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Abstract 
In this paper, programming library and algorithms for solving formal concept related tasks in real world 
domains are presented. The main goal of the proposed system is the searching of all closed itemsets 
(concepts). Constructing Galois lattice of concepts allows to additionally generate good classification tests 
and functional dependences for given classifications on a given data set. In general, these tasks are based 
on ordinal procedure for shallow or deep machine learning for classifications. We show that formal concept 
analysis is closely related to modeling plausible classification reasoning 
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1. Introduction 

Modern accent in Machine Learning (ML) is shifted to the numerical solutions as opposed to plausible 
reasoning. Of course, the linear additive model or kernel model allows great data compression but at 
the same time the source of information is lost. On the other hand, the Formal Concept Analysis 
(FCA) has a natural ability to model plausible reasoning. When there is no explanation based on a 
model that is difficult for understanding and sometimes conflicting with human sense, then the 
obtained results are not reliable. Obviously, the integration of plausible reasoning with the FCA as 
one of the instruments of ML is crucial in the context of AI. 

The problem of finding all closed sets (concept lattice) has been solved by many researchers: B. 
Ganter, D. Borchmann, M. Zaki, S. Kuznetsov, and many others. The source for many of these works 
was the algorithm of B. Ganter [1]. The Next-Closure algorithm has been proposed in [2] as an 
improvement of previous versions of this algorithm. One of the most efficient algorithms, Charm, 
has been proposed by M. Zaki in [3]. The algorithm presented in this paper is based on a previously 
developed algorithm for extracting only good classification tests (GCTs) [4] from a given context. 
The algorithm uses the original decomposition of the source context into the attributive and object 
sub-contexts described in [5]. 

In the paper [4], it has been shown that the GCTs are formal concepts and therefore they are 
contained in the Galois lattice built over a given context with additional attribute(s) that specify the 
partitioning of context  objects into non-overlapping classes. However, all the algorithms developed 
for deriving GCTs as formal concepts did not aim to build and did not build the complete Galois 
lattice over a given context, on the contrary, these algorithms generate only those elements of the 
lattice that correspond to all good classification (diagnostic) tests (redundant and non-redundant, i.e. 
test generators).  
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The first algorithm for generating good maximally redundant classification tests (GMRTs) has 
been implemented in system SISIF [6], but it had a very small memory. In addition to GMRTs, the 
SISIF also has generated functional dependencies (FDs) as the best approximation of a given 
classification of given objects. The system also has implemented an algorithm for extracting all 
generators from a given GMRT, equivalent to it. An overview of the main algorithms developed for 
building GCTs can be found in [5]. 

This paper presents a new system for extracting the different types of itemsets (concepts, 
dependencies, logical rules, classification tests) based on constructing the lattice of all closed frequent 
concepts in a given context. This system has the following features: 

1. Work with large datasets;  
2. Work with multivalued attributes of objects; 
3. Well-structured and simple for usage; 
4. Applicable for multiple FCA tasks; 

Further, the work is organized as follows. Section 2 gives basic definitions related to the FCA, 
GCTs, and plausible reasoning rules. Section 3 describes Diagnostic Test Machine (DTM) as a 
software library for finding different concepts and logical rules in data sets. Section 4 briefly 
describes the experiments. Section 5 deals with the plausible reasoning rules application, and Section 
6 offers some concluding remarks and describes some future investigation. 

2. Basic definitions 

Let S N T = {A1, A2 Aj Am} be the 
T. 

Let s  S, t  T. Denote by ti, ti  T, i N the description of object with index i. 
The definition of good test is based on two mapping 2S  2T and 2T  2S determined as follows: 
t = val(s) = {intersection of all ti: ti  T, i  s} and 
s = obj(t) = {i: i  S, t  ti}.  
Of course, we have obj(t) = {intersection of all s(A): s(A)  S, A  t}. Operations val(s), obj(t) are 

reasoning operations related to discovering the general feature of objects the indices of which belong 
to s and to discovering the indices of all objects possessing the feature t. 
The basic operator of plausible reasoning [3] connecting it with the FCA, is the generalization rule 
(GR) defined as follows: 

generalization_of(t) = t = val(obj(t)): generalization_of(s) = s = obj(val(s)). 
Galois Lattice consists of closed pairs (s, t) called concepts and defined by the generalization rule: 

val(obj(t)) = t, obj(val(s)) = s.  
In general, the concept has maximal coverage of examples of some dataset by a given itemset that 

cannot be extended by a value of any other attribute to get the same coverage. 

