
Improvements to Lattice Drawing With fca.sty
Tobias Schlemmer

Dresden, Germany

Abstract
For documenting theoretical and empirical results with of Formal Concept Analysis Bernhard Ganter provided

a LATEX package that allows to typeset Formal Contexts and Line diagrams of Lattices and ordered sets. This

package has been heavily reworked during the last years. Here a short status of the achievements and open

challenges shall be given.

Keywords
LaTeX package, typesetting FCA, typesetting, formal context, lattice diagrams

1. Introduction

Bernhard Ganter’s fca.sty is a LATEX [1] package for typesetting Formal Concept Analysis [2]. This

includes special symbols, Formal Contexts, and Lattice Diagrams. This package has been overhauled by

the author in the last two years [3]. In the result, the package has improved support for formal contexts

and drawing line diagrams.

The intention behind this effort was no less than to improve the typographical quality of papers about

Formal Concept Analysis and related subjects. Furthermore, the package should provide a maximum

amount of compatibility to existing LATEX code based on former versions of fca.sty.

The main changes are:

• remove limits to the number of columns, rows, concepts, etc. of formal contexts and concept

lattices,

• add a parser for Burmeister Context files,

• add an interface to allow a arbitrary LATEX code for symbols in context tables – this also includes

new symbols and colouring of crosses,

• use pgf [4] as backend for simple lattice diagrams and TikZ [4] for more sophisticated documen-

tations

• expose the improvements from these packages to the users.

In the following sections these changes are shortly introduced one by one. These improvements offer

tools that can help to improve the quality of publications about Formal Concept Analysis, however they

do not reach this goal. Several hurdles lie on its way. Some of these shall be discussed at the end of this

paper.

2. Keeping things separated

The new fca.sty consequently uses prefixes to macros and environments in order to avoid interference

with other packages. In most cases this should be transparent to the users. However, this cannot be

fully avoided:

FCA4AI 2024: The 12th International Workshop "What can FCA do for Artificial Intelligence?, October 19 2024, Santiago de
Compostela, Spain
$ Tobias.Schlemmer@web.de (T. Schlemmer)

� https://schlemmersoft.de/ (T. Schlemmer)

� 0000-0003-4350-3110 (T. Schlemmer)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:Tobias.Schlemmer@web.de
https://schlemmersoft.de/
https://orcid.org/0000-0003-4350-3110
https://creativecommons.org/licenses/by/4.0/deed.en

• Global configuration macros that originally didn’t start with \fca or cxt must be adapted to

the new system. Inside the cxt and diagram environments these macros are provided without

prefix in order to avoid unnecessary errors.

• All new diagram styles (see below) must be called using their full path starting with /fca/ when

accessed from outside of FCA macros. If possible they are mapped to the corresponding /pgf/
or /tikz/ styles. Details are given in the documentation of fca.sty.

3. Improvements to formal contexts

Formula 1

1. 2. di
sq

ua
lif

ie
d

Verstappen ×
Hamilton ×
Leclerc × ×

\ begin { c x t }
\ c x t i n p u t { fo rmula 1 . c x t }

\ end { c x t }

Figure 1: A formal context loaded from a Burmeister file. Left: Context, Right: source code.

Support for typesetting formal contexts had been added to fca.sty long ago. This support had its

limitations. Some of them have been lifted. The way how object and attribute names are stored has

been reworked as well as the table header generation. So the number of possible columns is not limited

by the package, anymore. The general TEXnical limits should be large enough, even for unusual useage

of the package: the number of possible macros, the maximum counter value, and the available memory.

New macros have been introduced that allow the definition of new symbols, and redefine existing

ones. The characters denoting the symbols are stored as macros. So they can be defined to consume

arguments. Additionally, digits have been predefined so that simple many-valued contexts can be

typeset without additional setup. In cases where it is really necessary, it is a new macro allows to inject

arbitrary code in the tabular environment of the context.

An optional positional argument has been added to the cxt environment, so that it is easier to place

them in multi column environments. These improvements are demonstrated in Fig. 2.

Last but not least, a parser for contexts in the Burmeister format has been integrated into the

packageDanke, as shown in Fig. 1. This parser maps the different parts of a .cxt file to the corresponding

macros of a cxt environment. So markup or special signs can be typeset in the same way as in the

corresponding macros of the LATEX environment cxt.

