
Research on Quality Assurance Methods for Software
Products Based on Low Code Development	⋆

Wenyuan Zhang1,*,†, Jianxun Guo2,†, Yangyang Zhang3,*,†, Wenpeng Li*,†

1 (China Electronics Standardization Institute, Software Engineering and Evaluation Center, Beijing 100007)
2 University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
3 University of Skövde, Högskolevägen 1, 541 28 Skövde, Sweden

Abstract
With the acceleration of digital transformation, low-code (LC) has become an important trend in the field
of software development. Products such as LC development tools and platforms provide users with
graphical and visual programming interfaces, enabling non-professional developers to quickly build
applications and significantly improve development efficiency, function suitability and etc.. However, the
impact of LC on software engineering quality is a complex issue that involves multiple aspects such as
development processes, testing strategies, selection and integration of automation tools, and performance
testing standards. This paper aims to explore the impact of LC on software product quality and study a
software quality characteristic framework for LC development to ensure reliability, performance,
understandability and etc. when using LC.

Keywords
Low-Code, software engineering, quality characteristics 1

1. Introduction
LC is an emerging technological paradigm in the current
field of software engineering. The practical approach of
this technology is to use pre made code modules for
programming, reducing manual coding to accelerate the
software development process, thereby enabling
nonprofessional developers to participate in the
software development process. Since the 1980s, the
process of LC transitioning from conceptual technology
to thriving development has become one of the
important drivers in today's wave of digital
transformation.

1.1. Initial exploration (1980-2000s)
The origin of LC can be traced back to the 1980s, when
early graphical programming tools and fourth
generation programming languages (4GL) appeared on
the market. Engineers attempted to simplify software
development processes and code writing through these
tools, making development work more intuitive and
understandable. However, limited by the computing
power and network environment at that time, the actual
effectiveness of these tools was relatively limited and
could not be widely popularized.

1.2. Technical accumulation (2000-2014)
In the 21st century, with the rapid development of
Internet technology, cloud computing, mobile Internet

6th International Workshop on Experience with SQuaRE Series and its
Future Direction, December 03, 2024, Chong Qing, China
∗ Corresponding author.
† These authors contributed equally.

 Zhangwy@cesi.cn (W. Zhang); Liwp@cesi.cn(W. Li);
Zhangyy@cesi.cn(Y. Zhang)

and other emerging technologies provide a broader
application scenario for LC. During this period, some
enterprises and platforms specializing in LC technology
development began to emerge, such as OutSystems,
Mendix, etc. They greatly lowered the threshold for
software development by providing drag and drop
interface components and pre-set functional modules.
However, the LC market at this stage is still in its early
stages, and there are not many products that can be
widely applied.

Figure 1: The developement path of LC

 0009-0005-9868-5742(W. Zhang); 0009-0001-4065-2527(W. Li); 0009-
0006-4940-8527(Y. Zhang)

© 2024 Copyright for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

1.3. Rapid Rise (2014 present)
Around 2014, as the demand for digital transformation
in enterprises became increasingly urgent, LC
development experienced explosive growth. In 2014, the
internationally renowned consulting firm FORRESTER
first proposed the term and concept of LC development,
which is a software development method that allows
enterprises to quickly build and deploy applications with
minimal coding work. At this stage, major technology
giants such as AWS, Google, Microsoft, and Oracle have
successively laid out the LC market and launched a
series of LC development tools and services. A typical
event among them is in 2018, when Siemens acquired
Mendix, a leading enterprise in the LC field, for 600
million euros, marking the official entry of LC
technology into the mainstream.

Figure 2: Main events after 2014 [5]

In recent years, with the integration and application
of advanced technologies such as artificial intelligence
and big data in the field of software engineering, the
functions of LC development tools, platforms, and other
products have become increasingly powerful, covering a
wider range of industries and fields. They are capable of
developing everything from simple form based software
to complex enterprise level systems.

1.4. Current trend
At present, LC is no longer limited to rapid prototyping
and small-scale application development of general
software, but is increasingly being applied in enterprise
level projects. Meanwhile, with the continuous
advancement of technology, LC development related
products are also developing towards more intelligent,
personalized, and open directions, providing enterprises
with more flexible and efficient development solutions.
In addition, LC development promotes collaboration
between cross functional teams within enterprises or

organizations, improving the efficiency of the entire
software development lifecycle.