2.1. Classification (diagnostic) tests 

In classification problems, each object has a class label, which is not part of the domain description. 
Labeling is a kind of partitioning of a data set or an ontology. 

Let S(+) and S() = S\S(+) be the sets of positive and negative class of objects, respectively. 
A diagnostic (classification) test for S(+) is a pair (s, t) such that t ⊆ T (s = obj(t , s ⊆ S(+) 

and t  t t, t  S(). 
A diagnostic test (s, t), t ⊆ T (s = obj(t good for S(+) if and only if any extension s* = s 

i, i s, i S(+) implies that (s*, val(s*)) is not a test for S(+). 
It means that if (s, t) is a good test for S(+), then s of it is non-extendable, i. e. adding to s any i 

from S(+) not belonging to s implies that for val(s i) there exists such  a t  S() that val(s i)  t. 



A good test (s, t), t ⊆ T (s = obj(t S(+) is irredundant (GIRT) if any narrowing t* = t\A, 
A t implies that (obj(t*), t*)) is not a test for S(+). 

A good test (s, t) for S(+) is maximally redundant (GMRT) if any extension of t* = t A, A t, 
A T implies that (obj(t*), t*) is a test for S(+), but not a good one. 

To align the above original definitions with the FCA terminology, we introduce the coefficient of 
confidence (Confidence, for short) as follows: 

Let (s, t) be a concept. Confidence = |s+|/|s|, where s+ = s  S(+) and |q| denotes the power of set 
q. 

Irredundant test (IT) for S+ is a closed itemset (CI) (s, t) if any narrowing t*= t\A, A t implies 
that obj(t s and obj(t*)  s. 

The goodness of a diagnostic test can be characterized by its Confidence. 

2.2. Functional dependencies 

Let U be the set of attributes values of which compose the set T. Functional dependency X C is a 
relation between the collection X  U of attributes and the given classification C of objects into 
classes C1, ..., Ck. Denote by P(X) = {p1, p pm) the partition of S generated by the values of X, 
where pj, j m, m k, are classes of P(X). Each class of P(X) consists of objects having equal 
values of all the attributes of X. 

The definition of functional dependency (FD) between attributes is based on the definition of the 
relation of partial order over the set of partitions generated by the set of considered attributes. This 
relation is introduced as follows: P(X)  P(Y) iff P(X) ⊆ P(Y), X, Y  U. 

A pair P(X), P(Y) are said to be in the inclusion relation iff every block of P(X) is contained in one 
and only one block of P(Y). 

If P(X) = P(C), then X is the ideal approximation of classification C or ideal functional test (FT) for 
C based on a functional dependency. If this condition is not satisfied, then X, X  U, X corresponds 
to a good approximation of C, if P(X) is the closest to P(C) element of Partition Lattice over a given 
context, i. e., for all P(Y), Y  U condition (P(X)  P(Y)  P(C)) implies P(X) = P(Y). In this case, we 
said that X C is a FD in U and X is a good FT for C. FD in the form X  Y is known as conditional 
FD. 

In [4], A method is given to transform initial contexts into the contexts for searching for FDs by 
any algorithm of discovering GMRTs. 

2.3. Implicative dependencies as plausible rules of the first type 

In this paper, we focus on conceptual knowledge the main elements of which are objects, properties 
(attribute values), and classifications (attributes). Taking into account that implications express the 

reasoning to be based on using and searching for only one type of logical dependencies, namely, 
implicative dependencies.  

