
Clustering with Axialities
Sergei O. Kuznetsov

HSE University, Pokrovsky bd. 11, Moscow, 109028, Russian Federation

Abstract
Formal concepts can be considered as rigid biclusters where all objects from the bicluster (formal extent) share all
attributes from the intent. Relaxed versions of concept-based bicluster, e.g. OA-biclusters, are also well-known.
In this note we show that axial (aka monotone, disjunctuve) concepts arising from axialities (adjunctions on
powersets of objects and attributes) can help to perform clustering of tricky data like those where clusters are not
separable by hyperplanes or present complex dynamical objects, where standard formal concepts and interval
patterns would hardly help to catch the required patterns.

Keywords
Formal Concept Analysis, Clustering, Axial Concepts

1. Introduction

It is well known that Formal Concept Analysis (FCA) presents natural tools for clustering [1]. A formal
concept can be considered as a rigid (bi)cluster where all objects of the (bi)cluster (formal extent)
share all attributes of the intent, which embodies the similarity of the objects from the extent. Relaxed
versions of concept-based bicluster, e.g. OA-biclusters [5, 6] are also well-known. Another well-studied
FCA-based clustering model is the one based on interval pattern structures [7]. Clustering based on
equiconcepts in symmetric contexts, where extents and intents coincide as studied in [12, 13]. In this
note we show that axial (disjunctive [9]) concepts arizing from axialities (adjunctions aka residuated
mappings or monotone Galois connections on powersets of objects and attributes) [1] can help to
naturally cluster tricky data like dynamic streaming data or data of the form 1.1, 2.1, 4.1 in Figure 1,
where clusters are dense sets of points with clear connectivity property, so that standard formal concepts
and interval pattern concepts would hardly help to catch the required patterns.

2. Definitions and Main Idea

First, let us recall the definitions of (interval) pattern structure and pattern concept [4, 7].
A pattern structure [4] is a triple (𝐺,D, 𝛿), which is a generalization of a formal context (𝐺,𝑀, 𝐼) so

that 𝐺 is a set of objects, D = (𝐷,⊓) is a complete semilattice on descriptions from set 𝐷 with meet
(infimum) ⊓, and 𝛿 : 𝐺→ D takes an object from 𝐺 to its description in 𝐷. For any pattern description
𝑑 ∈ D one can define its pattern extent 𝑑◇ = {𝑔 ∈ 𝐺 | 𝑑 ⊑ 𝛿(𝑔)} and for any subset of objects 𝐴 ⊆ 𝐺
one can define its pattern intent 𝐴◇ = ⊓{𝛿(𝑔) | 𝑔 ∈ 𝐴}. A pair of corresponding pattern extent 𝐴 and
pattern intent 𝑑 forms a pattern concept: (𝐴, 𝑑), where 𝐴◇ = 𝑑, 𝑑◇ = 𝐴.

The description semilattice of an interval pattern structure [7] Dint consists of tuples of real-numbered
intervals Dint, where intervals are ordered by interval subsumption ⊑int:
Dint = {[𝑙, 𝑟] | 𝑙, 𝑟 ∈ R, 𝑙 ≤ 𝑟} and ∀[𝑙1, 𝑟1], [𝑙2, 𝑟2] ∈ Dint, [𝑙1, 𝑟1] ⊓int [𝑙2, 𝑟2] =

[𝑚𝑖𝑛{𝑙1, 𝑙2},𝑚𝑎𝑥{𝑟1, 𝑟2}] so that [𝑙1, 𝑟1] ⊑int [𝑙2, 𝑟2] ⇐⇒ [𝑙1, 𝑟1] ⊇ [𝑙2, 𝑟2].
Interval pattern concepts propose a natural way of clustering numerical data as proposed in [7]. The

experiments show that interval pattern concepts, whose intents make hyperrectangles with axis-aligned

FCA4AI 2024: The 12th International Workshop "What can FCA do for Artificial Intelligence?", October 19 2024, Santiago de
Compostela, Spain.
$ skuznetsov@hse.ru (S. O. Kuznetsov)
� 0000-0003-3284-9001 (S. O. Kuznetsov)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:skuznetsov@hse.ru
https://orcid.org/0000-0003-3284-9001
https://creativecommons.org/licenses/by/4.0/deed.en

edges and faces can be successfully used for clustering data like 5.1, 6.1 (Figure 1), can be used with less
success in clustering data like 3.1 and perform much worse for data of the form 1.1, 2.1, 4.1.

So, in this note we propose another FCA-based tool - called axial (aka disjunctive, monotone [9])
concepts - which can help in clustering data that are hard to cluster using formal or interval pattern
concepts.