This article mainly focuses on the research of
software product quality based on LC. LC here mainly
refers to a software development technique and tool
pattern, which is mainly aimed at developers. By
providing a visual programming interface and
configurable approach, it reduces the workload of
traditional handwritten code and enables rapid
development and testing of software. Therefore, the
quality characteristic models/frameworks studied in this
article revolve around the impact and innovation of LC
on software engineering quality characteristic models.

2. Analysis of the Impact of LC
2.1. Key features of LC
Compared with traditional software products, software
products developed based on LC have the main
advantages of improving development efficiency,
reducing technical barriers, promoting collaboration
between business and IT, and utilizing modular code
modules to achieve convenient development and
management throughout the entire lifecycle. LC
development has the following advantages in the
software development process:

2.1.1. Agility

LC development embodies multiple advantages when
applied to agile software development processes, which
align with the core principles of agile development,
including improving adaptability, enhancing
collaboration, improving efficiency, strengthening
flexibility, and iteration. For businesses or organizations,
they need the ability to quickly respond to market
changes and develop innovations based on consumer
demand. LC development compresses the consumption
of design, prototyping, iteration, and other steps in the
agile development process, introduces automated
testing methods, strengthens team collaboration and
transparency, and provides better agility for enterprises,
thereby achieving the need for rapid delivery of
enterprise requirements.

2.1.2. Scalability

In the current market, enterprises need to be able to
quickly adapt to market changes and easily expand the
functionality and performance of applications to meet
evolving business needs. The related products of LC
development continuously strengthen the basic
capabilities of LC development through their own rapid
iteration, expansion of cross platform and cross domain
data integration, expansion of integration markets and
APIs, configuration of cloud native architecture, etc.,

providing scalable underlying support for the adoption
of LC development tools and platforms.

2.1.3. Team collaboration

The convenience and development efficiency of LC
allow users from various business teams to participate
in software development together, greatly enhancing
team collaboration efficiency and driving overall project
development progress. Products mainly based on LC
platforms are mainly developed on cloud services,
providing users with consistent development standards
and standardized component libraries, establishing clear
roles and division of labor within the team, improving
software version control efficiency, and enabling cross
departmental and cross project work. This helps
development teams maintain and update code more
easily, achieving a significant improvement in team
collaboration efficiency.

2.1.4. Quality Assurance [6]

As LC applications move beyond the prototype stage
and become part of the IT environment, they begin to
pose challenges in terms of design culture, enterprise
processes, security, and performance. The LC platform
supports automated testing by providing preset
components and logic, as well as a large number of
testing and debugging tools, helping developers discover
and solve problems in a timely manner, significantly
reducing errors, defects, and maintenance work caused
by human coding, and improving software quality and
stability.

2.1.5. Modular assembly

The biggest feature of software development based on
LC is the use of fully tested code modules for intuitive
assembly and integration through graphical or visual
means, which can significantly improve development
efficiency, reliability, and code readability, creating
conditions for subsequent maintenance and integration
of complex systems.

2.2. Improvement of Software Quality
Characteristics by LC

LC development significantly improves the efficiency
and quality consistency of software development by
providing users with standardized and modular code or
model components, as well as graphical and visual
development interfaces. It simplifies the software
development and testing process, enhances security and
reliability, improves software maintainability and user
experience, strengthens project management and risk
management, and thus enhances the quality
management level of a software project at multiple
levels.

By combining the ISO/IEC 25010:2023 standard, a
mapping relationship can be established between LC and
software quality characteristic frameworks, which
mainly have important impacts on features such as
functionality, performance efficiency, usability,
reliability, maintainability, and safety.

Figure 3: The correlation between LC characteristics
and software quality characteristics

3. Research on Quality Assurance
Methods for Software Products
Based on LC Development

Based on the above research on LC characteristics,
combined with the software quality characteristic model
described in the current international standard ISO/IEC
25010, research is conducted around the quality
characteristics and requirements of LC. Based on 9
quality characteristics, we will focus on exploring the
beneficial impact of LC on software quality
characteristics for development tools, platforms, and
software products formed from LC, and form a quality
characteristic framework for LC. [7]

3.1. Functional Suitability
The functional suitability of software involves the ability
to meet explicit and implicit requirements, including
functional integrity, functional correctness, and
functional appropriateness. LC brings about
improvements in development efficiency, reusability,
maintainability, and other functions during software
development, which further supplements and updates
the requirements of traditional software quality
characteristics.