Implicative dependences are the result of GCTs inferring. Consider, for example, a GMRT as a 
pair (obj(t), t). In this pair, t is a collection of attribute values, t  T, and |obj(t)| is the support of t, 
and obj(t)  S(+). Thus, we can form an implicative rule t  S(+). This assertion is transformed in a 
reasoning rule. The left part of this rule is t (a set of values from T) and S(+) can be the name of a 
class in the classification of S. 

Implicative assertions are considered as plausible rules (PR) of the first type. Generally, we have 
the following rules of the first type (the left part of rules can contain any number of different values 
from a given context): Implication: a, b, c,  d. Interdiction or forbidden rule: a, b, c   
false (never). This rule can be transformed into several implications such as a, b   not c; a, c  
 not b; b, c   not a. Compatibility (associations): a, b, c   VA, where VA is the frequency 

 (related to the confidence of the left part of this rule). Generally, the 



compatibility rule represents a most frequently observed combination of values. Diagnostic rule: x, 
d  a; x, b  not a; d, b  false. For example, d and b can be two values of the same attribute. This 

x a true 
x & d a x & b a Rule of alternatives: 

a or b  true (always); a, b  false a b
a b oth. In the rules, a, b, c, d,  T, x  T.  

The plausible reasoning rules of the first type are formed from GCTs (maximally redundant and 
non-redundant ones). Let X1, X2 and Y1, Y2  T be good maximally redundant and good maximally 
non-redundant classification tests. Let x1  q1, x2  q2, y1  q1, y2  q2 be implications, where q1, q2 
 GOAL, are two different classes of objects. We can form the following forbidden rules: x1  not 
q2, and x2,  not q1.  

a or b  true; a, b  false  is indeed the case when a and b are values 
of the same attribute.  

The diagnostic rule can be obtained from two good maximally non-redundant tests. For example, 
compute int = y1  y2. int is true, then int  (y1\int)  q1; int  
(y2\int)  q2. 

Compatibilities rules can be obtained from the concepts with the Confidence insignificantly 
different from 1. 

3. Diagnostic Test Machine 

Diagnostic Test Machine (DTM) is a software library for finding implicative and functional 
dependencies in data sets. All dependencies generated by the system are redundant and frequent, 
until otherwise explicitly declared. In particular, the DTM finds all value-based (like in the Charm 
algorithm [3]) and attribute-based frequent formal concepts that are independent of the final task. 
Once the lattice of concepts is found, the DTM generates all good (confident) maximally redundant 
diagnostic (classification) tests (GMRT) and good FTs for a given classification (partition of objects). 
This step is task-dependent (Figure 1). It also has the ability to generate all good non-redundant tests 
from good redundant ones. 

Figure 1: The tasks flow diagram in the DTM 



The library is applicable for a number of scenarios and purposes, but mainly: 
- to construct FDs and simultaneously the dimensionality reduction in initial data; 
- to construct GCTs for classification task. 
Below some details for main steps and details of the library implementation are listed. 
 

3.1. Row data preprocessing. 

The library supports categorical (ordinal/nominal) and numerical (discrete/continuous) domains for 
attributes. One of the main problems in this area is working with numeric attributes. In addition to 
the trivial simple partitioning into equal wide ranges, the library includes additional methods to solve 
this problem, namely: Minimum Description Length (MDL) [8] and the Kolmogorov-Smirnov 
algorithm. These methods must be provided with a target partition. There are two obvious options 
for this: to use a forward-defined classification or, in the case of categorical attributes, to use its 
composite partitioning. Despite this, there are still questions on this issue. 

We transform the row data to dual horizontal - vertical bit vector representation. This allows to 
work effectively with dense datasets (like ushrooms ) due to having the equal width records and 
sparse ones like any store of transactions db. 

3.2. Concepts searching algorithm 

This algorithm is described in [6]. It is based on the procedure of decomposing the main task into 
attributive and object subtasks (projections) most fully described in [7]. 

The root of search tree or initial task (Alg.1, init_task) is built on a given preprocessed training 
set. It can be an attribute-based or sample (object)-based (transposed) task, which initiates the search 
from the join (lower bound) or meet (upper bound) of the lattice [14]. The choice of attribute or 
object together with the lattice traversal strategy provides a powerful basis for implementing various 
algorithms for the FCA problems. Only a row coverage vector is used for concept representation, 
which correspondents to the the Task structure (see Main structures). The algorithm 
recursively decomposes the current task into depth-first search subtasks, selecting attribute/value 
according to selected strategy.  