Let 𝐾 = (𝐺,𝑀, 𝐼) be a formal context, then axialities (aka adjunctions or residuated mappings on
powersets) [2] are defined for 𝐾 as

←𝐴 = {𝑏 ∈𝑀 | 𝑎𝐼𝑏 for no 𝑎 ∈ 𝐺 ∖𝐴}, (1)

→𝐵 = {𝑎 ∈ 𝐺 | 𝑎𝐼𝑏 for some 𝑏 ∈ 𝐵}. (2)

where 𝐴 ⊆ 𝐺 is a subset of objects and 𝐵 ⊆𝑀 is a subset of attributes.
An axial (or disjunctive [9]) concept based on axialities is defined in a similar way as the standard

formal concept [3], i.e. as a pair (𝐴,𝐵), where 𝐴 ⊆ 𝐺,𝐵 ⊆𝑀 and 𝐴 =→ 𝐵,𝐵 =← 𝐴. Unlike formal
concepts, the extents and intents of axial concepts are isotonic, i.e. for two axial concepts (𝑋1, 𝑌1) and
(𝑋2, 𝑌2) one has 𝑋1 ⊆ 𝑋2 iff 𝑌1 ⊆ 𝑌2

While for some clusterization tasks in the left column of Figure 1, like 3,5,6, the generalization
of formal concepts to interval pattern concepts fits quite well, the clustering tasks 1,2,4 are hardly
well-solvable by means of interval patterns, since they make only axis-aligned hyperrectangles and are
insensitive to density and continuity properties of data.

Here we propose to apply axial concepts by first making a transformation of original data, which is
well-known in Machine Learning as the “kernel trick”[10].

First, we introduce data model which will be studied further. Let 𝐺 be a set of data points in a metric
space with metric 𝑑. Let 𝐴1, . . . , 𝐴𝑛 be disjoint subsets of data points: 𝐴𝑖 ⊆ 𝐺, 𝐴𝑖 ∩𝐴𝑗 = ∅. We call
the family of sets 𝐴1, . . . , 𝐴𝑛 (𝜀, 𝑘)-dataset if 𝑑(𝑎𝑖, 𝑎𝑗) > 𝜀 for every 𝑎𝑖 ∈ 𝐴𝑖 and 𝑎𝑗 ∈ 𝐴𝑗 where 𝑖 ̸= 𝑗.

Let us define the following formal context, which we call 𝜀-kernel context: (𝐺,𝐺, 𝐼𝜀), where 𝐼𝜀 ⊆
𝐺×𝐺 is defined as (𝑔, ℎ) ∈ 𝐼𝜀 iff 𝑑(𝑔, ℎ) ≤ 𝜀.

Proposition 2.1. For each cluster 𝐴𝑖 there is an axial concept (𝐴𝑖, 𝐴𝑖) of the context (𝐺,𝐺, 𝐼𝜀).

Proof. By the construction of the context (𝐺,𝐺, 𝐼𝜀) every subset 𝐴 ⊆ 𝐴𝑖 makes the monotone concept
(𝐴,𝐴).

Example 1. Consider a simplified example of the “half moons” dataset of type 2.1 in
Figure 2 where the set of data points is 𝐺 = {𝑔1, . . . , 𝑔12} as in Figure 2, with 𝐴1 =
{𝑔1, . . . , 𝑔6}, 𝐴2 = {𝑔7, . . . , 𝑔12} and 𝑑(𝑔1, 𝑔2), 𝑑(𝑔2, 𝑔3), 𝑑(𝑔3, 𝑔4), 𝑑(𝑔4, 𝑔5), 𝑑(𝑔5, 𝑔6) < 𝜖 and
𝑑(𝑔7, 𝑔8), 𝑑(𝑔8, 𝑔9), 𝑑(𝑔9, 𝑔10), 𝑑(𝑔10, 𝑔11), 𝑑(𝑔11, 𝑔12) < 𝜀 and for any 𝑔𝑖 ∈ 𝐴1 and 𝑔𝑗 ∈ 𝐴2 one
has 𝑑(𝑔𝑖, 𝑔𝑗) > 𝜀.Then the cross-table of (𝐺,𝐺, 𝐼𝜀) is given in Table 1.

Consider now that 𝜀 takes values 𝜀1 < 𝜀2 < 𝜀3. For 𝜀 = 𝜀1 close to zero, the resulting clusters would
contain only single points. Increasing 𝜀 to 𝜀 = 𝜀2 we obtain two clusters staying for sets 𝐴1 and 𝐴2. If
we increase 𝜀 further to 𝜀 = 𝜀3, the clusters will merge in one.

Similar effects will be observed for data of the types 1.1, 4.1 in Figure 1. As for data of the types 3.1
and 5.1 where there are “bridges” between clusters, let us consider the following example.