LC provides users with a series of components,
templates, visual design tools, and graphical
programming interfaces built through a LC platform.
These elements have undergone rigorous testing and
validation to meet the functional requirements of users
for rapid programming. Combining the new features
brought by LC such as reusability and support for
automation, LC compliance has improved and perfected
the various sub feature requirements of functionality.

To meet the quality requirements of LC, the
following new requirements should be proposed for
functionality: through user interviews, survey
questionnaires, user story mapping, and other methods,
a deep understanding of user pain points and needs
should be achieved. Enhance methods for user research
and requirement gathering to ensure that software
functionality truly meets users' actual needs. Verify the
integrity of functionality through comprehensive
testing, including unit testing, integration testing, and
system testing. Implement code review and refactoring,
adopting design patterns and best programming
practices. Adopting microservice architecture or plugin
system, supporting dynamic expansion of functions.

3.2. Performance Efficiency
The performance efficiency of software involves the
ability of software products to provide appropriate
performance under specific conditions, including time
behavior, resource utilization, and capacity. The
resource utilization improvement, integration process
simplification, automated testing deployment, quality
control and other functional and performance
improvements brought by LC have put forward new
requirements for quality feature frameworks.

LC provides users with automated deployment
capabilities, pre configured APIs, intelligent integration
tools, quality control, and version control tools through
LC tools and platforms, which greatly assist developers
and maintainers in improving quality and stability in
their work, and enhance performance efficiency
requirements.

To meet the quality requirements of LC, the
following new requirements should be proposed for
performance efficiency: clarify users' requirements and
functional characteristics for LC tools and platforms,
conduct performance and functional optimization self
inspection checklists, and form product selection
guidelines. Propose that LC products should maintain
stable performance requirements in high concurrency
situations to avoid performance bottlenecks. LC
platforms should provide powerful integration
capabilities that seamlessly integrate with existing
enterprise systems and third-party services, including
support for APIs, data synchronization, and business
process integration. Automated testing should be
supported to ensure the quality of applications during
development, and continuous integration/continuous
deployment (CI/CD) processes should be supported to
achieve fast and reliable application deployment.

3.3. Usability
The usability of software involves the level of effort and
satisfaction of users when using the product, including

ease of understanding, ease of learning, usability, user
error protection, user interface aesthetics, and
accessibility. By using the LC in development process,
there are some advantages like reducing the learning
curves of users, enhancing collaboration capabilities,
plug-in architecture, and scalability. Those advantages
will bring some new requirements to address the quality
characteristics of traditional software.

To meet the quality requirements of LC, the
following new requirements should be proposed for
usability: development platforms such as LC platforms
should provide a simple and intuitive interface, allowing
users to quickly build data tables, design user interfaces,
and configure workflows through click operations.
Users' learning costs should be reduced by providing
rich pre-built templates and component libraries.
Support multi-user collaborative development, provide
version control and real-time collaboration functions to
improve team efficiency. Adopting a microkernel and
plugin architecture design, allowing users to customize
and extend system functions according to their needs to
meet specific business requirements. We should provide
users with flexible customized data models based on
business needs, optimize data migration and processing
processes, in order to improve the efficiency of data
management.

3.4. Reliability
The reliability of software involves the ability of a
product to maintain its performance level under
specified conditions, including maturity, availability,
fault tolerance, and recoverability. In response to the
improvement of data security, system stability, code and
vulnerability review, compliance, and other aspects
provided by LC, corresponding new requirements
should be put forward to address the quality
characteristics of traditional software.

Data encryption and protection measures should be
provided to ensure the security of data during
transmission and storage in various usage scenarios. A
high availability architecture should be provided to
ensure the stable operation of applications, reduce
system failures and interruptions. Regular code audits
and vulnerability scans should be conducted to detect
and fix potential security vulnerabilities. Should comply
with data protection regulations, support compliance
best practices, and help meet industry standard
requirements.