The search tree generates only closed elements of concept lattice (closed itemsets) (Alg. 1, 
find_concepts) and does not produce any redundant subtasks. The traversal strategy 
(attribute/sample selection) may vary depending on the task. So, if the task is to find all frequent 
concepts, the optimal strategy will be to select the attribute with the minimum support, but when 
the task is diagnostic, the strategy with the maximum support will be much more reliable. Once the 
attribute is selected, the subtask corresponding to some concept is formed using the generalization 
rule (Alg. 1, sub_task). Of course, the search tree could achieve the same task in several ways. The 
logic of cutting off a dead-end or solved subtasks and stopping the search is also encapsulated (Alg. 
1, add_concept). 

Some of the main structures and operations on them are defined below. The "." operator provides 
access to the structure fields. 
 
Main structures  
BitVector 
 

Operations: 
&  - bitwise and operation 
  - bitwise  or operation 

¬  - bitwise  not operation 
weight()  -  sum of all bit values   

 
 



DualBitMatrix  structure effectively supports dataset (DS) representation (horizontal and vertical) 
 

Fields: 
rows : [BitVector] // set of BitVector corresponding to each example in the DS 
cols :   [BitVector] // transposed rows BitVector set  for each attribute in the DS 
height: int // number of rows 
width:  int // number of cols 

 
Operations: 

 
BitVector & (BitVector vector)   // returns intersection of given  rows/cols   
BitVector  (BitVector vector)   // returns union of given rows/cols 

 
Task  subset of DS (DualBitMatrix) in both dimension. It is corresponds to concept and defined 

by the generalizing rule: val(obj(t)) = t 
 

Fields: 
cols   : BitVector      // cols subset of the DS 
rows  : BitVector    // rows subset of the DS 
cross : BitVector     // the task rows intersection db.&( rows ) 

 
 

Lattice   structure consists of founded concepts and responsible for  search tree pruning  
 

Fields: 
concepts :   { BitVector } //set of concept 
minsup : int   // minimal support threshold 

 

Algorithm 1. Frequent concepts search procedure 

Input:  db : DualBitMatrix, minsup: int // training set, minimal support  
Output: L: Lattice 

 
T = init_task(db) 
L = Lattice ( , minsup) 

 
find_concepts(T, L) begin   // traversal of the task lattice 

if add_concept(L, T.rows) then 
while (sub_T = select_subtask(T, strategi)) is not null do 

find_concepts(sub_T, L) 
T.cols = T.cols & ¬sub_T.cross // removes subtask 

end while 
end if 

end find_concepts 
 
init_task(db) begin 

rows  = ¬BitVector(db.height) 
cols  = ¬BitVector(db.width) 
cross = db.&(rows) 
return Task(rows ,  cols, cross)  

end init_task 
 
select_subtask(Task t, strategy) begin 

 a =  find_best_sub_task(t, strategy) // return best attribute according the strategy 
if a >=0 then  



return sub_task(t, a) 
else 

return null 
end if 

end select_subtask 
 
sub_task(Task t, int a) begin // get sub task/concept by given attribute 

rows  := t.rows  &  db.cols[a]         // t = obj(a) 
cross := db.&(rows)                         // s = val(t) 
cols  := t.cols  & ¬cross 
return Task(rows ,  cols, cross)  

end sub_task 
 
add_concept(L, c) begin 

support = c.weight() 
if support < L.minsup then 

return false 
else if c  L.concepts then // all subtask were solved 

return false 
end if 
L.concepts= L.concepts  {c} 
return true 

end add_ concept 
 

 
3.3. Generator of tests for given classification with maximal confidence 

Once we have all frequent concepts, obtaining all tests with maximal confidence (MCTs) (frequent 
implications) is as trivial as intersecting of the goal vector (bit vector with ones for the target class 
objects) with the extent of concept and thresholding the result by the minimum confidence 
parameter (Alg. 2). 
 

