
Hybrid Compilation-based ASP solving
Carmine Dodaro, Giuseppe Mazzotta and Francesco Ricca

Department of Mathematics and Computer Science, University of Calabria, Rende, Italy

Abstract
Answer Set Programming (ASP) is a widely recognized formalism for Knowledge Representation and Reasoning.
State-of-the-art ASP systems, based on the well-known Ground&Solve approach, are subject to the grounding
bottleneck problem that, in some cases, makes the computation of answer sets practically unfeasible. Compilation-
based approaches have recently demonstrated how grounding can be effectively bypassed by compiling rules into
propagators, but, compiling an entire ASP program is not always advantageous. In the paper titled “Blending
grounding and compilation for efficient ASP solving”, presented during the “Twenty-First International Conference
on Principles of Knowledge Representation and Reasoning (KR 2024)”, we proposed a hybrid approach that allows
for unrestricted blending of grounding and compilation. In this paper, we investigate the advantages of using
ad-hoc hybrid solvers and discuss future directions in this line of research.

Keywords
Answer Set Programming, Compilation-Based ASP Solving, Grounding Bottleneck, Hybrid Solving

1. Introduction

Answer Set Programming (ASP) [1, 2] is a well-known declarative AI formalism for KRR. Thanks to the
availability of efficient implementations, ASP finds extensive applications in several AI sub-areas [3],
such as Planning [4], Scheduling [5, 6], Natural Language Processing [7, 8, 9], and Databases [10, 11, 12].

Traditional ASP systems, such as CLINGO [13] and DLV [14], are based on the Ground&Solve
approach [15]. Intuitively, an input program is first “grounded” to compute a variable-free equivalent
propositional program; and subsequently, the grounded program is “solved” by employing a CDCL-like
algorithm [16] that computes its answer sets. However, such an approach intrinsically suffers from
the so-called grounding bottleneck, i.e., getting rid of variables already consumes all the computational
resources (i.e., time and/or space) in several cases of practical interest [17, 18].

The grounding bottleneck [19] has been approached from several perspectives. These include
hybrid formalisms [20, 13, 18, 21], lazy grounding architectures [22, 23, 24, 25, 26], complexity-driven
program rewritings [27, 28], and program compilation into propagators [29, 30, 31, 32]. Among these,
compilation-based approaches demonstrated that the grounding can be skipped in some relevant cases by
compiling rules in propagators able to ground rules’ inferences. Such techniques were first proposed for
subprograms acting as constraints [30, 31]. More recently, the ProASP system [32] has been proposed.
ProASP demonstrated that it is possible to devise a compiler also for rules “generating” answer sets
(i.e., involving non-stratified negation). In ProASP, a tight [33] non-ground input program is first
pre-processed by applying a rewriting encompassing program completion [34] and normalization (i.e.,
it produces rules of two kinds). Then, the compiler generates code for both Herbrand base generation
and rule propagators. That code is injected in the CDCL solver Glucose [35] to initialize variables and
simulate the presence of ground rules, respectively. In this way, the ProASP compiler produces a solver
specific for the non-ground program in input that needs no grounder. Clearly, ProASP implements an
approach that is basically at the antipodes of Ground&Solve, since it compiles all rules of the program.

However, empirical evidence showed that compiling all rules of an ASP program does not pay off in
all cases w.r.t. traditional approaches [31]. This is not surprising. It is well-established that there is no
free lunch in ASP solving [36], i.e., no single algorithm is the best in all cases. Under typical operational

AIxIA 2024 Discussion Papers - 23rd International Conference of the Italian Association for Artificial Intelligence, Bolzano, Italy,
November 25–28, 2024
$ carmine.dodaro@unical.it (C. Dodaro); giuseppe.mazzotta@unical.it (G. Mazzotta); francesco.ricca@unical.it (F. Ricca)
� 0000-0002-5617-5286 (C. Dodaro); 0000-0003-0125-0477 (G. Mazzotta); 0000-0001-8218-3178 (F. Ricca)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:carmine.dodaro@unical.it
mailto:giuseppe.mazzotta@unical.it
mailto:francesco.ricca@unical.it
https://orcid.org/0000-0002-5617-5286
https://orcid.org/0000-0003-0125-0477
https://orcid.org/0000-0001-8218-3178
https://creativecommons.org/licenses/by/4.0/deed.en


scenarios, it is plausible that certain rules of the program can be efficiently grounded and, thus, are
amenable to be processed using the traditional architecture; whereas, for the remaining part of the
program, which is made of rules that are subject to the grounding bottleneck, a compilation-based
system could offer a viable solution for their evaluation. This latter case, which is very common in
practice, cannot be approached in the best possible way with current state-of-the-art ASP systems, that
either ground or compile everything.

