
Considerations and Proposals for Quality Engineering in 
the Context of SQuaRE⋆ 

Tsuyoshi Nakajima1, ∗,† and  Kengo Morimoto2,† 

1 Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, Japan  
2 NEC Corporation, 5-7-1 Shiba, Minato-ku, Tokyo, Japan  

Abstract 
The SQuaRE family defines models, measurement, requirements definition, and evaluation of quality, 
gaining recognition in the field of system and software quality assurance. However, its utilization among 
software designers has not progressed. This is attributed to a tendency for designers to perceive quality in 
a narrow sense, neglecting a broader range of quality characteristics, and the requirement for advanced 
knowledge and techniques. This paper discusses the peculiarities of realizing quality requirements in design 
compared to functional requirements, highlights the importance of quality engineering, and proposes 
techniques from three perspectives: the deployment of quality requirements into design, selection of design 
alternatives and traceability, and the design of processes for realizing and validating quality. 

Keywords  
quality engineering, quality realization strategies, trade-off analysis, risk-based planning, SQuaRE1 

1. Introduction 
The international standards related to system and 
software quality in the ISO/IEC 25000 series are referred 
to as the SQuaRE family, which has been gaining 
recognition in both industry and academia. The SQuaRE 
family defines what quality is (2501n), how to measure 
it (2502n), how to define requirements (2503n), and how 
to evaluate it (2504n). 

The standards in the SQuaRE family are primarily 
utilized by quality assurance engineers and 
organizations. Although these standards hold significant 
value for designers as well, their current level of 
recognition and utilization among them remains low. 
This can be attributed to a tendency among software 
designers to focus on achieving functional requirements 
and solving technical challenges, often limiting their 
perception of quality to the absence of program crashes 
or unmet functional specifications, without considering 
the broader range of quality characteristics such as 
reliability, maintainability, and performance efficiency. 

 Furthermore, two interrelated aspects must be 
considered: 

1. Realizing quality requirements through design and 
verification necessitates advanced knowledge and 
skills, which are currently insufficiently 
accumulated and shared. 

2. Estimating the cost of non-quality is challenging, 
as it becomes diffused during system operation, 
with malfunctions, anomalies, or security 
vulnerabilities requiring ongoing maintenance. 

Against this backdrop, quality engineering is 
emerging as a critical technical domain for deploying 

 

IWESQ’24: International Workshop on Experience with SQuaRE Family 
and its Future Direction, December 03, 2024, Chongqing, CN 
∗ Corresponding author, † These authors contributed equally. 

 tsnaka@shiabura-it.ac.jp (T. Nakajima);  
kengo-morimoto@nec.com (K. Morimoto) 
 

and validating quality requirements in system and 
software products [1]. A project for the international 
standardization of quality engineering (ISO/IEC /IEEE 
25070) is currently underway within the SQuaRE family 
of standards. 

This paper discusses the peculiarities of realizing 
quality requirements in design compared to functional 
requirements, highlights what is required from quality 
engineering, and outlines considerations for design and 
coding in terms of the deployment of quality 
requirements into design, selection of design 
alternatives and traceability, and the design of processes 
for realizing and validating quality, proposing core 
techniques for each aspect. 

2. Quality engineering 
2.1. Quality requirements and challenges 

in their implementation 
Quality requirements have two distinct characteristics 
compared to functional requirements, making their 
implementation and verification in design considerably 
challenging: 

1. Quality has emergent properties. Emergent 
properties refer to the phenomenon where system-
wide characteristics or functions manifest in ways 
that cannot be predicted from individual 
components (modules or components) alone [2]. 
Due to this emergent nature, planning how to 
implement quality requirements and determining 
when and how to verify them is significantly more 

 0000-0002-9721-4763 (T. Nakajima)  
 

 
© 2024 Copyright for this paper by its authors. Use permitted under 
Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



complex than for functional requirements. 
Additionally, establishing explicit traceability links 
to components or modules, which are the 
constituent elements of software, becomes difficult. 