 
3.4. Diagnostic task 

The diagnostic or classification task is to assign an unlabeled example to a certain class for which 
tests were obtained in the previous step. One problem here is that the tests are generally redundant. 

Algorithm 2. Concept to maximal test procedure 
Input:  
goal : BitVector,  concept : BitVector  

minconf: float [0:1]  // minimal confidence 
Output: 

implication : (concept, confidence)-> goal 
 
concept_to_implication(goal, concept , minconf) begin 

concept_weight = concept. weight() 
goal_concept_weight = (concept & goal).weight() 
confidence =  goal_concept_weight  / concept_weight 
if( confidence >= minconf) then 

return (concept, confidence)-> goal 
else then 

return null 
end if 

end concept_to_implication 
 



But the task to generate all non-redundant tests has the exponential complexity. Therefore, the DTM 
bypasses the problem with a simple check below (Alg.3).  

As mentioned earlier, the concept has a dual representation of objects/attributes, and the 
algorithms described above use only the first one. Of course, the diagnostic task requires the second 
representation, the creation of which is trivial for the given training dataset and has been omitted 
here. Therefore, the test structure used below has both representations (rows and columns).  

 
Algorithm 3. Procedure for checking the equivalence of coverings 
Input: sample: BitVector, Test test, BitMatrix db 
Output: Boolean 
 
test_sample(sample, test,  db) begin 

BitVector u  = test.cols & sample; 
return test.rows = db.&(u); 

end  test_sample 
 

The project code and some other datasets can be found at https://gitlab.com/shagalovv/dtm  

3.5. Example 

To illustrate the process, we use a small dataset from [3] (Table 1). The original data is transformed 
into an internal dense representation with an additional column, which is the external classification. 
The classification column will be masked during the concept discovery stage. Now, the Examples are 
presented in Tables 2-6. 

Table 1: Raw dataset 

Object Index Itemset 
1  A C T W 0 
2  C D W 0 
3  A C T W 0 
4  A C D W 1 
5  A C D T W 1 
6  C D T 1 

 
Value-based dependencies are in Table 2. 

 
Table 2: Closed frequent itemsets (min confidence = 1) 

N Support Objects Itemset 
1 1 5  ACDTW 
2 3 1 3 5  ACTW 
3 2 4 5  ACDW 
4 3 2 4 5  CDW 
5 4 1 3 4 5  ACW 
6 5 1 2 3 4 5  CW 
7 2 5 6  CDT 
8 4 1 3 5 6  CT 
9 4 2 4 5 6  CD 
10 6 1 2 3 4 5 6  C 

 
 

https://gitlab.com/shagalovv/dtm


Table 3: Frequent tests in the case (min confidence = 1) 

N Support Confidence Goal Tests (intents) 
1 1 1 GOAL[1] A C D T W 
2 2 1 GOAL[1] A C D W 
3 2 1 GOAL[1] C D T 

 
Functional dependencies: dense source data is transformed to the data for functional 

dependencies search (with no duplicates for brevity) [4]. As in value-based task, the classification 
column will be masked on concepts discovery stage. 

 
Table 4: Transformed raw data for inferring FDs 

N A C D T W GOAL 
1 0 1 1 0 0 0 
2 0 1 0 1 0 0 
3 1 1 0 0 1 0 
4 0 1 1 0 1 0 
5 1 1 0 1 1 0 
6 0 1 1 0 0 1 
7 0 1 1 1 0 1 
8 0 1 0 0 1 1 
9 1 1 1 0 1 1 
10 1 1 0 1 1 1 

 

Table 5: Intents of concepts containing frequent functional dependencies (min support = 1) 

N Support Objects Intents of concepts 
1 1 7 CDT 
2 1 9 ACDW 
3 2 4 9 CDW 
4 5 1 4 6 7 9 CD 
5 2 5 10 ACTW 
6 4 2 5 7 10 CT 
7 4 3 5 9 10 ACW 
8 6 3 4 5 8 9 10 CW 
9 10 1 2 3 4 5 6 7 8 9 10 C 

