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Abstract
The paper formulates the Zarankiewicz problem in terms of formal contexts as follows: What is 𝑧(𝑚,𝑛; 𝑠, 𝑡), the
largest size of the incidence relation of a formal context with 𝑚 objects and 𝑛 attributes such that there is no a
formal concept with the given extent 𝑠 and 𝑡 intent sizes and larger? Exact formulas for the case 𝑛 = 𝑚, and
𝑠+ 𝑡 = 𝑛+ 1 + 𝑘 with valid ranges of 𝑠, 𝑡, and 𝑘 using the contranominal scales of sizes 𝑛− 𝑘 and maximal
symmetric contexts are obtained. Moreover, symmetric versions of 𝑧⌈𝑛/2⌉(𝑛) function are studied and expected
ansatz-based solutions as second-degree polynomials for 𝑧⌊𝑛/2⌋(𝑛) are disproven with Formal Concept Analysis
assisted tools and concrete lower bounds obtained for 𝑧5(11), 𝑧6(13), 𝑧7(15), 𝑧8(17), and 𝑧9(19).
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1. Introduction

Recently, such IT giants as DeepMind have set their eye on trying to exploit AI-related and machine
learning techniques to solve fundamental mathematical problems like the capset problem in extremal
combinatorics [1] or an alternative characterisation of algebraic structures in knot and group theory
via machine learning attribution methods [2]. In this paper, we deal with Formal Concept Analysis
not only as a mathematical language but as an AI-involved tool suitable for the purposes of extremal
combinatorics and Experimental Mathematics [3] on the example of the Zarankiewicz problem.

The Zarankiewicz problem dates back to the 1950s and asks for the maximal number of edges in a
bipartite graph of fixed size free of bicliques with given sizes of its parts [4]. This is an analogue of a
famous problem studied by Turan on the maximal size of a graph free of 𝑝-clique. The corresponding
function 𝑧(𝑚,𝑛; 𝑠, 𝑡) counting the number of edges in a bipartite graph with parts of sizes 𝑚 and 𝑛
and no biclique with sizes of components 𝑠 and 𝑡 respectively is called the Zarankiewicz function or
number. It is the subject of ongoing research, while the problem is still open in general.

It is interesting that the original problem was published first in terms of grids in French [4]. We
take its translation from [5] except the term grid not lattice to avoid confusion with the French “trellis”
normally used for lattice; moreover, in the original Zarankiewicz formulation “un réseau plan formé”
was used):

“Let 𝑅𝑛 where 𝑛 > 3 be an 𝑛× 𝑛 square grid. Find the smallest natural number 𝑘2(𝑛)
for which every subset of 𝑅𝑛 of size 𝑘2(𝑛) contains 4 points that are all the intersections
of 2 rows and 2 columns. More generally, find the smallest natural number 𝑘𝑗(𝑛) for which
every subset of 𝑅𝑛 of size 𝑘𝑗(𝑛) contains 𝑗2 points that are all the intersections of 𝑗 rows
and 𝑗 columns.”

Note that 𝑘𝑗(𝑛) is 𝑧(𝑛, 𝑛; 𝑗, 𝑗) + 1.
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Such incidence structures like grids are naturally represented by binary relations, Boolean matrices,
and formal contexts, while the latter serve for object-attribute incidence representation in Formal
Concept Analysis.

Formal Concept Analysis (FCA) is a branch of modern lattice theory, and it studies (formal) concepts
and their hierarchies [6]. The adjective “formal” indicates a strict mathematical definition of a pair of
sets (of objects and attributes, respectively), called the extent and the intent, and named the formal
concept as a whole. This formalisation is possible because of the use of algebraic lattice theory and
Galois connections.

So, our goal here is to consider the formulation of the Zarankiewicz problem in terms of FCA and to
see what this approach and the existing tools can add to the state of the art. Thus, bipartite graphs can
be considered as formal contexts, and their maximal bicliques as formal concepts of the context. This is
not the first note on this problem; thus, the problem was properly summarised as part of an extensive
survey on mathematical aspects of Formal Concept Analysis in the middle of the 1990s [7].

Moreover, recent results on extremal lattice theory and Boolean matrix factorisation with FCA show
that formal contexts called contranominal scales are of high importance. For example, the work of
Albano and Chornomaz [8] answers the question “How large is the size of a concept lattice?” when
contranominal scales of a certain size are not contained in the input context of a fixed size, while our
previous work shows that the state-of-the-art Boolean matrix factorisation algorithms are suboptimal
on contranominal scales. This is also a basic fact that a contranominal scale of size 𝑛×𝑛 has the largest
possible number of formal concepts, 2𝑛, for the given 𝑛, while the concept extent sizes run through
all {1, 2, . . . , 𝑛} = [𝑛]. So, we answer the question “What is the role of contranominal scales in the
Zarankiewicz problem?”.

In addition, we include a summary of the relevant decision problems related to those formulated
in [9] on the existence of the concepts with the fixed sizes (cf. non-strictly larger or smaller than that
size) of their extent, intent and perimeter.

The paper is organised as follows. Section 2 gives the basics of FCA theory. Section 3, formulates the
studied problem for 𝑧(𝑛,𝑚; 𝑠, 𝑡) in FCA terms. Section 4 presents obtained theoretical results including
the fully symmetric case for the Zarankiewicz function like 𝑧(𝑛, 𝑛; ⌊𝑛/2⌋). Section 5 briefly overviews
the most relevant works. Section 6 concludes the paper.

2. FCA Basics

We mainly follow the notation from [6].

Definition 1. Formal context K is a triple (𝐺,𝑀, 𝐼) where 𝐺 is a set of objects, 𝑀 is a set of attributes,
and 𝐼 ⊆ 𝐺×𝑀 is an incidence binary relation.

The binary relation 𝐼 is interpreted as follows: for 𝑔 ∈ 𝐺, 𝑚 ∈ 𝑀 we write 𝑔𝐼𝑚 if the object 𝑔 has
the attribute 𝑚.