2. Quality satisfaction is a matter of degree. 
Although specific quality requirements can have 
set criteria that must be met, these criteria often 
cannot be rigid. Consequently, it is often necessary 
to carefully balance the satisfaction levels of 
different quality requirements, which may vary in 
priority, and to make design choices accordingly. 
This characteristic makes the process of 
implementing quality requirements more complex 
than functional requirements and complicates the 
traceability to design solutions, as simple 
associations are insufficient to represent the 
relationships. 

2.2. Requirements for quality 
engineering 

Based on the unique characteristics of quality 
requirements outlined above, the following 
requirements are essential in system and software 
quality engineering: 

R1: The design solution shall comprehensively 
deploy the quality requirements. 

R2: Bidirectional traceability shall be established and 
maintained between the quality requirements 
and the design solution. 

R3:  The design solution shall be verified to ensure 
that the quality requirements are realized. 

3. Deployment of quality 
requirements into design 

3.1. Considerations 
There are four main approaches to achieving quality 
requirements (R1) in the design of a target entity: 

1. Adding functionality to the target entity: this 
approach involves incorporating specific functions 
to meet quality requirements. Eckhardt et al. [3] 
reported that over 30% of quality requirements are 
met through functional implementations. Examples 
include adding confirmation dialogs for error 
prevention, logging functions for analyzability, and 
access control functions for confidentiality. 

2. Utilizing architectural structures of the target 
entity: architectural structures can address quality 
requirements through various forms—physical 
placement, dynamic behavior, and static code 
structure. These structures are often assessed in 
terms of physical connectivity and isolation, 
behavioral qualities, and code quality. Architectural 

solutions for quality requirements have been 
developed as design knowledge, including 
architectural implementation strategies, 
architectural patterns, and design patterns. 

3. Assigning quality requirements directly to 
substructures of the target entity: this is less 
common as many quality aspects lack emergent 
properties, making this approach suitable for 
specific cases. For example, in system reliability 
engineering, the overall system reliability can be 
calculated from the reliability of individual 
components if the arrangement (serial or parallel) 
is known. Similarly, the response time for a 
particular function (related to time efficiency) can 
be derived from the execution time of the involved 
components. 

4. Defining design rules and guidelines for 
detailed design and coding: establishing 
guidelines for design and coding can help achieve 
quality requirements. For instance, setting 
guidelines for error messaging can enhance 
analyzability, creating unified user interface 
guidelines can improve learnability, and following 
secure coding rules can enhance security. 

3.2. Proposal 
The methods for implementing quality requirements in 
design have been crafted through the ingenuity and 
experience of skilled designers. Particularly, the second 
and fourth methods mentioned above involve a 
substantial amount of expertise and practical know-how. 
These methods should be organized and accumulated as 
design knowledge that can be readily accessible to 
designers.  

We propose structuring this design knowledge 
according to each quality subcharacteristic in a product 
quality model and offering it in the form of a “Quality 
Realization Strategy Catalog,” including the following 
items: 
• Strategy: categories of implementation methods 

to achieve quality requirements architecturally. 
• Implementation method: specific techniques 

and solution patterns for achieving quality 
requirements. 

• Description: explanation of each implementation 
method. 

• Pros, cons, trade-offs, and prerequisites: 
advantages that support the method’s use, 
potential drawbacks, trade-offs between benefits 
and drawbacks, and prerequisites for application. 

Table 1 presents an example of a quality realization 
strategy catalog focused on testability. This example 
organizes content described in [4] into the proposed 
catalog format. 



By expanding the quality realization strategy catalog, 
as shown in Table 1, designers can effectively search for 
strategies that align with quality requirements from the 
catalog. They can consider the advantages and 
disadvantages of these strategies before applying them 
to achieve the required quality in the product. This 
approach eliminates the need to devise design solutions 
from scratch, reducing the dependency on the designers' 
skills and thereby lowering the probability of 
implementation failures.  