 

Table 6: Frequent functional dependencies for the given classification (min confidence = 1) 

N Support Confidence Goal Left part of dependency 

1 1 1 GOAL[0] C D T 
2 1 1 GOAL[0] A C D W 
 

4. Experiments 

For the DTM performance testing experiments, the well-known Mushroom dataset and the lesser-
known Adult dataset were used, see Table 7. Both were shuffled and split in a ratio of 80% training 
set to 20% testing set  



Table 7: Datasets description 

Data sets Type Attributes 
per Types 

Number of 
Records  
  

Problems 

mushrooms dense 22- categorical 
+ label  

8124 missing values 

adults dense 8 - categorical 
6 - numerical 
+ label 

32561 missing values, 
class imbalance, 
repeated samples 
 

The search processes are controlled by a search strategy for selecting subtasks by attributes. 
Namely, the strategies are: support (max) , 
unordered or left-to-right choice of a  (uno), and maximum support (min)
attributes with min support).  

Table 8 shows the results of the search for value-based concepts, and Table 9 shows the results of 
searching for the diagnostic tests. The number of solved subtask/time in the Table 8 is determined 
for concept task only. - eans the absence of data. 

Table 8: Value-based concepts result for min support 1 

Table 9: Test search results for min confidence 1 

In Tables 8 and belonging to at 
list one of obtained tests. 

Table 10 shows the results of the search for both functional dependencies and conditional ones. 

Table 10: Functional dependencies search results for min support 1 and confidence 1 

Data sets Task 
dimensions 

Number of 
Concepts  

Coverage Number of Solved 
subtasks/time(ms): 
min/uno/max 

mushrooms 6499 x 116 212959 6499 301718/ 2189 
793889/ 5533 
1447275/ 12161 

adults 26048 x 146 2037104 26048 2456837/ 52693 
7522715/ - 
20394837/ - 

Data sets Class/members  Number of Tests  Coverage 
Mushrooms p /3161 

e/ 3338 
76855 
78867 

3161 
3338 

Adults  50K/ 19729 
 50K/ 6319 

683836 
55822 

17257 
4260  

Data sets Task 
dimensions 

Number of 
Concepts 

Number of FDs Number of 
Solved sub-tasks 
/time(ms): 
min/uno/max 

mushrooms 16901x 22 202150 27254 225445/ 3497 
332896/ 5391 
438333/7161 



5. Plausible rule application 

The FCA is certainly one of the most powerful tools for analyzing data and building knowledge 
models based on the lattice of formal concepts extracted from a training context. Remarkable 
introduction to the FCA and its applications in the information retrieval and related fields is 
contained in [9]. 

However, the FCA has a number of drawbacks, one of which should be recognized as the 
impossibility of directly using formal concepts in the tasks of classifying objects. Computer 
knowledge structures are traditionally declarative, mechanisms of their using are separated from 
them and, as a rule, these mechanisms are often fixed. 

Currently, various methods for building classifiers are proposed based on concepts extracted from 
training contexts. These methods use several ideas: 1) forming formal concepts as classifiers and 
recognizing classes of new objects by navigating through the levels of the conceptual lattice [10, 11]; 
2) transition from classifiers constructed by methods other than the FCA to a lattice of formal 
concepts containing only concepts associated with the decision rules of these classifiers [12]. 

The first method is quite cumbersome. Essentially, it's about extracting concepts whose extents 
contain objects of only one class. To do this, the authors in [11] move from the two-digit to the 
nominal (multivalued) description of objects and introduce the labeling of objects of a context. Now, 
a nominal (multi-valued) context is a quadruple Inom, Anom, , Rnom, where nom is the set of nnom 
instances, nom is the set of mnom attributes,  is the set of values, Rnom is a relation defined 
between nom, nom and . Rnom is a set of triples.  

A similar idea, but more easily implemented, is given in [13]. In [12], the decision tree is 
considered as a set of classification rules and a method for transforming the constructed decision 
tree over a given context into an isomorphic lattice of concepts is proposed. 