For a formal context K = (𝐺,𝑀, 𝐼) and any 𝐴 ⊆ 𝐺 and 𝐵 ⊆ 𝑀 , a pair of mappings is defined:

𝐴↑ = {𝑚 ∈ 𝑀 | 𝑔𝐼𝑚 for all 𝑔 ∈ 𝐴}, 𝐵↓ = {𝑔 ∈ 𝐺 | 𝑔𝐼𝑚 for all 𝑚 ∈ 𝐵},

these mappings define the Galois connection between partially ordered sets (2𝐺,⊆) and (2𝑀 ,⊆) on
disjunctive union of 𝐺 and 𝑀 . The set 𝐴 is called closed, if 𝐴↑↓ = 𝐴 [10].

Definition 2. A formal concept of the formal context K = (𝐺,𝑀, 𝐼) is a pair (𝐴,𝐵), where 𝐴 ⊆ 𝐺,
𝐵 ⊆ 𝑀 , 𝐴↑ = 𝐵 and 𝐵↓ = 𝐴. The set 𝐴 is called the extent, and 𝐵 is the intent of the formal concept
(𝐴,𝐵).

It is evident that the extent and intent of any formal concept are closed sets.
The set of all formal concepts of a context K is denoted by B(𝐺,𝑀, 𝐼). This set forms an algebraic

lattice called concept lattice where the concepts are ordered via set inclusion of their extents (dually
intents).



Note that (.)↑ and (.)↓ derivation operators are usually unified by a single symbol like prime (.)′ or
(.)𝐼 , when formal contexts with different incidence relations, say 𝐼 and 𝐽 are used simultaneously.

Note also that similarly to the case of the definition of bipartite graph, the definition of formal
context could include a requirement for sets 𝐺 and 𝑀 being disjunctive; however, since 𝐺 and 𝑀 are
technically related with two different operators (.)↑ and (.)↓ we can safely operate with 𝐺 = {1, . . . , 𝑛}
and 𝑀 = {1, . . . , 𝑛} in what follows without loss of generality.

For every set 𝑆 the contranominal scale is defined as N𝑐
𝑆 = (𝑆, 𝑆, ̸=). In what follows, we consider

N𝑐
𝑛 with 𝑆 = [𝑛] = {1, . . . , 𝑛} without loss of generality.
Note that similarly to the case of the definition of bipartite graph, the definition of formal context could

include the requirement for sets 𝐺 and 𝑀 being disjunctive; however since 𝐺 and 𝑀 are technically
related with two different operators (.)↑ and (.)↓ we can safely operate with 𝐺 = {1, . . . , 𝑛} and
𝑀 = {1, . . . , 𝑛} without loss of generality.

The surveys on advances in FCA theory and its applications can be found in [11, 12].

3. Problem Statement

We propose the following most general formulation of the Zarankiewicz problem.

Problem 1. What is 𝑧(𝑚,𝑛; 𝑠, 𝑡), the largest size of the incidence relation 𝐼 of a formal context K =
(𝐺,𝑀, 𝐼) with |𝐺| = 𝑚 and |𝑀 | = 𝑛, for which there is no any formal concept (𝐴,𝐵) with |𝐴| ≥ 𝑠 and
|𝐵| ≥ 𝑡?

We need these inequalities in the formulation, |𝐴| ≥ 𝑠 and |𝐵| ≥ 𝑡, since there might be a concept
of size (𝑠+ 1)× 𝑡 = |𝐴||𝐵| but not of 𝑠× 𝑡 containing the subcontext of sizes 𝑠× 𝑡 due to maximality
of concepts in terms of the number of objects and attributes (cf. maximal bicliques).

In what follows, we use 𝑝,𝑞 when the extent and intent sizes of a concept (𝐴,𝐵) are involved with
𝑝 = |𝐴| and 𝑞 = |𝐵|. If 𝑚 = 𝑛, we write 𝑧(𝑛; 𝑠, 𝑡) for 𝑧(𝑛, 𝑛; 𝑠, 𝑡) and if in addition 𝑠 = 𝑡, then we
write 𝑧(𝑛; 𝑡) for 𝑧(𝑛; 𝑠, 𝑡).

For a given instance of Problem 1, we will call the formal contexts (similarly, for binary matrices or
bipartite graphs [5, 13]) with the maximum number of pairs in 𝐼 admissible if there is no any concept
(𝐴,𝐵) with |𝐴| ≥ 𝑠 and |𝐵| ≥ 𝑡.

Here and in what follows we also assume that all the variables 𝑛,𝑚, 𝑝, 𝑞, 𝑠, 𝑡 and 𝑘 are non-negative
integers.

4. Results

4.1. Contranominal Scales and Maximal Symmetric Contexts

Lemma 1. ([14, 5]) Let K = (𝐺,𝑀, 𝐼 ⊆ 𝐺 × 𝑀) with 𝐺 = {𝑔1, . . . , 𝑔𝑛} and 𝑀 = {𝑚1, . . . ,𝑚𝑛},
then this context does not contain a concept with extent and intent sizes 𝑝 and 𝑞 or larger, respectively, if

𝑛∑︁
𝑖=1

(︂
|𝑚′

𝑖|
𝑝

)︂
≤ (𝑞 − 1)

(︂
𝑛

𝑝

)︂
. (1)

Lemma 1 is the instantiation of the pigeonhole principle [15], where the pigeons are subsets of
attributes’ extents of size 𝑝, while the holes are subsets of objects of the same size.

Lemma 1 implies bounds on the values of 𝑧 suitable for our purposes, while stronger results can
be found, for example, in Roman [16]. Also, a stronger version of Lemma 1 exists for the sum over 𝑞
attributes (see, [13]).

Lemma 2. ([6]) For each concept (𝐴,𝐵) of the contranominal scale of size 𝑛, ([𝑛], [𝑛], ̸=), |𝐴|+ |𝐵| = 𝑛.

Property 1. 𝑧(𝑛;𝑛+ 1, 𝑞) = 𝑛2 for any 𝑞 > 0.



Property 1 is needed if we would like to extend the values of 𝑧 for the sizes of 𝑝, 𝑞(symmetrically)
exceeding the size 𝑛 of the input context.

Form Lemma 2 we infer Property 2.

Property 2. If a formal context K = (𝐺,𝑀, 𝐼) contains as its subcontext a contranominal scale of size 𝑘,
N𝑐
𝑘, then K should contain a formal concept (𝐴,𝐵) with |𝐴| ≥ 𝑝 and |𝐵| ≥ 𝑞 where 𝑝+ 𝑞 = 𝑘.