4. Lattice diagrams

Lots of work has been invested into the rejuvenation of the diagram code. The syntax has been carefully

adapted such that existing diagrams can be directly integrated in new documents, or they need only

minor adjustments. An example is given in Fig. 3. Each vertex has a name (traditionally a number) and

coordinates. The edges and labels are anchored using these names. Additionally, labels have a printed

description and can be shifted relatively to their position.

In order to allow a consistent appearance in sophisticated diagrams, the different elements of a

diagram are organised in layers.

The original fca.sty package used the \emlinesmacro from the emTEX distribution in combination

with standard LATEXs picture environment. Unfortunately, support for the emTEX specials has been

removed from current TEX distributions, so the lines disappear from the diagrams. The package

tsemlines [5] depends on TikZ. So it is more a quick hack than a lightweight solution to this problem.

Another goal was to bridge the gap between the very simple picture environment and modern graphics

A demo context

1. 2. di
sq

ua
lif

ie
d

Verstappen 1 ∨
Hamilton ∧ × ↗↘
Leclerc 𝑖 23 ×
nothing

\ begin { c x t } [c]
\ renewcommand { \ f c a C x t A r r o w S t y l e } { \ footnotes ize \ c o l o r { red

} } %
\ fcaNewContextChar { v } { \ c x t r l a p { $ \ vee $ } }
\ fcaNewContextChar { n } [1] { \ c x t r l a p { # 1 } }
\ f c a P r o v i d e C o n t e x t C h a r { \ wedge } { \ c x t r l a p { $ \ wedge $ } }
\ f c a P r o v i d e C o n t e x t C h a r { d } { −− i g n o r e d −− }
\ fcaRenewContextChar { d } { \ c x t r l a p { $ i $ } }
\ cxtName { A demo c o n t e x t }
\ a t t { 1 . }
\ a t t { 2 . }
\ a t r { d i s q u a l i f i e d }
\ o b j { 1 . v } { Vers tappen }
\ o b j { \ wedge xb } { Hamilton }
\ o b j { dn { 2 3 } x } { L e c l e r c }
\ f r e e o b j { \ multicolumn { 3 } { c | } { } } { no th ing }

\ end { c x t }

Figure 2: A formal context typeset with the new features of the FCA packages. Left: Context, Right: correspond-
ing source code.

1.

disqualified

2.

Verstappen

Leclerc

Hamilton

\ s e t l e n g t h { \ unit length } { 0 . 9mm}
\ begin { diagram }

\ Node (1) (2 0 , 1 0)
\ Node (2) (3 5 , 2 0)
\ Node (3) (5 , 3 0)
\ Node (4) (3 5 , 4 0)
\ Node (5) (2 0 , 5 0)
%
\ Edge (1) (2)
\ Edge (1) (3)
\ Edge (2) (4)
\ Edge (3) (5)
\ Edge (4) (5)
%
\ l e f t A t t b o x (3) { 1 . }
\ r i g h t A t t b o x (2) { d i s q u a l i f i e d }
\ r i g h t A t t b o x (4) { 2 . }
\ l e f t O b j b o x (3) { Vers tappen }
\ r i g h t O b j b o x (2) { L e c l e r c }
\ r i g h t O b j b o x (4) { Hamilton }

\ end { diagram }

Figure 3: A diagram example with 5 Vertices and 5 edges, attribute and object labels.

drawing tools like TikZ. Thus the diagram environment is now based on pgf, a new environment

tikzdiagram has been introduced as a TikZ version of diagram, and the important macros have been

enhanced to use the syntax of TikZ.

Between full TikZ support and the picture like environment there are several intermediate steps.

At first the package can be loaded using \usepackage{fca}. This uses only the graphics layer of pgf

and omits the syntax layer of TikZ. At this stage a limited support for TikZ like styles and attributes

has been implemented. Naturally this is linked to the styles that have been implemented in fca.sty.

On the other end it is possible to load the package using the TikZ macro \usetikzlibrary{fca}.

This enables to use of diagram inside a tikzpicture environment and the tikzdiagram environ-

ment which combines both in one environment. Using this approach all drawing macros are mapped to

the corresponding TikZ macros which enables full TikZ support.