4. Ensuring trade-offs and 
traceability of design solution 

4.1. Considerations 
Functional requirements can be realized through the 
decomposition of components and the assignment of 
responsibilities to them. Therefore, the process of 
translating these requirements into design and ensuring 
traceability between the components is relatively 
straightforward. In contrast, quality requirements are 
more complex and challenging due to their emergent 
nature. 

Typically, there is a many-to-many relationship 
between quality requirements and design solutions. This 

Table 1 
Example of quality realization strategy catalog for testability requirements 

Strategy 
Implementation 

method 
Description Pros and cons, trade-offs, and preconditions for use 

Manage 
input/output 

Record/playback Capture information passing through an 

interface and use it as input for the test 

harness. Information passing through 

the interface during normal operation is 

usually stored in a repository. This 

recorded information can be used as 

input for testing a component or for 

differential comparison during retesting. 

Pros: 
- Makes it easier to test and verify interfaces. 

- Can be mechanically deployed. 

Cons: 
- May cause performance degradation. 

- Recorded data may increase. 

Preconditions: 
- Cannot be used for components requiring precise timing, as 

recording may alter processing timing. 

Separation of 

interface from 

implementation 

Separate interfaces from 

implementations to allow swapping of 

implementations for various tests. If a 

component has defects, replace it with a 

stub to continue the remaining tests. 

Pros: 
- Using object-oriented development languages or AOP, DI 

frameworks make this relatively easy as there are established 

methods. 

Cons: 
- Implementing this with pre-object-oriented languages 

(procedural languages) is costly. 

Specialized access 

routines/interfaces 

Use special test interfaces to capture or 

specify component variables and 

specifications independently of normal 

execution through the test harness. 

Pros: 
- In some development languages, debugger functionalities can 

implement this, making it easy to apply. 

Cons: 
- Differences in behavior when test interfaces are enabled versus 

disabled may require increasing test patterns. 

- Costs are high if development languages do not support test 

interfaces. 

Internal 
monitoring 

Built-in monitoring Incorporate functionalities to monitor 

internal states to support testing. 

Pros: 
- Can monitor difficult-to-test internal states, performance, and 

resources (memory, etc.). 

- Development languages like Java, MS .Net Framework provide 

monitoring tools. 

Cons: 
- May require testing with monitoring both on and off, increasing 

costs. 

- Costs are high if implementing through custom development.  
 



means that a single quality requirement can be fulfilled 
by multiple design solutions, and a single design 
solution can potentially address multiple quality 
requirements. As discussed in Section 3, the realization 
of quality requirements through architectural structures 
involves multiple design solutions that satisfy both 
functional requirements and (at a minimum) quality 
requirements. This necessitates a complex selection 
process among the multiple design solutions. 

In the selection of design solutions, various quality 
requirements, often with differing priorities, come into 
play. The selected design solution must achieve a 
reasonable balance of satisfaction across these quality 
requirements while also demonstrating superiority over 
other design solutions. 

The process of selecting design solutions—
specifically, which quality requirements are relevant 
(even if some are left unaddressed), how their 
satisfaction levels are evaluated, and how decisions 

(compromises) are made—is a crucial basis for design 
rationale. However, it is common for the design artifacts 
to retain only the description of the selected design 
solution, while such design rationale is often not 
documented. This rationale is important information for 
maintaining the product and should ideally be traceable. 

4.2. Proposal 
The realization of quality requirements is characterized 
by a many-to-many relationship. Therefore, for each 
quality requirement, it is necessary to consider design 
solutions that fulfill that requirement, evaluate their 
cost-effectiveness, and make decisions regarding their 
adoption. Conversely, significant design solutions that 
pertain to the fulfillment of multiple quality 
requirements should undergo trade-off analysis based 
on evaluations of their satisfaction levels. 