In the next theorems by the solution to the Zarankiewicz problem for given 𝑛, 𝑝 and 𝑞, we mean an
admissible formal context with |𝐼| = 𝑧(𝑛; 𝑝+ 1, 𝑛) = 𝑧(𝑛; 𝑝, 𝑞 + 1).

Theorem 1. A contranominal scale of size 𝑛, ([𝑛], [𝑛], ̸=), gives a solution to the Zarankiewicz problem
with 𝑚 = 𝑛, 𝑝+ 𝑞 = 𝑛 for 𝑝, 𝑞 > 0, and 𝑧(𝑛; 𝑝+ 1, 𝑞) = 𝑧(𝑛; 𝑝, 𝑞 + 1) = 𝑛(𝑛− 1).

Proof. 1) Admissibility. By Lemma 1 we should have

𝑛∑︁
𝑖=1

(︂
𝑛− 1

𝑝+ 1

)︂
≤ (𝑞 − 1)

(︂
𝑛

𝑝+ 1

)︂
.

Or

(𝑛− 1− 𝑝)

(︂
𝑛

𝑝+ 1

)︂
≤ (𝑞 − 1)

(︂
𝑛

𝑝+ 1

)︂
(since we plug in 𝑛 into the binomial coefficient

(︀
𝑛−1
𝑝+1

)︀
and pull out (𝑛− 1− 𝑝)),

𝑛− 1− 𝑝 ≤ 𝑞 − 1.

We substitute 𝑛− 𝑝 = 𝑞 by the condition and get the identity 𝑞 − 1 ≤ 𝑞 − 1.
One can also show that our context is free of any concept (𝐴,𝐵) with |𝐴| = 𝑝 + 1, |𝐵| = 𝑞 and

|𝐴| = 𝑝, |𝐵| = 𝑞 + 1. By Lemma 2 |𝐴|+ |𝐵| = 𝑛, which implies 𝑝+ 𝑞 + 1 = 𝑛, the contradiction.
2) Maximality. Then let us also show that the contranominal scale is the maximal context in terms of its
number of incident object-attribute pairs.

Assume that we can add one more object-attribute pair, say (𝑔𝑛,𝑚𝑛) to the contranominal scale such
that the resulting context is admissible. Then our context will contain one full row, full column and a
contranominal scale of size 𝑛− 1 as subcontext disjoint from these full row and column. Since full rows
and columns are both reducible, then the resulting context gives rise to the same number of concepts
that the contranominal scale of size 𝑛− 1 has. For each concept (𝐴,𝐵) of the N𝑐

𝑛 with |𝐴| = 𝑝 and
|𝐵| = 𝑞, either 𝑔𝑛 ∈ 𝐴 (𝑚𝑛 ̸∈ 𝐵) or 𝑚𝑛 ∈ 𝐵 (𝑔𝑛 ̸∈ 𝐴), so the concept of the new context 𝐼 , (𝐴𝐼𝐼 , 𝐴𝐼)
or (𝐵𝐼 , 𝐵𝐼𝐼), will have extent and intent sizes 𝑝, 𝑞 + 1 or 𝑝 + 1, 𝑞, respectively. Due to the context
symmetry, the concepts of sizes 𝑝, 𝑞 + 1 and 𝑝+ 1, 𝑞 are both realised for each 𝑝, 𝑞 pair. Then the new
context is not admissible for given 𝑝 and 𝑞, the contradiction.

Similarly, for Lemma 1, its inequality becomes false.

□

Can we also use contranominal scales for other types of solutions? The answer is yes. Thus one can
place new object-attribute pair on the main diagonal of a contranominal scale.

Theorem 2. A context K obtained from a contranominal scale of size 𝑛 as K = ([𝑛], [𝑛], ̸= ∪(𝑖, 𝑖)) for
𝑖 ∈ [𝑛] gives a solution to the Zarankiewicz problem with 𝑚 = 𝑛, 𝑝 + 𝑞 = 𝑛 − 1 for 𝑝, 𝑞 > 0, and
𝑧(𝑛; 𝑝+ 2, 𝑞 + 1) = 𝑧(𝑛; 𝑝+ 1, 𝑞 + 2) = 𝑛(𝑛− 1) + 1.

Proof. 1) Admissibility. By Lemma 1 the following inequality should hold(︂
𝑛

𝑝+ 2

)︂
+

𝑛−1∑︁
𝑖=1

(︂
𝑛− 1

𝑝+ 2

)︂
≤ 𝑞

(︂
𝑛

𝑝+ 2

)︂
.



After simplification we get the inequality 𝑛−1
𝑛 (𝑞 − 1) ≤ 𝑞 − 1.

2) Let us check maximality by adding a new pair, say (𝑔𝑛−1,𝑚𝑛−1). First, we should note that our
context contains a contranominal scale isomorphic to ([𝑛− 1], [𝑛− 1], ̸=). So, the sum of sizes of its
concept’s extent and intent is 𝑛 − 1 = 𝑝 + 𝑞, but since we have an extra full row and column, each
concept of the considered context will have extent and intent size 𝑝+ 1 and 𝑞 + 1. It implies that there
is no any concept with sizes of its extent 𝑝+ 2 and intent 𝑞 + 1 (same for 𝑝+ 2 and 𝑞 + 1).

□

Can we generalise this solution up to 𝑘 added pairs to the contranominal scale of size 𝑛? Again, the
answer is yes.

Theorem 3. A context K obtained from a contranominal scale of size 𝑛 as

K = ([𝑛], [𝑛], ̸= ∪
⋃︁
𝑖∈𝑆

(𝑖, 𝑖))

for 𝑆 ∈
(︀[𝑛]
𝑘

)︀
gives a solution to the Zarankiewicz problem with 𝑚 = 𝑛, 𝑝+ 𝑞 = 𝑛− 𝑘, 0 < 𝑘 ≤ 𝑛 for

1) 𝑝, 𝑞 > 0 (or 𝑝 = 𝑞 = 0), and

𝑧(𝑛; 𝑝+ 1 + 𝑘, 𝑞 + 𝑘) = 𝑧(𝑛; 𝑝+ 𝑘, 𝑞 + 1 + 𝑘) = 𝑛(𝑛− 1) + 𝑘,

2) 𝑞 = 0, 𝑝 > 0,
𝑧(𝑛; 𝑝+ 1 + 𝑘, 𝑞 + 𝑘) = 𝑛2

and
𝑧(𝑛; 𝑝+ 𝑘, 𝑞 + 1 + 𝑘) = 𝑛(𝑛− 1) + 𝑘,

3) 𝑝 = 0, 𝑞 > 0,
𝑧(𝑛; 𝑝+ 1 + 𝑘, 𝑞 + 𝑘) = 𝑛(𝑛− 1) + 𝑘

and
𝑧(𝑛; 𝑝+ 𝑘, 𝑞 + 1 + 𝑘) = 𝑛2.