It is also possible to use \usepackage{fca} after loading TikZ. Both approaches enable additional

styles to be used in a diagram environment, as fca.sty uses similar internals to TikZ. However,

future versions of TikZ may cause errors and the set of supported styles may change depending on the

TikZ version. So the latter approach is not recommended.

top Attribute

left Attribute right Attribute

bottom object

left object right object

\Node(join)(0,1)

\Node(meet)(0,-1)

\Node(top)(0,2)

\Node(left)(-1,0) \Node(right)(1,0)

\centerAttBox(top){top Attribute}

\leftAttBox(join){left Attribute} \rightAttBox(join){right Attribute}

\leftObjBox(join){left Object} \rightObjBox(join){right Object}

\centerObjBox(meet){bottom Object}

\Edge(meet)(bottom)

Figure 4: Elements of a diagram environment. The diagram shows a concept lattice. Arrows indicate which
code is used to draw certain elements. The diagram is drawn using a tikzdiagram environment.

1.

disqualified

2.

Verstappen Leclerc

Hamilton

\ s e t l e n g t h { \ unit length } { 0 . 9mm}
\ d e f i n e c o l o r { da rkgreen } { rgb

} { 0 . 0 5 , 0 . 5 , 0 . }
\ begin { diagram }

\ Node [draw= red , f i l l = green ,
l i n e width = . 5mm,
r a d i u s = 1 . 5mm] (1) (2 0 , 1 0)

\ Node (2) (3 5 , 2 0)
\ Node [o p a c i t y = 0 . 3 , f i l l = red] (3) (5 , 3 0)
\ Node [f i l l = darkgreen] (4) (3 5 , 4 0)
\ Node [/ t i k z / r e c t a n g l e] (5) (2 0 , 5 0)
%
{ \ c o l o r { da rkgreen } \ Edge (1) (2) }
\ Edge [draw= red , dot ted ,

l i n e width = 1 . 5 pt] (1) (3)
\ Edge (2) (4)
\ Edge [draw= red ! 5 0 ,

l i n e width =1mm] (3) (5)
\ Edge (4) (5)
%
\ r i g h t A t t b o x [conexp s t y l e] (2) {

d i s q u a l i f i e d }
\ l e f t A t t b o x (3) { 1 . }
\ r i g h t A t t b o x (4) { 2 . }
\ l e f t O b j b o x [draw= red , i n n e r sep =1 pt] (3)

(1 , − 1 0) { Vers tappen }
\ r i g h t O b j b o x [conexp s t y l e] (2) { L e c l e r c }
\ r i g h t O b j b o x [t e x t = darkgreen] (4) (0 , − 2)

{ Hamilton }
\ end { diagram }

Figure 5: An overly styled concept lattice demonstrating different kinds of markup including the use of TikZ
styles.

Unfortunately, TikZ and the picture environment have different base units. While picture only

allows to define one unit length, pgf and TikZ apply at least two affine transformations from the input

to the output file. Though the behaviour of a picture environment can be emulated in pgf/TikZ, this

behaviour is unstable and counter-intuitive to new users. The compatibility issue is solved using the

following compromise:

Et

Ef Es

Q

Re [LSTM]

[CNN]

App: Traffic Prediction

HiDeNN

ADAIN

GCN-LSTM

STDN

GCN-LSTM

AEST

CL-TRANSMODE

DGSR

DHSTNet

DMVST-Net

Dynamic-GRCNN

end-to-end DNN

MT-STNets

STCL-Net

SRCNs

MVC-STNet

AEST

CL-TRANSMODE

DHSTNet

DMVST-Net

Dynamic-GRCNN

end-to-end DNN

HMDLF

MT-STNets

MVC-STNet

SRCNs

CLSTM

HAST-IDS

PHRNN, MSCNN

sDTD

STCL-Net

ST-MDF

end-to-end DNN

HMDLF

Figure 6: An iceberg lattice [6, Fig. 8], reworked for readability according to the standards defined in [2] with
emphasis on the lower part.

• the digaram environment uses the old coordinate system if it is located outside of any graphics

environment or inside a pgfpicture environment,

• the tikzdiagram environment and diagram inside tikzpicture use the tikz coordinate

system.

• translation of old diagrams into TikZ diagrams can be easily done by opening the diagram with

\begin{tikzdiagram}[x=\unitlength,y=\unitlengh,. . .].

• All configuration macros in diagram environments are either available directly in tikzdiagram
or can be expressed using style options.