The extraction of GCTs is the basis for obtaining the rules of classification plausible reasoning. 
Consider plausible reasoning rules of the second type and a model of plausible inference. 
Let  be a pattern (a set of true values of some attributes observed simultaneously). Our goal is to 

define the target value, i.e. the label of a possible class of objects to which this pattern can belong. 
Deductive steps of reasoning consist of inferring consequences from some observed values with the 
use of the rules of the first kind (i.e., knowledge). 

Using implication: Let r be an implication, left(r) and right(r) be the left and right part of r, 
respectively. If left(r)  x, then x can be extended by right(r):     right(r). Using interdiction: 
Let r be an implication x   not k. If left(r)  x, then k is the forbidden value for all extensions of x. 
Using compatibility a, b, c   k, VA (confidence of the rule)  x, then k can 
be used to extend x along with the calculated value VA for this extension. Using diagnostic rules: 

d  a; x, b  not a true a a
hypotheses or possible values of some attribute. Using diagnostic rule implies to infer whether d or 
b is true. 

-type 
 Generating hypothesis or abduction 

rule: Let r be an implication y  k k is true, then y 
may be true  

When applied, the above rules generate the reasoning, which is not demonstrative. The purpose 
of reasoning is to infer all possible hypotheses on the value of some target attribute. It is essential 
that these hypotheses do not contradict with knowledge (the first type rules) and the observable real 
situation under which the reasoning takes place. Inference is reduced to obtain all intrinsically 
consistent extensions of x, in which the number of involved attributes is maximum possible and there 

adults 23879x 14 12288 0 12288/ 248 
12288/234 
16384/303 



are no prohibited pairs of values in such extensions. All hypotheses have different admissibility 
compatibility rules involved in inferring each of them. 

As a result of learning, we can form the following knowledge bases (KB): the Attribute Base (AtB), 
containing the relations between problem domain concepts (Ontology), and the Assertion Base 
(AsB), containing the assertions, formulated in terms of the concepts, and the rules of the first type 
obtained from training context. Let a request to the KB be: SEARCHING VALUE OF class of object 

 = x).  
Step 1. Select all the assertions as, as  AsB containing at least one value from the request x. Step 

2. Delete from the set of selected assertions all of these that contradict with the request. Assertion 
contradicts with the request if it contains the value of an attribute which is different from the value 
of this attribute in the request. Step 3. Select the values of attributes appearing in remaining 
assertions. If this set of values contains several hypotheses (several names of target classes), an 
attempt is made to refute one of the hypotheses. For this goal, it is necessary to find a forbidden rule 
containing one of the hypotheses, some subset of values from the request and does not contain any 
other value. Step 4. If we have not a hypothesis or we cannot refute the existing hypotheses, then 
an attempt is made to find a value of some attribute that is not in the request (in order to extend the 
request). For this goal, it is necessary to find an assertion (implication) that contains a subset of 
values from the request and one and only one value of some new attribute which are not in the 
request. For extending request, the compatibilities rules can also be used. The extending obtained 
must not contain any forbidden set of values. Step 5. Forming the extended request. Steps 1, 2, 3, 4 
are repeated.  

The process of pattern recognition can require inferring new rules of the first type from data 
when i) the result of reasoning contains several hypotheses and it is impossible to choose one and 
only one of them (uncertainty), and ii) it is impossible to obtain any hypothesis. 

6. Conclusion 

In this paper, a system for solving formal concept related tasks in real world domains is presented. 
The main goal of the system is the searching for all closed itemsets (concepts). Constructing Galois 
lattice of concepts allows to additionally generate GCTs and approximating FDs for given 
classifications on a given data set. In general, these tasks are based on ordinal procedure for shallow 
or deep machine learning for classifications. We show that the FCA is closely related to modeling 
plausible classification reasoning. 

In future work, we plan to implement a fully scalable incremental version of the algorithm for 
We plan also to improve the lattice 

navigation to reduce some dead ends in the context of probabilistic reasoning. 
Another urgent task is to create a system for generating plausible reasoning rules and models of 

plausible reasoning based on constructing and browsing a lattice of concepts. 
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