Table 2 
Example	of	quality	trade-off	analysis		

	

Design Solution	

Package 
software 

Package 
software with 
customization 

Cloud 
service 

Quality Requirements 
 

ID Quality sub-
characteristic Description Importance 

QR-01 Functional 
completeness 

Covers all existing 
functions Critical	 FM	 FM	 LM	

QR-02 Functional 
correctness 

No errors in displayed 
data such as position, 
quantity 

Major	 LM	 FM	 FM	

QR-03 Time behavior All displays appear 
within 3 seconds Major	 LM	 LM	 LM	

QR-04 Interaction 
capability 

Screen operation and 
content do not cause 
operator mistakes 

Minor	 PM	 LM	 FM	

Constraints  ID Description 

C-01 The total development cost shall not exceed [specified 
amount]. FM DM FM 

C-02 Software licensing and third-party service costs must not 
exceed [specified amount] annually. FM FM FM 

Comprehensive Evaluation X   

Key 
The degree to which each design solution satisfies the quality requirements and constraints is: 

FM (Fully Meet) - The design solution fully satisfies the quality requirement or constraint. 
LM (Largely Meet) - The design solution largely satisfies the requirement, with minor gaps. 
PM (Partially Meet) - The design solution meets the requirement to some extent but has significant gaps. 
DM (Doesn’t Meet) - The design solution does not satisfy the requirement or constraint. 

As a result of the comprehensive evaluation, an "X" is assigned to the selected design solution. 
 

 



Furthermore, these analyses should be documented 
as part of the traceability of quality requirements within 
the design artifacts (R2). 

Table 2 presents a proposed quality trade-off 
analysis table. This table compares three different design 
approaches for system construction (Package Software, 

Customized Package Software, and Cloud Services) 
across multiple quality requirements. 

The rows of the table consist of three sections: 
Quality Requirements, Constraints, and Comprehensive 
Evaluation. 

The Quality Requirements section comprises the 
following: 

Table 3 
Example of risk-based quality engineering plan   

Risk identification Risk analysis Risk mitigation plan 

Target 
Quality sub-

characteristic 
Quality 

requirement 
Risks 

Sever-
ity 

Impact 
on 

rework 

Basic 
strategy 

Risk treatment Cost 
Effec

t 
Deci-
sion 

Delivery 

status 

monitoring 

function 

Functional 

completeness 

Covers all 

existing 

functions 

Users may not be able to 

use expected functions, 

potentially leading to 

complaints and possible 

reputation damage. 

H - Improve test 

coverage 

Ensure traceability to 

existing functional 

specifications and 

thorough review 

M H Accept 

Can operate with 

current data 

Operational instability 

may occur, potentially 

causing major 

operational stoppages. 

H - Improve test 

coverage 

Conduct connection tests M H Accept 

Functional 

correctness 

No errors in 

displayed data 

such as position, 

quantity 

Incorrect information 

may lead customers to 

make wrong decisions, 

potentially resulting in a 

loss of customer trust. 

H - Early V&V Improve test coverage M H Accept 

Introduce viewpoint 

reviews 

L M Accept 

Use coding standards L M Accept 

Interaction 

capability 

Screen operation 

and content do 

not cause 

operator 

mistakes 

Frequent operational 

errors may lower work 

efficiency, and 

operational mistakes 

may lead to losses. 

M H Early V&V Develop prototypes for 

specification adjustment 

H H Accept 

Improve test 

coverage 

System testing: 

verification by 

experienced testers 

M H Accept 

Time behavior All displays 

appear within 3 

seconds 

Delays in system 

response may reduce 

operator work efficiency, 

potentially hindering 

operations and lowering 

customer satisfaction. 