Proof. The proof of Admissibility is similar.

𝑘

(︂
𝑛

𝑝+ 𝑘 + 1

)︂
+ (𝑛− 𝑘)

(︂
𝑛− 1

𝑝+ 𝑘 + 1

)︂
≤ (𝑞 + 𝑘 − 1)

(︂
𝑛

𝑝+ 𝑘 + 1

)︂
.

We obtain inequality 𝑛−𝑘
𝑛 (𝑞 − 1) ≤ 𝑞 − 1, which is true for 𝑞 > 0. For 𝑞 = 0, the inequality is false.

The solution for 2) 𝑞 = 0 falls into two basic cases (up to the symmetry 𝑝 and 𝑞). When 𝑝 = 0, 𝑛 = 𝑘
and by Property 1 𝑧(𝑛;𝑛 + 1, 𝑛) = 𝑧(𝑛;𝑛, 𝑛 + 1) = 𝑛2, which coincides with 𝑛(𝑛 − 1) + 𝑘. When
𝑝 > 0, 𝑝+ 𝑘 = 𝑛, and

𝑧(𝑛;𝑛+ 1, 𝑘) = 𝑛2

(by Property 1) and
𝑧(𝑛;𝑛, 1 + 𝑘) = 𝑛(𝑛− 1) + 𝑘

(has to be proven).
The last subcase is admissible by noting that any new object-attribute pair on the diagonal will result

in the full column and we get the concept of size 𝑛× (1 + 𝑘). The contranominal scale of size 𝑛− 𝑘
cannot be replaced by any other subcontext within the context region of size 𝑛− 𝑘 × 𝑛 with the same
number of incident pairs since placing at least two missing pairs in one row gives rise to a full column
but placing all 𝑛− 𝑘 into distinct rows results in the presence of the contranominal scale of the same
size. Case 3) is similar.

The maximality condition for 1) is proven similarly to Theorem 2.

□



𝑛 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
⌈𝑛/2⌉ 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10
𝑧⌈𝑛

2 ⌉(𝑛) 0 0 6 9 20 26 42 51 72 84 110 125 156 174 210 231 272 296 342 369

Corollary 1. A context ([𝑛], [𝑛],= ∖
⋃︀
𝑖∈𝑆

(𝑖, 𝑖)) with 𝑆 ∈
(︀[𝑛]
𝑘

)︀
has the maximal number of incident

pairs being free from the concept with extent and intent sizes 𝑛 and 𝑘 + 1 (symmetrically, 𝑘 + 1 and 𝑛),
respectively.

Remark 1. Note that 𝑧(𝑛; 𝑝+1+𝑘, 𝑞+𝑘) and 𝑧(𝑛; 𝑝+𝑘, 𝑞+1+𝑘) can be recast as 𝑧(𝑛; 𝑝+1+𝑘, 𝑛−𝑝)
and 𝑧(𝑛; 𝑝+ 𝑘, 𝑛− 𝑝− 1).

Note that Theorems 1 and 2 look less general or less detailed than Theorem 3, though we keep these
two theorems not as propositions similarly to the work of Balbuena et al. [17], which is discussed in
Subsection 4.3. Summing it all, the obtained results allow us to compute all the values 𝑧(𝑛, 𝑛; 𝑠, 𝑡) where
𝑠+ 𝑡 is greater than 𝑛 (see also Subsection 4.3).

4.2. Single variable Zarankiewicz function

In earlier works, Zarankiewicz, Guy [14] and others paid special attention to the function 𝑧𝑎(𝑛) =
𝑧(𝑛, 𝑛; 𝑎, 𝑎).

An interesting question would be what the obtained results can do for this case when the function
is totally symmetrised. As it is mentioned in the related work section, [18] considered the so-called
half-half case 𝑧(2𝑠, 2𝑡; 𝑠, 𝑡) and one possible symmetrisation would be to deal with 𝑧(2𝑡, 2𝑡; 𝑡, 𝑡) (even
case).

For an odd 𝑛, i.e. 𝑛 = 2𝑡− 1 for 𝑡 > 0, we get

𝑧(2𝑡− 1; 𝑡, 𝑡) = 2(2𝑡− 1)(𝑡− 1),

but we cannot tackle the even case since 𝑝+ 1 and 𝑞 have different parity when 𝑝+ 𝑞 = 2𝑡 and cannot
be equal. However, by Theorem 1.3 from [17] we have

𝑧(2𝑡; 𝑡, 𝑡) = 4𝑡2 − 3𝑡− 1 = 2(2𝑡− 1/2)(𝑡− 1).

We combine these two results into a single formula as follows:

𝑧(𝑛; ⌈𝑛/2⌉, ⌈𝑛/2⌉) = 2
(︁
2𝑡− 1

4
+ (−1)𝑛

3

4

)︁(︁
𝑡− 1

)︁
,

here 𝑡 = ⌈𝑛/2⌉
Or

𝑧⌈𝑛
2
⌉(𝑛) = 4⌈𝑛/2⌉2 − 9

2
⌈𝑛/2⌉+ 1

2
+ (−1)𝑛

(︁3
2
⌈𝑛/2⌉ − 3

2

)︁
.

This upper symmetrisation for odd 𝑛 = 2𝑡− 1 is possible with contranominal scales, however they
do not work in the case of 𝑧(𝑛; ⌊𝑛/2⌋, ⌊𝑛/2⌋) = 𝑧(2𝑡− 1; 𝑡− 1, 𝑡− 1), since ⌊𝑛/2⌋ = 𝑡− 1 along with
𝑝 = 𝑡− 2 and 𝑞 = 𝑡− 1 violate 𝑝+ 𝑞 = 𝑛. Similarly, for 𝑛 = 2𝑡+ 1 we deal with 𝑧(2𝑡+ 1; 𝑡, 𝑡) and
have 𝑝+ 𝑞 = 𝑡− 1 + 𝑡 = 2𝑡− 1 ̸= 2𝑡+ 1, the violation. This case is also beyond reach for Theorem 3
(since 𝑝 + 𝑞 = (𝑡 − 1 − 𝑘) + (𝑡 − 𝑘) ̸= 𝑛 − 𝑘), Theorems 1.2 (𝑛 = 2𝑡 + 1 implies the contradiction
2𝑡+ 1 ≤ 2𝑡− 1)) and 1.3 (valid for even cases) from [17].