In the paper “Blending grounding and compilation for efficient ASP solving”, we presented a
compilation-based architecture, built on top of the ProASP system, for blending grounding and compi-
lation. This novel approach allows for an unrestricted blending of both methods and aims at achieving
superior performance by combining the advantages of both approaches.

In this paper, we overview hybrid ASP solving, outline its strengths, and discuss future directions of
this line of research.

2. Hybrid ProASP: Blending Grounding and Compilation

In this section we describe the extended architecture of the ProASP system that exploits an optimized
rewriting strategy and allows for the compilation of a program into a hybrid ASP solver (i.e. mixing
Ground&Solve and Compilation) without any compilability restrictions that existing compilation-based
approaches [30, 31] are subject to.

The ProASP system implements two different stages, namely Compilation and Solving stages. The
former is used to build a hybrid solver starting from a non-ground program Π, while the latter employs
the obtained ad-hoc hybrid solver to compute an answer set Π∪𝐹 , where 𝐹 is a set of facts representing
a specific problem instance. At Compilation Stage ProASP system takes as input a non-ground program
Π and compiles it into a hybrid solver. To this end, the input program Π is fed into the Compiler module
that analyzes Π, identifies the rules that should be compiled and those that should be grounded, and
then compiles them properly. More precisely, the Compiler first applies a pre-processing step that
extends the normalization of ProASP to allow grounded rules to coexist with propagators, no matter
if they are involved in a recursive definition. Then, the rules to be compiled follow the usual path of
ProASP, i.e., they are compiled in propagators; whereas the remaining rules are compiled in a code
that performs grounding, i.e., code that generates propositional clauses that are stored in the Glucose
data structures. As a result, we obtain an ASP system that blends compilation and grounding.

At Solving Stage, instead, ProASP takes as input a set of facts 𝐹 denoting a specific instance of the
program Π that should be solved, and computes an answer set of Π∪𝐹 , if any, or proves its incoherence.
First of all, the input instance 𝐹 is given as input to the Hybrid Generator module that generates the set
of relevant atoms [32] for computing the answer set of Π ∪ 𝐹 together with the ground instantiations
of rules of Π that should be grounded. Produced ground rules are successively transformed into a set of
clauses [33] that, together with generated atoms, are used to initialize the Glucose SAT solver at the
core of the ProASP system. At this point, Glucose starts the CDCL for computing an answer set of
Π ∪ 𝐹 . At each step of the CDCL algorithm, Glucose chooses a branching literal 𝑙 and performs the
unit propagation by (i) considering the generated clauses encoding the ground rules and (ii) using the
Propagator module, for simulating the inferences of the remaining rules. During the CDCL, as soon as
the current interpretation becomes inconsistent, the conflicting literals are analyzed according to the
propagation clauses that derived them. More precisely, for all those literals that have been derived from
compiled propagators, Glucose uses the Propagator module to reconstruct the propagation clauses,
while, for all other literals, Glucose analyzes its internal clauses that caused the propagation. As soon
as the current interpretation is total or the consistency cannot be restored, then the CDCL stops. At
this point, if such total interpretation 𝑀 has been found, then 𝑀 is an answer set of Π ∪ 𝐹 , otherwise
ProASP returns ⊥, denoting that Π ∪ 𝐹 has no answer sets.



Figure 1: Comparison between Ground&Solve and hybrid ASP solving

3. Scalability of hybrid ASP solving

We report here about the final experiment performed in [37], where the ProASP system with hybrid
solving enabled has been compared to the state-of-the-art Ground&Solve ASP system CLINGO on well-
established benchmarks featuring 2366 instances from 14 application domains. In this evaluation, we
considered eight variants of ProASP representing different ways of blending grounding and compilation
by splitting programs by rule type. More precisely, we identified the following three types of rules: (CS)
constraints not containing aggregates; (AG) rules containing aggregates; (RL) normal rules; and also
their combinations, i.e., RL+CS, RL+AG, and CS+AG. Additionally, we also consider the two versions
of ProASP in which the whole program is compiled or grounded. Finally, we label HYBRID-PROASP
the ProASP version obtained by considering the best split for each benchmark. Obtained results are
reported in Figure 1 where the two cactus plots report, respectively, time and memory consumption.
Recall that, in a cactus plot, instances are sorted by memory (or time) usage, and a point (𝑖, 𝑗) indicates
that a solver is capable of solving the 𝑖-th instance with a memory (or time) limit of 𝑗 megabytes
(or seconds), respectively. As it is evident from the plots, the hybrid solving results in significant
performance improvements w.r.t. the state-of-the-art by solving 513 more instances and consuming
much less memory (roughly 60%). For further details, we refer reader to [37].