3.5. Maintainability
The maintainability of software involves the ability of
software products to be modified, including
analyzability, modifiability, testability, and reusability.
LC provides the ability to improve maintenance

efficiency, simplify error fixes, enhance readability and
consistency in the software lifecycle process, and puts
forward new requirements for traditional processes.

In terms of maintainability, LC should be based on
the characteristics of the technology itself, and quality
requirements should be further improved: code
generated by LC tools and platforms should have clear
comments and follow consistent naming conventions,
while providing detailed development and maintenance
documentation. It should support a highly modular
architecture, allowing each functional module to be
independently developed, tested, and deployed. Built in
automated testing tools and seamless integration with
CI/CD processes ensure that every change is tested.
Developers should be allowed to extend the
functionality of their applications by writing custom
code or using APIs provided by the platform. Strict data
security measures should be implemented to ensure
compliance with industry regulations and standards.

3.6. Safety
The safety of software is a quality characteristic added
to the ISO/IEC 25010: 2023 standard, which involves the
safety performance of products under specific
conditions, including operational constraints, risk
identification, fault safety, hazard warning, and safety
integration. LC can help build safer and more reliable
software applications by reducing human errors,
improving system stability, simplifying fault diagnosis,
and enhancing maintainability.

In order to meet the quality requirements of LC
products, some new safety requirements have been
proposed: it should be ensured that LC platforms
provide powerful error handling mechanisms that can
capture, record, and respond appropriately to abnormal
situations to prevent system crashes and data corruption.
A highly fault-tolerant system architecture should be
designed to ensure that the system can continue to
operate in the event of component failure, such as
through redundancy and mechanisms. Those
mechanisms are also defined in ISO standards for
Functional Safety and affects quality measures. Regular
security audits should be conducted on LC platforms and
built applications to identify potential risk points and
take corresponding mitigation measures.
Comprehensive testing tools should be provided,
including unit testing, integration testing, and stress
testing, to ensure the stability and performance of the
application. It should be ensured that the decision-
making logic and data processing flow of LC platforms
are transparent to developers and security experts, and
can be reviewed and verified.

4. Conclusion
LC development has brought new vitality to the field of
software engineering, providing new solutions to the
cumbersome development process, but at the same time,
it has had many impacts on quality management. On the
one hand, it significantly improves development
efficiency, but on the other hand, it brings challenges to
code quality and maintenance. By exploiting the
software quality model in ISO/IEC 25010:2023, a set of
quality characteristics suitable for LC development,
testing and delivery is proposed, which can effectively
ensure the quality and performance of LC applications.
This requires close collaboration between development
teams, testers, and maintainers, as well as a deep
understanding of LC platforms and tools. In the current
situation where LC has become a trend in software
engineering development, it is necessary to
continuously clarify and refine specific requirements in
conjunction with quality characteristic models, in order
to make greater contributions to the improvement of
software product quality.

References
[1] LC Development: A Game Changer for Software

Engineering. IEEE Software, 2023.
[2] The Impact of Low-Code Platforms on Software

Quality and Maintenance. ACM Transactions on
Software Engineering and Methodology, 2023.

[3] Best Practices for Testing Low-Code Applications.
Software Quality Journal, 2023.

[4] Richardson, C., Rymer, J.: New Development
Platforms Emerge for Customer-Facing
Applications. Forrester Research, Cambridge
(2014)

[5] Davide R., Dimitris K.:Low-code development and
model-driven engineering: Two sides of the same
coin? Software and Systems Modeling (2022)
21:437–446, https://doi.org/10.1007/s10270-021-
00970-2

[6] Noebauer, M., Dhungana, D., Groher, I. (2023).
Quality Assurance in Low-Code Applications. In:
Yilmaz, M., Clarke, P., Riel, A., Messnarz, R. (eds)
Systems, Software and Services Process
Improvement. EuroSPI 2023. Communications in
Computer and Information Science, vol 1890.
Springer, Cham. https://doi.org/10.1007/978-3-
031-42307-9_3

[7] ISO/IEC 25010:2023 Systems and software
engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — Product
quality model