M H Improve 

design 

quality 

Use timing charts L M Accept 

Use coding standards L M Accept 

Improve test 

coverage 

Introduce viewpoint 

reviews 

L M Accept 

Include internal and 

external expert reviews 

H M Reject 

Early V&V Iterative development 

and performance 

verification 

H H Accept 

System 

management 

subsystem 

Functional 

correctness 

Correct and 

timely (within 5 

seconds) system 

state awareness 

System malfunctions or 

issues may not be 

detected in time, 

potentially leading to 

significant trouble. 

H H Early V&V Construct a simulated 

operational environment 

M H Accept 

Improve test 

coverage 

Introduce viewpoint 

reviews 

M H Accept 

Improve coverage in 

complex conditions 

M H Accept 

Fault tolerance 24-hour 

operation, 

availability above 

99.94% 

Frequent system 

downtime or stoppages 

may severely impact 

operations, potentially 

resulting in a significant 

loss of customer trust. 

H H Early V&V Construct a simulated 

operational environment 

H L Reject 

Improve 

design 

quality 

Employ dual server 

systems and availability 

design 

M H Accept 

Key  High (H), Medium (M) and Low (L) 

 
 
 
 



• ID: a unique identifier assigned to each quality 
requirement, facilitating easy reference and 
maintaining consistency. 

• Quality subcharacteristics: the specific quality 
subcharacteristics targeted by the quality 
requirements. 

• Description: a concise and clear description of 
the content of the quality requirement. 

• Importance: the level of importance assigned to 
each quality requirement. The general levels are as 
follows: 
o Critical: essential for the success of the 

design solution, requiring full compliance. 
o Major: important, but flexibility is allowed, 

and it should generally be satisfied. 
o Minor: desirable but not mandatory; partial 

satisfaction is acceptable. 
The Constraints section consists of: 
• ID: a unique identifier assigned to each constraint, 

making it easier to refer to specific constraints in 
analysis and documentation. 

• Description: a concise explanation of each 
constraint. 

The design solutions are arranged in columns, 
indicating the extent to which each design solution 
satisfies the quality requirements and constraints. 

The Comprehensive Evaluation represents the final 
assessment based on the overall performance of each 
design solution concerning all quality requirements and 
constraints. This row is used to identify the most 
balanced design solution, ensuring that design solutions 
that do not meet the constraints are not selected. 

By creating a quality trade-off analysis table like 
Table 2, it becomes possible to choose the design 
solution that meets the constraints while achieving the 
best balance of quality characteristics. Documenting the 
decision-making process and its rationale ensures that 
trade-offs among various quality characteristics are 
recorded, making it easier to reconsider or adjust 
designs when quality requirements or system 
constraints change. Establishing traceability between 
design solutions and quality requirements in this way 
enhances the adaptability of the system and reduces the 
risk of unintended impacts during modifications. 

5. Process design for achieving 
quality requirements 

5.1. Considerations 
In development, achieving product quality is the top 
priority. To ensure this achievement, it is necessary to 
design a process that focuses on quality engineering 
planning. Quality engineering planning involves 
planning the implementation of appropriate quality 

engineering strategies and methods within the right 
development process to realize the key quality 
requirements for the product. 

The realization of quality cannot be guaranteed 
solely by the availability of design knowledge presented 
in Section 3. In quality engineering, activities are 
required not only to create quality but also to verify that 
the development process meets the quality requirements. 
Verification activities include prototyping to confirm 
the validity of the requirements and to ensure that the 
implementation can realize those requirements, 
reviewing or performing static analysis on the static 
structure of deliverables, and conducting functional and 
non-functional testing. 

5.2. Proposal 
The realization of quality requirements and the 
reduction of development costs and timelines are 
significant trade-off considerations in development 
environments. It is essential to focus on the risks 
associated with failing to meet the required quality 
demands of a product when selecting the best strategy.  
Table 3 illustrates an example of a quality engineering 
(QE) plan aimed at fulfilling quality requirements.  

Therefore, a risk-based approach to quality 
engineering planning is proposed. 