We know from the literature [5] and OEIS that 𝑧2(5) = 12, 𝑧3(7) = 33, and 𝑧4(9) = 61. This is
enough to find coefficients of 𝑧(2𝑡+ 1; 𝑡, 𝑡) as a quadratic polynomial 𝑎𝑡2 + 𝑏𝑡+ 𝑐. The case 𝑛 = 3 is
omitted, resulting in zero pairs by the definition.

The system ⎧⎪⎨⎪⎩
4𝑎+ 2𝑏+ 𝑐 = 12

9𝑎+ 3𝑏+ 𝑐 = 33

16𝑎+ 4𝑏+ 𝑐 = 61.



𝑛 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
⌊𝑛/2⌋ 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10
𝑧⌊𝑛

2 ⌋(𝑛) 0 0 9 12 26 33 51 61 84 ? 125 ? 174 ? 231 ? 296 ? 369

𝑛 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
⌊𝑛/2⌋ 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10

𝑄2𝑡+1(𝑡) 0 12 33 63 102 150 207 273 348
𝑧⌊𝑛

2 ⌋(𝑛) 0 0 9 12 26 33 51 61 84 ≥97 125 ≥142 174 ≥ 192 231 ≥253 296 ≥320 369
𝑃2𝑡+1(𝑡) 12 33 61 96 138 187 243 306

results in 𝑃2𝑡+1(𝑡) =
7
2 𝑡

2 + 7
2 𝑡− 9 = 7

2 𝑡(𝑡+ 1)− 9 as a candidate for 𝑧(2𝑡+ 1; 𝑡, 𝑡).
If our ansatz1 based on the fact that 𝑧(𝑛, 𝑛; 𝑝, 𝑞) is totally bounded by 𝑛2 and all possible variables

enter linearly or quadratically is correct, we should obtain the next value for 𝑧5(11) as 96.
In reality, the following contexts for 𝑛 = 11 in Figure 1 and 2 were obtained ad hoc based on the

usage of contranominal scales as building blocks and validated with our implementations of CbO [7]
and NextClosure [6] and cross-checked with the concept generation algorithm In-Close [20], by adding
extra crosses (pairs) to the context and checking the absence of concepts larger than or equal to 5× 5
and 6× 6 full subcontexts, respectively, in terms of extent times intent sizes.

K𝑧5(11)≥97
1 2 3 4 5 6 7 8 9 10 11

1 × × × × × × × ×
2 × × × × × × × ×
3 × × × × × × × × ×
4 × × × × × × × × × ×
5 × × × × × × × × ×
6 × × × × × × × × ×
7 × × × × × × × × ×
8 × × × × × × × ×
9 × × × × × × × ×
10 × × × × × × × × × ×
11 × × × × × × × × ×

Figure 1: A formal context for the obtained lower bound 𝑧5(11) ≥ 97

So, the knowledge base on the behaviour of 𝑧2𝑡+1(𝑡) is updated. At least, it is not that regular to be
described by the same polynomial of degree 2, 𝑃2𝑡+1(𝑡), for the range 𝑡 ≥ 2.

But what if we still have doubts, especially, since 𝑧(2𝑡 − 1, 𝑡, 𝑡) = 2(2𝑡 − 1)(𝑡 − 1) and its even
counterpart, 𝑛 = 2𝑡, have their roots at 𝑡 = 1? We can consider another quadratic polynomial
𝑄2𝑡+1(𝑡) =

9
2 𝑡

2 − 3
2 𝑡 − 3 = 9

2(𝑡 +
2
3)(𝑡 − 1). Then for 𝑛 = 9, 𝑡 = 4 we have 𝑄2𝑡+1(4) = 63 but it

contradicts previous knowledge 𝑧9(4) = 61 ([5], OEIS sequence for 𝑘𝑛(4) = 𝑧𝑛(4) + 1 is A0066162).
𝑄 starts to overestimate 𝑧 at 𝑡=4, while 𝑃 underestimates 𝑧 first at 𝑡 = 11, the lowest upper bound

for 𝑧4(9) from the best known ones is by Roman [16] (the bound by Nikiforov [21] gives higher values)
is 64, while for 𝑧5(11) it is 102, and 148 for 𝑧6(13) (smaller than 𝑄2𝑡+1(13)).

All the contexts and codes are available on GitHub https://github.com/dimachine/Zarankiewicz.

4.3. Reality Checks

Let us have a look at the function behaviour for some small 𝑛, for example, 5. The rows and columns of
Table 1 with 𝑠 = 1 or 𝑡 = 1 are filled via the conditions that every object (or attribute) should have (be
shared by) 𝑡− 1 attributes (𝑠− 1 objects).

1an assumption about the form of an unknown function which is made in order to facilitate solution of an equation or other
problem; e.g. [19]

2https://oeis.org/a006616

https://github.com/dimachine/Zarankiewicz
https://oeis.org/a006616


K𝑧6(13)≥142
1 2 3 4 5 6 7 8 9 10 11 12 13

1 × × × × × × × × × ×
2 × × × × × × × × × ×
3 × × × × × × × × × × ×
4 × × × × × × × × × × × ×
5 × × × × × × × × × × ×
6 × × × × × × × × × × ×
7 × × × × × × × × × × ×
8 × × × × × × × × × × × ×
9 × × × × × × × × × × ×
10 × × × × × × × × × ×
11 × × × × × × × × × ×
12 × × × × × × × × × × × ×
13 × × × × × × × × × × ×

Figure 2: A formal context for the obtained lower bound 𝑧6(13) ≥ 142

Table 1
𝑧(5, 5, 𝑠, 𝑡); the numbers given in the literature are italic, while obtained by our formulas are below the stepwise
line on the diagonal (and also in bold if present in the referenced literature, e.g., in [13])

𝑠, 𝑡 1 2 3 4 5
1 0 5 10 15 20
2 5 12 16 20 21
3 10 16 20 21 22
4 15 20 21 22 23
5 20 21 22 23 24