As a real-world example, in Fig. 6 an iceberg lattice [6, Fig. 8] has been reworked using a chain

decomposition layout exploiting the calc library of TikZ and the style used in [2]. As usual in Formal

Concept Analysis, tags for attributes are drawn only on the highest concept node of their occurrence

and apply to all concepts that can be connected with only rising lines to the corresponding label. This

is in principle also true with inverse direction for object labels, which are valid for every node that can

be connected going strictly upwards following the lines. However, many of the objects are attached to

nodes that are not visible in the diagram. Their names are repeated at the lowest visible node, which

often leads to multiple occurrences of he same name in different labels. Where appropriate, labels are

reused for multiple nodes.

The lower part of the diagram is drawn with bolder lines. This part is referenced in an emphasised

discussion in the text of the given article.

5. Open issues

It is planned to publish the package on CTAN, so that it can be integrated in the standard LATEX

distributions and Docker images. And despite the fact that the package is perfectly usable, some issues

arise. However, it currently does not fulfil its primary goal: to improve the typographical quality of

published diagrams in formal concept analysis. As it can be seen, in this paper both high-quality as well

as low-quality typesetting is possible with this package. So how can it be modified to achieve this goal?

One approach would be to allow only good diagrams or make it at least hard to draw bad diagrams.

One could argue that LATEX also makes it hard to change dangerous parameters. This is impossible

on the technical level as no algorithm exists that can check whether a diagram is good or bad. This

decision depends on the writer’s intention. Formalising this intention is nearly impossible. The levers

we can pull (or not) are basically features and documentation. If we remove all possibly dangerous

features from the package or its documentation, the package would be very inflexible. And it would be

nearly impossible to interact with other graphical content.

On the other hand, documenting the package as a reference that simply lists all features, and

encouraging people to play around with these features, also leads to over-styled diagrams that are hard

to understand (cf. Fig. 2 and Fig. 5). Recall: Typography does not consider the taste of the author but

studies how to format things such that they can be easily understood by the readers.

Also here, LATEX can be used as a reference. Since the first version of LATEX more and more features

got configurable. So at first it simplified the use of TEX and then, it simplified the change of the layout.

This is the main issue that blocks publication on CTAN. Currently it is unclear, how to solve it. It

seems as if a compromise could be to proper organise the information for the documentation. Other

packages like TikZ and the beamer start with tutorials on their subjects. The difficulty of this approach

lies in the fact, that such a tutorial should satisfy all stakeholders.

Other issues contain small inconsistencies between the pgf and the TikZ implementation of the

diagram drawing code. These will be ironed out with the growth of the reference section in the

documentation. However also the development of the reference is influenced by the above issue.

6. Conclusion
Despite the issues the new version of fca.sty is a powerful and usable package that provides:

• Certain symbols for Formal Concept Analysis,

• Context tables drawn from LATEX code and Burmeister context files,

• Lattice Diagrams that can be drawn and enhanced with annotations in pgf and TikZ environments.

Happy TEXing!

Declaration on Generative AI

The author has not employed any Generative AI tools.

References

[1] L. Lamport, LATEX (2nd ed.): a document preparation system: user’s guide and reference manual,

Addison-Wesley Longman Publishing Co., Inc., USA, 1994.

[2] B. Ganter, R. Wille, Formal concept analysis: mathematical foundations, Springer, Berlin, 1999.

[3] B. Ganter, T. Schlemmer, fca.sty, Online Ressource: https://github.com/keinstein/latex-fca, 2024.

Download via https://github.com/keinstein/latex-fca/archive/refs/heads/master.zip.

[4] T. Tantau, The TikZ and PGF Packages, 2024. URL: https://github.com/pgf-tikz/pgf/.

[5] T. Schlemmer, tsemlines, 2024. URL: https://ctan.org/pkg/tsemlines.

https://github.com/keinstein/latex-fca
https://github.com/keinstein/latex-fca/archive/refs/heads/master.zip
https://github.com/pgf-tikz/pgf/
https://ctan.org/pkg/tsemlines

[6] T. Man, V. Y. Osipov, N. Zhukova, A. Subbotin, D. I. Ignatov, Neural networks for intelligent

multilevel control of artificial and natural objects based on data fusion: A survey, Information

Fusion 110 (2024) 102427. doi:10.1016/j.inffus.2024.102427.

http://dx.doi.org/10.1016/j.inffus.2024.102427

	1 Introduction
	2 Keeping things separated
	3 Improvements to formal contexts
	4 Lattice diagrams
	5 Open issues
	6 Conclusion