A part of the diagram of the axial concept lattice for Example 1 is given in Figure 4.
Example 2. Consider a point dataset in Figure 5. Here two clusters 𝐴1 and 𝐴2 are not totally disjoint,

but have a “bridge” element 𝑔5 shared by both clusters.
Figure 6 gives the diagram of the axial concept lattice for the context in Table 2. Notation 𝑎, 𝑏 with

𝑎 < 𝑏 denotes the set of elements (both objects and attributes) {𝑎, 𝑎+ 1, . . . , 𝑏}. Every axial concept
here corresponds to a cluster and every antichain of axial concepts corresponds to a clusterization
where clusters may intersect.

Note that clustering in this case can also be easily performed by using formal concepts (1, 4, 1, 4),
(4, 6, 4, 6), (6, 9, 6, 9), (4, 1, 6), (6, 4, 9), with objects 4 and 6 playing the role of outliers in their clusters.

1.1

data

1.2

KMeans

1.3

DBSCAN

1.4

OPTICS

1.5

FCA-based

2.1 2.2 2.3 2.4 2.5

3.1 3.2 3.3 3.4 3.5

4.1 4.2 4.3 4.4 4.5

5.1 5.2 5.3 5.4 5.5

6.1 6.2 6.3 6.4 6.5
Figure 1: The left-most column presents clustering data from Sci-Kit learn https://scikit-learn.org/stable/modules/
clustering.html. The other columns stay give visual comparison of clusterings based on various approaches:
KMeans, DBSCAN, OPTICS and FCA-based. Dots colours correspond to clusters, black dots represent non-
clustered objects (outliers).

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

Figure 2: Simplified half moons data.

Figure 3: The dotted lines stay for 𝜀1, the dashed lines stay for 𝜀2, and the solid line stays for 𝜀3.

3. Computing clusters as axial concepts

It is well-known [2, 9] that (𝐴,𝐵) is an axial (disjunctuve) concept of context (𝐺,𝑀, 𝐼) iff (𝐺 ∖𝐴, (𝐺 ∖
𝐴)′) is a formal concept of (𝐺,𝑀, 𝐼). So, to compute axial concepts of (𝐺,𝐺, 𝐼𝜖), one can use standard
FCA algorithms like CbO [8]. For example, to compute maximal (both by extent and intent) axial
concepts, one can compute minimal extents of (𝐺,𝐺, 𝐼𝜖̄), which can be done in 𝑂(𝑘 × |𝐺|2) time.

Although clusters correspond to axial extents of 𝜀-kernel context, not every extent makes a “good”
cluster. For Example 1 with the context in Table 1 every subset 1, 𝑘 for 𝑘 ∈ 1, 12, except for 𝑘 = 7,
makes an axial extent, however the desired cluster among them is only 1, 6, which corresponds to

1 2 3 4 5 6 7 8 9 10 11 12
1 x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x
7 x x
8 x x x
9 x x x
10 x x x
11 x x x
12 x x

Table 1
Context (𝐺,𝐺, 𝐼𝜀) for Example 1 with 𝜀2.

Figure 4: The desired clustering of points 1, . . . , 12 is seen as the antichain of two axial concepts (1, 6, 1, 6) and
(7, 12, 7, 12).

the axial concept (1, 6, 1, 6). Consider a CbO-like object-wise strategy of computing axial concepts by
adding object 𝑘 + 1 to the current axial extent 1, 𝑘. Till 𝑘 = 6 it runs in a uniform way by adding new
row and new column. However, when one tries to add object 7 (or any of the objects 8,9,10,11,12) to

Figure 5: Clusters 𝐴1 and 𝐴2 share common element 𝑔5.

1 2 3 4 5 6 7 8 9
1 x x x x
2 x x x x
3 x x x x
4 x x x x x x
5 x x x
6 x x x x x x
7 x x x x
8 x x x x
9 x x x x

Table 2
Context (𝐺,𝐺, 𝐼𝜀) for Example 2 with 𝜀2.

the extent 1, 6 of the concept (1, 6, 1, 6), one again, performing ← and then →, obtains axial concept
(1, 6, 1, 6). This actually signifies that objects 7,8,9,10,11,12 have no similarity to objects 1, 6 and the
construction of the cluster should be terminated, making it 1, 6. This observation can be formalized
as a general rule as follows: if for a current axial extent 𝐴 adding any new object and performing the
composition of operations→ ∘ ← results in the old extent 𝐴, then one should output 𝐴 as a cluster.
One can design other similar rules based on a “termination condition” depending on the data and
problem setting. Most desirable, such a condition should be (anti)monotonic, so that - once violated -
would not hold with the addition of new objects, thus ensuring that termination without the need for
further computation is justified.