𝑠, 𝑡 1 2 3 4 5 6
1 0 6 12 18 24 30
2 6 16 22 25 30 31
3 12 22 26 30 31 32
4 18 25 30 31 32 33
5 24 30 31 32 33 34
6 30 31 32 33 34 35

Assembling Theorems 1, 2, 3 altogether, we have 𝑝 + 𝑞 = 𝑛 − 𝑘 and 𝑝 + 1 + 𝑘 + 𝑞 + 𝑘 = 𝑠 + 𝑡.
For 𝑡 = 𝑠 in the region 𝑠 + 𝑡 = 𝑛 + 𝑘 + 1, 0 ≤ 𝑘 ≤ 𝑛 − 1, if we substitute 𝑘 in 𝑛(𝑛 − 1) + 𝑘, we
get 𝑧(𝑛; 𝑡, 𝑡) = 𝑛2 − 2𝑛 + 2𝑡 − 1 for 𝑛 + 1 ≤ 2𝑡 ≤ 2𝑛. Actually, within that region (on and below
the backward diagonal), in axes 𝑛, 𝑧 when 𝑡 is fixed, we deal with the parabola, while on the level
𝑛 = 𝑐𝑜𝑛𝑠𝑡 we have the family of disjoint lines.

What if we would like to see a solution for a certain non-trivial value of 𝑧 from those tables above
the stepwise line? We can check a suitable context of a given size with |𝐼| = 𝑧(𝑛; 𝑠, 𝑡).

For example, take the value 𝑧(6; 2, 4) = 𝑧(6; 4, 2) = 25 (see OEIS sequence A0066143).

K𝑧(6;4,2) a b c d e f

1 × × × ×
2 × × × ×
3 × × × ×
4 × × × ×
5 × × × ×
6 × × × × ×

Figure 3: A formal context for 𝑧(6; 4, 2) = 25 and its concept lattice diagram with labeling by extent size and
full intent

Thus, starting with a contranominal scale of size 5 = 4− 1 + 2, we have found the non-extensible
(by adding new crosses) context K𝑧(6;4,2) shown in Figure 3. Its concept lattice diagram shows that
there are no concepts of sizes 4× 2 or (2× 4).

Actually, if we are given 𝑠 and 𝑡 and an examined context, we should care that contranominal scales

3https://oeis.org/006614

https://oeis.org/006614


of size 𝑠+ 𝑡 are not contained in the given context, while scales of size 𝑠+ 𝑡− 1 can be used as building
blocks, properly allocated and modified.

4.4. Complexity of Related Decision Problems

One of our peers posed the following question: What is the computational complexity of decision
problems concerning the Zarankiewicz function, such as deciding whether 𝑧(𝑛,𝑚; 𝑠, 𝑡) equals 𝑘, is at
most 𝑘, or is at least 𝑘?

In general, these problems are presumably not in 𝑃 since otherwise many more values of the
Zarankiewicz function would be known.

We formulate these decision problems here along with an intermediate problem which should be
used as a proxy routine for them.

Problem 2. INSTANCE Given 𝑛,𝑚, 𝑠, 𝑡 and 𝑘.
QUESTION Is it true that 𝑧(𝑛,𝑚; 𝑠, 𝑡) = 𝑘?

Problem 3. INSTANCE Given 𝑛,𝑚, 𝑠, 𝑡 and 𝑘.
QUESTION Is it true that for given 𝑛,𝑚, 𝑠, 𝑡, 𝑧(𝑛,𝑚; 𝑠, 𝑡) ≤ 𝑘?

Problem 4. INSTANCE Given 𝑛,𝑚, 𝑠, 𝑡 and 𝑘.
QUESTION Is it true that for given 𝑛,𝑚, 𝑠, 𝑡, 𝑧(𝑛,𝑚; 𝑠, 𝑡) ≥ 𝑘?

As the aforementioned intermediate problem, we consider the following one.

Problem 5. INSTANCE Given K = (𝐺,𝑀, 𝐼), and 𝑝 and 𝑞.
QUESTION: Does there exist a formal concept (𝐴,𝐵) ∈ B(𝐺,𝑀, 𝐼) with |𝐴| = 𝑝 and |𝐵| = 𝑞?

Note that Problem 5 when 𝑝 = 𝑞 = 𝑘 is also equivalent to the problem of the balanced biclique,
which is NP-complete [22].

To answer the question of Problem 3 in a brute-force manner one needs to check every context with
|𝐼| = 𝑘 (

(︀
𝑛𝑚
𝑘

)︀
such contexts) with an algorithm solving an instance of Problem 4 with all concept sizes

𝑝, 𝑞 such that 𝑝 ≥ 𝑠 and 𝑞 ≥ 𝑡 until at least one context without all these concepts is found (if the
context is not found, the answer is no). Note that in general such a context trivially exists for all 𝑠𝑡 > 𝑘
and 𝑠 ≤ 𝑛, 𝑡 ≤ 𝑚, 𝑘 ≤ 𝑛𝑚. Then one needs to check all the contexts with |𝐼| = 𝑘 + 1 (

(︀
𝑛𝑚
𝑘+1

)︀
such

contexts) for the absence of any concept of extent and intent sizes 𝑝, 𝑞, respectively, such that 𝑝 ≥ 𝑠
and 𝑞 ≥ 𝑡. Then the answer is yes.

Note that for the case when 𝑛 = 𝑚 and 𝑠+ 𝑡 ≥ 𝑛, we can use the König theorem to find the size
of the formal concept with 𝑝+ 𝑞 ≥ 𝑛 as in Theorem 3 from [9] in polynomial time via the size of the
maximum matching for the bipartite graph 𝐵 for the complement of 𝐼 . By the König theorem, the
number of vertices in the largest independent set is 2𝑛− |𝑇 |, where 2𝑛 is the number of vertices in
the bipartite graph 𝐵 given by the complement of 𝐼 , and |𝑇 | is the number of edges in the maximum
matching of 𝐵. Since |𝑇 | ≤ 𝑛, we cannot do that for the cases when 𝑝+ 𝑞 < 𝑛 since the maximum
matching leaves us with 𝑛 vertices at minimum for the size of the related maximal independent set in
𝐵 and hence the concept is in B(𝐺,𝑀, 𝐼). Or, in general, this can be done for appropriate cases when
𝑠+ 𝑡 ≥ 𝑚𝑛−min(𝑛,𝑚) + 1. This explains why we can have exact formulas for the cases with 𝑛 = 𝑚
and 𝑠+ 𝑡 ≥ 𝑛.