4. Discussion

ASP systems based on Ground&Solve approach are generally effective, but they can struggle with the
grounding bottleneck. On the other hand, compilation-based ASP systems have shown that, in certain
cases, grounding can be avoided. However, neither approach pays off in all cases.

By developing a technique that seamlessly combines grounding and compilation, we achieved notable
improvements over existing compilation-based methods and current state-of-the-art implementations.
This is a very promising result, expanding the applicability of ASP as an AI tool for solving complex
combinatorial problems.

As far as future work is concerned, since the ProASP system does not support the entire ASP-Core 2
standard, it would be interesting to extend the benefit of the blending also to a wider class of programs
such as non-tight programs and disjunctive ones. Another promising avenue is the exploration of a
more fine-grained—and possibly automated—procedure for selecting which rules to ground or compile.
However, this presents a significant challenge arising from the unique nature of compilation, which
must be performed prior to executing any instance of the problem.



Acknowledgments

This work has been partially supported by MISE under project EI-TWIN n. F/310168/05/X56 CUP
B29J24000680005, and MUR under projects: PNRR FAIR - Spoke 9 - WP 9.1 CUP H23C22000860006,
Tech4You CUP H23C22000370006, and PRIN PINPOINT CUP H23C22000280006.

References

[1] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun. ACM 54
(2011) 92–103.

[2] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Gener. Comput. 9 (1991) 365–386.

[3] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37 (2016)
53–68.

[4] T. C. Son, E. Pontelli, M. Balduccini, T. Schaub, Answer set planning: A survey, Theory Pract. Log.
Program. 23 (2023) 226–298.

[5] C. Dodaro, M. Maratea, Nurse scheduling via answer set programming, in: LPNMR, volume 10377
of Lecture Notes in Computer Science, Springer, 2017, pp. 301–307.

[6] M. Cardellini, C. Dodaro, G. Galatà, A. Giardini, M. Maratea, N. Nisopoli, I. Porro, Rescheduling
rehabilitation sessions with answer set programming, J. Log. Comput. 33 (2023) 837–863.

[7] A. Mitra, P. Clark, O. Tafjord, C. Baral, Declarative question answering over knowledge bases
containing natural language text with answer set programming, in: AAAI, AAAI Press, 2019, pp.
3003–3010.

[8] P. Schüller, Modeling variations of first-order horn abduction in answer set programming, Fundam.
Informaticae 149 (2016) 159–207.

[9] Z. Yang, A. Ishay, J. Lee, Coupling large language models with logic programming for robust and
general reasoning from text, in: ACL (Findings), Association for Computational Linguistics, 2023,
pp. 5186–5219.

[10] T. Eiter, M. Fink, G. Greco, D. Lembo, Repair localization for query answering from inconsistent
databases, ACM Trans. Database Syst. 33 (2008) 10:1–10:51.

[11] M. Arenas, L. E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in:
PODS, ACM Press, 1999, pp. 68–79.

[12] M. Manna, F. Ricca, G. Terracina, Taming primary key violations to query large inconsistent data
via ASP, Theory Pract. Log. Program. 15 (2015) 696–710.

[13] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving made
easy with clingo 5, in: ICLP (Technical Communications), volume 52 of OASICS, Schloss Dagstuhl,
2016, pp. 2:1–2:15.

[14] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari, The
ASP system DLV2, in: LPNMR, volume 10377 of Lecture Notes in Computer Science, Springer, 2017,
pp. 215–221.

[15] B. Kaufmann, N. Leone, S. Perri, T. Schaub, Grounding and solving in answer set programming,
AI Mag. 37 (2016) 25–32.

[16] J. Marques-Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in: Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2021, pp.
133–182.

[17] F. Calimeri, M. Gebser, M. Maratea, F. Ricca, Design and results of the fifth answer set programming
competition, Artif. Intell. 231 (2016) 151–181.

[18] M. Ostrowski, T. Schaub, ASP modulo CSP: the clingcon system, Theory Pract. Log. Program. 12
(2012) 485–503.