For example, consider data in Figure 5 with 𝜀2 and respective context in Table 2. Since 5 has only two
neighbors, the respective column and row have only three entries. All other elements have at least three
neighbors. So, the algorithm computing axial concepts here may have a termination condition such that

Figure 6: Diagram of the lattice of axial concepts for the context in Table 2.

if the algorithm gets a row (column) with less than 4 entries, thus outputting two clusters 𝐴1 and 𝐴2 as
required. It is also worth noting that transforming initial data to the 𝜀-kernel context given by a table
results in quadratic increase of the data size, so the computation of axialities for clustering can be made
more efficient if the algorithms are adapted to the initial data representation. Then, instead of traversing
rows and columns of the kernel cross-table, one can operate with 𝜀-neighborhoods (computed on the
fly) of the points in original representation. In this form one arrives to an approach close to DBSCAN
and its successors [11].

4. Conclusions

An idea of a clustering framework based on 𝜀-kernel trick, axialities, and respective axial concepts was
proposed. The clusters correspond to special types of axial concepts of the 𝜀-kernel context related to the
original dataset. Axialities propose a natural way to express continuity in clusters, where not all points
of a cluster are close to each other, however, as in dynamical (e.g. streaming) data, there is a continuous
“dense” path of neighboring points joining any two points of the cluster. The proposed formalization
allows for a natural way of computing clusters by means of standard FCA-algorithms. However, not all
axial concepts correspond to good clusters, so the main challenge for a particular clustering setting
remains in finding easily computable termination conditions that would allow computing exactly those
axial concepts that correspond to best clustering. The further study should also take into account
the lessons learned in the development of density-based clustering approaches like DBSCAN and its
successors.

5. Acknowledgements

The work by S.O. Kuznetsov in preparing this article was supported by grant 22-11-00323 of the
Russian Science Foundation and carried out at the National Research University Higher School of
Economics, Moscow.

6. Declaration on Generative AI

The author has not employed any Generative AI tools.

References

[1] C. Carpineto and G. Romano, A lattice conceptual clustering system and its application to browsing
retrieval. Machine learning (1996), 24, 95-122.

[2] M. Erné, Adjuunctions and Galois Connections. Origins, History and Development, in K. Denecke,
M. Erné, S.L.Wismath (Eds.), Galois Connections and Applications, Springer, 2004.

[3] B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations (Second Edition),
Springer (2024).

[4] B. Ganter, S.O. Kuznetsov: Pattern Structures and Their Projections. Proc. ICCS 2001: 129-142.
[5] D.I. Ignatov, S.O. Kuznetsov, J. Poelmans, L.E. Zhukov: Can triconcepts become triclusters? Int. J.

Gen. Syst. 42(6): 572-593 (2013).
[6] D.I. Ignatov, D.V. Gnatyshak, S.O. Kuznetsov, B.G. Mirkin: Triadic Formal Concept Analysis and

triclustering: searching for optimal patterns. Mach. Learn. 101(1-3): 271-302 (2015).
[7] M. Kaytoue, S.O. Kuznetsov, A. Napoli, S. Duplessis "Mining gene expression data with pattern

structures in formal concept analysis." Information Sciences 181.10 (2011): 1989-2001.
[8] S.O. Kuznetsov, A fast algorithm for computing all intersections of objects from an arbitrary

semilattice. Nauchno-Tekhnicheskaya Informatsiya Ser. 2 - Informatsionnye protsessy i sistemy,
No. 1, pp.17-20, 1993.

[9] S.O. Kuznetsov, N. Makhazhanov, M. Ushakov: On Neural Network Architecture Based on Concept
Lattices. Proc. ISMIS 2017: 653-663

[10] B. Schölkopf, A.J. Smola, F. Bach, Learning with Kernels : Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2018.

[11] R. Campello, D. Moulavi, J. Sander, Density-Based Clustering Based on Hierarchical Density
Estimates. Advances in Knowledge Discovery and Data Mining. Vol. 7819. Springer (2013) pp.
160–172.

[12] Fei Hao, Stephen S Yau, Geyong Min, and Laurence T Yang. Detecting k-balanced trusted cliques
in signed social networks. IEEE Internet Computing, 18(2):24–31, 2014.

[13] Min Tao, Fei Hao, Ling Wei, Huilai Zhi, Sergei O. Kuznetsov, Geyong Min, Fairness-aware Maxi-
mal Cliques Identification in Attributed Social Networks with Concept-cognitive Learning IEEE
Transactions on Computational Social Systems (2024) doi: 10.1109/TCSS.2024.3445721

	1 Introduction
	2 Definitions and Main Idea
	3 Computing clusters as axial concepts
	4 Conclusions
	5 Acknowledgements
	6 Declaration on Generative AI