We leave all the remaining cases with formal proofs for the extended publication.

5. Related Work

The most relevant for our studies are the works by Balbuena et al. [17] and Tan [5]. The work of
Tan [5] demonstrates how to obtain not only values but also possible solutions to the first several dozen
values of 𝑛 for 𝑧𝑎(𝑛) and 𝑎 ∈ {2, 3, 4} with SAT solvers. In [17] more general cases for 𝑧(𝑚,𝑛; 𝑠, 𝑡)
are considered under 𝑚𝑎𝑥{𝑚,𝑛} ≤ 𝑠+ 𝑡− 1 and 𝑧(𝑚,𝑛; 𝑡, 𝑡) if 2𝑡 ≤ 𝑛 ≤ 3𝑡− 1; the exact formulas



obtained. The authors used matchings to subtract them from the considered bipartite graphs and obtain
the solutions and claimed formulas. Our theorems are in accordance with their results where the scopes
of the theorems overlap for 𝑚 = 𝑛. They also rely on [18], where the so-called half-half case was
considered with 𝑧(2𝑠, 2𝑡; 𝑠, 𝑡), which is not applicable for cases with odd 𝑛.

We partially reproduce Theorem 1.2 and Theorem 1.3 from [17] since we rely on them in Subsection 4.2.

Theorem 4. (A part of Theorem 1.2 [17]) Let 𝑚,𝑛, 𝑠, 𝑡 be integers with 2 ≤ 𝑠 < 𝑚, 2 ≤ 𝑡 < 𝑛 and such
that max{𝑚,𝑛} ≤ 𝑠+ 𝑡− 1. Then

𝑧(𝑚,𝑛; 𝑠, 𝑡) = 𝑚𝑛− (𝑚+ 𝑛− 𝑠− 𝑡+ 1).

Theorem 5. (A part of Theorem 1.3 [17]) Theorem 1.3. Let 𝑚, 𝑡 be integers such that 2 ≤ 𝑡 ≤ 𝑚 ≤ 2𝑡.
Then

𝑧(𝑚, 2𝑡; 𝑡, 𝑡) = 𝑚 · 2𝑡− (2𝑚− 𝑡+ 1).

There is also Theorem 1.4 but it forbids 𝑡 = 𝑛/2.
A large amount of past and recent works devoted to various inequalities [16] and asymptotic stud-

ies [21, 23] whose estimates are usually overly high for rather small 𝑛 like 11 or not general enough by
considering special cases for 𝑧𝑎(𝑛) with small 𝑎 like 2, 3 or with rather complex 𝑎 being a polynomial, or
cases where the ratio of 𝑚 and 𝑛 in 𝑧(𝑚,𝑛; 𝑠, 𝑡) is rather high up to some binomial coefficient including
𝑚 or 𝑛 to sample out.

6. Conclusion

One can see that FCA as a theory and as an analytical tool can help to study combinatorial mathematical
problems, which is in line with the work of B. Ganter [24] on integer partition lattices, the work
of C. Jakel on the ninth Dedekind number [25] and on our previous works on (maximal) antichains
enumeration in Boolean and partition lattices [26] and symmetric contexts and maximal independent
sets for the cover graph of a Boolean cube [27]. We hope it can also do both in other cases when
we deal with Boolean matrices or ordered structures, to provide theoretical keys to enumeration and
counting problems and help to compute missing numbers, which may lead to interesting conjectures
and theorems. Last but not least, it contributes to the inventory of Experimental Mathematics as an
AI-assisted tool.

Acknowledgments

I would like to thank my close relatives, Anastasia, Galina, Igor, Maria, Nadezda, Vera, and Zamira for
their patience and care. I am also thankful to OEIS editors and maintainers for the timely available
resource with relevant sequences and references.

This paper is an output of a research project implemented as part of the Basic Research Program at
the National Research University Higher School of Economics (HSE University). This research was also
supported in part through computational resources of HPC facilities at HSE University.

Declaration on Generative AI

The author has not employed any Generative AI tools. However, during the preparation of this work,
the author used the Overleaf built-in spell checker. Further, the author used FCA-based software tools
for drawing the lattice diagram and for inputting the formal contexts in figures 1, 2, and 3. After using
these tools, the author reviewed and edited the content as needed and takes full responsibility for the
publication’s content.



References

[1] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. R. Ruiz,
J. S. Ellenberg, P. Wang, O. Fawzi, P. Kohli, A. Fawzi, Mathematical discoveries from program
search with large language models, Nature 625 (2024) 468–475. URL: https://doi.org/10.1038/
s41586-023-06924-6. doi:10.1038/s41586-023-06924-6.

[2] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn, P. Battaglia,
C. Blundell, A. Juhász, M. Lackenby, G. Williamson, D. Hassabis, P. Kohli, Advancing mathematics
by guiding human intuition with ai, Nature 600 (2021) 70–74. URL: https://doi.org/10.1038/
s41586-021-04086-x. doi:10.1038/s41586-021-04086-x.

[3] D. Zeilberger, What is experimental mathematics?, 2006.
[4] K. Zarankiewicz, Problem p 101, in: Colloq. Math., 2, 1951, p. 301.
[5] J. Tan, An attack on Zarankiewicz’s problem through SAT solving, arXiv e-prints (2022) arXiv–

2203.
[6] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer, Berlin/Heidel-

berg, 1999.
[7] S. O. Kuznetsov, Mathematical aspects of concept analysis, Journal of Mathematical Sciences 80

(1996) 1654–1698.
[8] A. Albano, B. Chornomaz, Why concept lattices are large: extremal theory for generators, concepts,

and VC-dimension, Int. J. Gen. Syst. 46 (2017) 440–457. URL: https://doi.org/10.1080/03081079.
2017.1354798. doi:10.1080/03081079.2017.1354798.

[9] S. O. Kuznetsov, On computing the size of a lattice and related decision problems, Order 18 (2001)
313–321. URL: https://doi.org/10.1023/A:1013970520933. doi:10.1023/A:1013970520933.