[19] M. Gebser, N. Leone, M. Maratea, S. Perri, F. Ricca, T. Schaub, Evaluation techniques and systems
for answer set programming: a survey, in: IJCAI, ijcai.org, 2018, pp. 5450–5456.



[20] M. Balduccini, Y. Lierler, Constraint answer set solver EZCSP and why integration schemas matter,
Theory Pract. Log. Program. 17 (2017) 462–515.

[21] B. Susman, Y. Lierler, Smt-based constraint answer set solver EZSMT (system description), in:
ICLP (Technical Communications), volume 52 of OASIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 1:1–1:15.

[22] J. Bomanson, T. Janhunen, A. Weinzierl, Enhancing lazy grounding with lazy normalization in
answer-set programming, in: AAAI, AAAI Press, 2019, pp. 2694–2702.

[23] C. Lefèvre, P. Nicolas, The first version of a new ASP solver : Asperix, in: LPNMR, volume 5753 of
Lecture Notes in Computer Science, Springer, 2009, pp. 522–527.

[24] Y. Lierler, J. Robbins, Dualgrounder: Lazy instantiation via clingo multi-shot framework, in: JELIA,
volume 12678 of Lecture Notes in Computer Science, Springer, 2021, pp. 435–441.

[25] A. D. Palù, A. Dovier, E. Pontelli, G. Rossi, GASP: answer set programming with lazy grounding,
Fundam. Informaticae 96 (2009) 297–322.

[26] A. Weinzierl, Blending lazy-grounding and CDNL search for answer-set solving, in: LPNMR,
volume 10377 of Lecture Notes in Computer Science, Springer, 2017, pp. 191–204.

[27] V. Besin, M. Hecher, S. Woltran, On the structural complexity of grounding - tackling the ASP
grounding bottleneck via epistemic programs and treewidth, in: ECAI, volume 372 of Frontiers in
Artificial Intelligence and Applications, IOS Press, 2023, pp. 247–254.

[28] V. Besin, M. Hecher, S. Woltran, Body-decoupled grounding via solving: A novel approach on the
ASP bottleneck, in: IJCAI, ijcai.org, 2022, pp. 2546–2552.

[29] B. Cuteri, C. Dodaro, F. Ricca, P. Schüller, Partial compilation of ASP programs, Theory Pract.
Log. Program. 19 (2019) 857–873. URL: https://doi.org/10.1017/S1471068419000231. doi:10.1017/
S1471068419000231.

[30] B. Cuteri, C. Dodaro, F. Ricca, P. Schüller, Overcoming the grounding bottleneck due to constraints
in ASP solving: Constraints become propagators, in: IJCAI, ijcai.org, 2020, pp. 1688–1694.

[31] G. Mazzotta, F. Ricca, C. Dodaro, Compilation of aggregates in ASP systems, in: AAAI, AAAI
Press, 2022, pp. 5834–5841.

[32] C. Dodaro, G. Mazzotta, F. Ricca, Compilation of tight ASP programs, in: ECAI, volume 372 of
Frontiers in Artificial Intelligence and Applications, IOS Press, 2023, pp. 557–564.

[33] E. Erdem, V. Lifschitz, Tight logic programs, Theory Pract. Log. Program. 3 (2003) 499–518.
[34] K. L. Clark, Negation as failure, in: Logic and Data Bases, Advances in Data Base Theory, Plemum

Press, New York, 1977, pp. 293–322.
[35] G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in: IJCAI, 2009,

pp. 399–404.
[36] M. Gebser, M. Maratea, F. Ricca, The seventh answer set programming competition: Design and

results, Theory Pract. Log. Program. 20 (2020) 176–204.
[37] C. Dodaro, G. Mazzotta, F. Ricca, Blending Grounding and Compilation for Efficient ASP Solving,

in: Proceedings of the 21st International Conference on Principles of Knowledge Representation
and Reasoning, 2024, pp. 317–328. URL: https://doi.org/10.24963/kr.2024/30. doi:10.24963/kr.
2024/30.

https://doi.org/10.1017/S1471068419000231
http://dx.doi.org/10.1017/S1471068419000231
http://dx.doi.org/10.1017/S1471068419000231
https://doi.org/10.24963/kr.2024/30
http://dx.doi.org/10.24963/kr.2024/30
http://dx.doi.org/10.24963/kr.2024/30

	1 Introduction
	2 Hybrid ProASP: Blending Grounding and Compilation
	3 Scalability of hybrid ASP solving
	4 Discussion