Table 3 illustrates an example of a quality 
engineering (QE) plan aimed at fulfilling quality 
requirements. Assessing both the severity of impacts on 
users and society if quality requirements are not met, 
and the effects of potential rework if risks materialize, is 
essential. This clarifies the priority of addressing specific 
risks. 

a) Identification of QE goals for the target 
entities: in this example, the QE goal is to meet the 
quality requirements. 

b) Definition of QE requirements: first, subjective 
points that should be verified as inspection targets 
are listed, including scenarios in which the system 
will be used, main functions, and subsystems that 
make up the system. Then, the critical quality 
characteristics for inspection targets are listed, with 
defined metrics and target values for each 
characteristic. These serve as the quality 
requirements in this QE example. 

c) Identification and analysis of QE risks: risks 
are evaluated from two perspectives: the severity of 
potential issues in the operational environment if 
quality requirements are unmet and the scope of 
rework required.  

d) Mitigation of risks: based on these assessments, 
the following core quality engineering strategies 
and measures are selected to address risks: 



• Improving design quality: by thoroughly 
executing the design process, quality can be 
enhanced and variability reduced. Examples 
include using design modelling, and patterns, 
as well as involving external experts. 

• Increasing test coverage: compared to other 
inspection aspects, focus on increasing review 
density and test coverage (in terms of 
perspectives, elements, levels, and 
combinations). Examples include 
implementing perspective reviews, using 
static analysis, rigorous boundary testing, and 
utilizing test combination techniques. 

• Early V&V (Verification and Validation): 
perform verification and validation as early as 
possible. Examples include using prototype 
models, introducing scenario reviews, and 
expediting tests with real data. 

 
If the impact severity is high, measures should be 

taken to both prevent the introduction of defects related 
to the quality in question and detect introduced defects, 
addressing both design quality improvement and test 
coverage enhancement. Additionally, if the impact of 
rework is substantial, early V&V is implemented to 
confirm achievement of the relevant quality early on. 

6. Conclusion 
This paper addressed the unique challenges in 
implementing quality requirements in design, as 
compared to functional requirements. Specifically, it 
highlighted the emergent nature of quality and the 
degree-based assessment of satisfaction levels. 
Considering these characteristics, we identified issues 
within system and software quality engineering from 
three perspectives: the deployment of quality 
requirements into design, selection of design 
alternatives and traceability, and the design of processes 
for realizing and validating quality.  

As concrete solutions, we propose quality 
realization strategy catalogs, quality trade-off tables for 
design solution selection, and risk-based quality 
engineering plans.  

Thus, the proposed methodology allows for the 
anticipation of problems due to software and system 
non-quality, because the correction costs caused by poor 
quality are higher if identified downstream in the 
commissioning process. 

Moving forward, we aim to advance discussions 
within ISO/IEC/IEEE 25070 Quality Engineering and 
develop international standards to provide designers 
with more practical information. 

Acknowledgements 
Heartfelt appreciation is extended to Dr. Alessandro 
Simonetta of University of Rome Tor Vergata for his 
invaluable insights and constructive comments on the 
initial draft, which have enriched this work. Other 
factors, such as business context, and time and cost 
constraints, also need to be considered. 

References 
[1] Nakajima, T.. "Study group report on SQuaRE 

future direction." CEUR of 2019, volume 2545, pages 
1-5, link https://ceur-ws.org/Vol-2545/. 

[2] H. Washizaki, eds., Guide to the Software 
Engineering Body of Knowledge V4.0, IEEE 
Computer Society, 2024. 

[3] Eckhardt, J., et al. Are "non-functional" 
requirements really non-functional? an 
investigation of non-functional requirements in 
practice." Proceedings of the 38th international 
conference on software engineering. 2016. 

[4] Bass, L., Clements, P., and Kazman, R., Software 
Architecture in Practice (Second Edition), 
CMU/SEI, 2011. 