[10] G. Birkhoff, Lattice Theory, eleventh printing ed., Harvard University, Cambridge, MA, 2011.
[11] J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, G. Dedene, Formal concept analysis in knowledge

processing: A survey on applications, Expert Syst. Appl. 40 (2013) 6538–6560.
[12] J. Poelmans, S. O. Kuznetsov, D. I. Ignatov, G. Dedene, Formal concept analysis in knowledge

processing: A survey on models and techniques, Expert Syst. Appl. 40 (2013) 6601–6623.
[13] R. K. Guy, A many-facetted problem of zarankiewicz, in: G. Chartrand, S. F. Kapoor (Eds.), The

Many Facets of Graph Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, 1969, pp. 129–148.
[14] R. K. Guy, A problem of Zarankiewicz, 12, The University of Calgary, Department of Mathematics,

1967.
[15] M. Aigner, G. M. Ziegler, Pigeon-hole and double counting, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2018, pp. 195–205. URL: https://doi.org/10.1007/978-3-662-57265-8_28. doi:10.1007/
978-3-662-57265-8_28.

[16] S. Roman, A problem of Zarankiewicz, Journal of Combinatorial Theory, Series A 18 (1975)
187–198. URL: https://www.sciencedirect.com/science/article/pii/0097316575900072. doi:https:
//doi.org/10.1016/0097-3165(75)90007-2.

[17] C. Balbuena, P. García-Vázquez, X. Marcote, J. Valenzuela, New results on the Zarankiewicz
problem, Discrete Mathematics 307 (2007) 2322–2327. URL: https://www.sciencedirect.com/science/
article/pii/S0012365X06008326. doi:https://doi.org/10.1016/j.disc.2006.11.002.

[18] J. R. Griggs, C.-C. Ho, On the half–half case of the Zarankiewicz problem, Discrete Mathematics
249 (2002) 95–104. URL: https://www.sciencedirect.com/science/article/pii/S0012365X01002370.
doi:https://doi.org/10.1016/S0012-365X(01)00237-0, combinatorics, Graph Theory,
and Computing.

[19] D. Zeilberger, The c-finite ansatz, The Ramanujan Journal 31 (2013) 23–32. URL: https://doi.org/
10.1007/s11139-012-9406-6. doi:10.1007/s11139-012-9406-6.

[20] S. Andrews, In-close2, a high performance formal concept miner, in: Conceptual Structures
for Discovering Knowledge - 19th International Conference on Conceptual Structures, ICCS
2011, Derby, UK, July 25-29, 2011. Proceedings, 2011, pp. 50–62. URL: https://doi.org/10.1007/
978-3-642-22688-5_4. doi:10.1007/978-3-642-22688-5\_4.

[21] V. Nikiforov, A contribution to the zarankiewicz problem, Linear Algebra and its Applications

https://doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-023-06924-6
http://dx.doi.org/10.1038/s41586-023-06924-6
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1038/s41586-021-04086-x
http://dx.doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.1080/03081079.2017.1354798
https://doi.org/10.1080/03081079.2017.1354798
http://dx.doi.org/10.1080/03081079.2017.1354798
https://doi.org/10.1023/A:1013970520933
http://dx.doi.org/10.1023/A:1013970520933
https://doi.org/10.1007/978-3-662-57265-8_28
http://dx.doi.org/10.1007/978-3-662-57265-8_28
http://dx.doi.org/10.1007/978-3-662-57265-8_28
https://www.sciencedirect.com/science/article/pii/0097316575900072
http://dx.doi.org/https://doi.org/10.1016/0097-3165(75)90007-2
http://dx.doi.org/https://doi.org/10.1016/0097-3165(75)90007-2
https://www.sciencedirect.com/science/article/pii/S0012365X06008326
https://www.sciencedirect.com/science/article/pii/S0012365X06008326
http://dx.doi.org/https://doi.org/10.1016/j.disc.2006.11.002
https://www.sciencedirect.com/science/article/pii/S0012365X01002370
http://dx.doi.org/https://doi.org/10.1016/S0012-365X(01)00237-0
https://doi.org/10.1007/s11139-012-9406-6
https://doi.org/10.1007/s11139-012-9406-6
http://dx.doi.org/10.1007/s11139-012-9406-6
https://doi.org/10.1007/978-3-642-22688-5_4
https://doi.org/10.1007/978-3-642-22688-5_4
http://dx.doi.org/10.1007/978-3-642-22688-5_4


432 (2010) 1405–1411. URL: https://www.sciencedirect.com/science/article/pii/S0024379509005540.
doi:https://doi.org/10.1016/j.laa.2009.10.040.

[22] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, 1979.

[23] G. Chen, D. Horsley, A. Mammoliti, Zarankiewicz numbers near the triple system threshold,
Journal of Combinatorial Designs 32 (2024) 556–576.

[24] B. Ganter, Notes on integer partitions, International Journal of Approximate Reasoning 142 (2022)
31–40. URL: https://www.sciencedirect.com/science/article/pii/S0888613X21001894. doi:https:
//doi.org/10.1016/j.ijar.2021.11.004.

[25] C. Jäkel, A computation of the ninth Dedekind Number, 2023. arXiv:2304.00895.
[26] D. I. Ignatov, A note on the number of (maximal) antichains in the lattice of set partitions, in:

M. Ojeda-Aciego, K. Sauerwald, R. Jäschke (Eds.), Graph-Based Representation and Reasoning,
Springer Nature Switzerland, Cham, 2023, pp. 56–69.

[27] D. I. Ignatov, On the maximal independence polynomial of the covering graph of the hypercube
up to n=6, in: D. Dürrschnabel, D. López Rodríguez (Eds.), Formal Concept Analysis, Springer
Nature Switzerland, Cham, 2023, pp. 152–165.

https://www.sciencedirect.com/science/article/pii/S0024379509005540
http://dx.doi.org/https://doi.org/10.1016/j.laa.2009.10.040
https://www.sciencedirect.com/science/article/pii/S0888613X21001894
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2021.11.004
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2021.11.004
http://arxiv.org/abs/2304.00895

	1 Introduction
	2 FCA Basics
	3 Problem Statement
	4 Results
	4.1 Contranominal Scales and Maximal Symmetric Contexts
	4.2 Single variable Zarankiewicz function
	4.3 Reality Checks
	4.4 Complexity of Related Decision Problems

	5 Related Work
	6 Conclusion

