴 or |∼𝑋 .

We believe that a further justification for these rules will be given by the completeness theorem for the
expanded FCA bi-cumulative logic and FCA bi-cumulative ordered logic w.r.t. natural models for such
systems conjectured below.
An entailment relation |∼ℳ𝐴𝑋

can be associated with any bi-cumulative model ℳ as follows: for
any 𝜑1, 𝜑2, 𝜑1 |∼ℳ𝐴𝑋

𝜑2 iff 𝑎𝐼𝑥 for any 𝑠1 ∈ 𝑆𝐴 and 𝑠2 ∈ 𝑆𝑋 , and all pointed models M𝑎 ∈ 𝑙(𝑠1),

1Note that we do not assume any relationship between the partial orders on ℳ𝐴 and ℳ𝑋 . However, in many applications
these two orders have some relationship which needs to be formalized. Studying logics with such relationships would be an
interesting future direction for this project.



M𝑥 ∈ 𝑙(𝑠2) based on the same formal context P = (𝐴,𝑋, 𝐼) and valuation 𝑉 on it. This corresponds to
the idea that a typical object of 𝜑1 should have a typical feature of 𝜑2 when described in same (formal)
context. We finish with the following conjecture.

Conjecture 1. A triple of of entailment relations defines an expanded (loop-cumulative) bi-cumulative
logic iff there exists a (ordered) strong bi-cumulative model ℳ, iff there exists some preferential (resp. pref-
erential ordered) bi-cumulative model ℳ, such that |∼𝐴= |∼ℳ𝐴

, |∼𝑋= |∼ℳ𝑋
, and |∼𝐴𝑋= |∼ℳ𝐴𝑋

.

3. Conclusion and future directions

In this work, we take first steps in defining a KLM style framework for defeasible reasoning on concepts.
This opens several directions for future research and applications:

Formally modelling scenarios involving defeasible concept inclusions: Several real-life sce-
narios involving reasoning about concepts include defeasible reasoning. Our framework can be used to
formally model these scenarios. A toy example (consisting only of |∼𝐴) is discussed in [22].

Reasoning from defeasible knowledge bases: As discussed in the introduction, one of the primary
aim of this work is to develop a framework for reasoning from knowledge given in the form of conceptual
inclusions. In this direction, it would be interesting to study the complexity of various reasoning systems
described in the present paper. In the classical setting, it is known that the complexity of defeasible
reasoning is same as the complexity of the underlying logic [24]. As reasoning about conceptual
inclusions is known to be polynomial-time, showing a similar result in the FCA-setting would show
that reasoning in these logics is computationally efficient.

Belief revision for conceptual knowledge: In several applications, we are interested in scenarios
where the reasoner may need to incorporate new possibly inconsistent knowledge with existing beliefs
of the agents. In the classical setting, non-monotonic logics have been used to define belief revision
operators [25]. It would be interesting to define and study revision operators in the setting of FCA
using the non-monotonic reasoning systems introduced in the present paper.
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