
A Path Discovery Method of Penetration Testing Based on SAC
Reinforcement Learning⋆

Yimeng Liu1,*,†, Xiaojian Liu2,† and Xuejun Yu3,†

1Beijing University of Technology, Beijing, China
2Beijing University of Technology, Beijing, China
3Beijing University of Technology, Beijing, China

Abstract
As the complexity and scale of systems continue to increase, enterprises are placing ever higher demands on system security, making
comprehensive security analysis particularly important. Among the various methods, penetration testing is regarded as one of the
most direct means for assessing security. In order to explore the resistance (to attacks) standard within the SQuaRE series standards
concerning product quality, this paper proposes a penetration path discovery method based on an improved deep reinforcement learning
algorithm, Adaptive Soft Actor-Critic (ASAC). This method involves modeling the penetration process and quantifying the penetration
benefits, and it leverages the Soft Actor-Critic (SAC) algorithm, which is suitable for complex state spaces, to construct an intelligent
penetration agent. The goal is to solve for the optimal penetration path, thereby enabling the evaluation of a system’s resistance
to attacks during system validation.Experimental results demonstrate that the attack effectiveness of the proposed ASAC algorithm
surpasses that of commonly used reinforcement learning algorithms such as Q-learning and DQN. It can quickly identify the most
critical penetration paths in a network and maintain high performance across different network environments. This approach provides
effective theoretical and technical support for the comprehensive assessment of the robustness of the cybersecurity of the system.

Keywords
Deep Reinforcement Learning, Penetration test, Attack path discovery

1. Introduction
As business scales grow, many enterprises choose to store
data across multiple physical devices (such as servers) to
enhance access speeds, with unified management and access
via networks. Attackers may infiltrate the data storage lo-
cal area network through boundary nodes, thereby stealing
sensitive information and causing significant losses to the
enterprise. It is crucial for enterprises to periodically con-
duct penetration testing based on the state of their network
environment, to assess the system’s risk and robustness.
Penetration testing is a black-box security testing method,
in which the tester adopts the mindset and technical means
of an attacker to detect vulnerabilities in business system
targets. It helps enterprises uncover hidden security flaws
and vulnerabilities in normal business processes, breach the
system’s security defenses, and deeply assess the potential
impacts of vulnerabilities.

In real-world enterprise internal networks and sensitive
core networks, initial stages of penetration testing may not
provide valuable information due to the lack of direct in-
sight into the system. The Markov process (Markov Process)
is a type of stochastic process characterized by the property
that future states depend only on the current state, not on
past states. This paper formalizes the penetration testing
process as a Markov Decision Process (MDP), utilizing net-
work information to build a reward function that guides the
agent to discover hidden attack paths from the attacker’s
perspective. This method does not require prior validation
of network structures or software configurations and can
autonomously discover attack paths, extracting essential

6th International Workshop on Experience with SQuaRE family and its
Future Direction,3rd December 2024,Chongqing, China(Hybrid)
⋆

You can use this document as the template for preparing your publica-
tion. We recommend using the latest version of the ceurart style.

*Corresponding author.
†

These authors contributed equally.
$ lymon1004@163.com (Y. Liu); liuxj@bjut.edu.cn (X. Liu);
759301040@qq.com (X. Yu)
� 0009-0009-6580-9840 (Y. Liu); 0000-0002-0666-4102 (X. Liu)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

penetration testing information. Furthermore, reinforce-
ment learning is employed as the agent’s learning strategy,
enabling it to interact with the environment to maximize
its reward. Penetration testing can also be viewed as a
dynamic decision-making process based on the current en-
vironmental state. Given the similarity between penetration
testing and reinforcement learning mechanisms, reinforce-
ment learning is well-suited to describe penetration testing
in unknown environments.

This paper proposes an improved reinforcement learning
algorithm, ASAC, for penetration path planning in unknown
environments. By improving search strategies and action
selection policies, the algorithm enhances the planning effi-
ciency.

Additionally, the proposed method aligns with the
ISO/IEC 25000 series standards, specifically the SQuaRE
(Software Quality Requirements and Evaluation) framework,
particularly the security resistance sub-characteristics. Ac-
cording to the SQuaRE standard, security, as an important
aspect of software quality, requires that the system be able
to resist attacks and ensure the confidentiality, integrity
and availability of data. Our proposed penetration testing
method, by optimizing the attack path discovery, can evalu-
ate the system’s resistance and defense capability according
to the calculation time of the model and the success rate
of multiple simulated attacks. In the ISO/IEC 25010 stan-
dard corresponding security features such as confidentiality,
integrity, availability and resistance have been effectively
improved.

The main contributions of this paper are as follows:

• We combines complex multi-step attack characteris-
tics to conduct penetration test modeling, quantifies
action gains and network environment vulnerability
losses, and more accurately simulates the process of
attackers gradually breaking through various fire-
walls and gateways, providing accurate reward sig-
nals for the generation of multi-step and multi-host
attack paths.

• SAC reinforcement learning algorithm suitable for

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:lymon1004@163.com
mailto:liuxj@bjut.edu.cn
mailto:759301040@qq.com
https://orcid.org/0009-0009-6580-9840
https://orcid.org/0000-0002-0666-4102
https://creativecommons.org/licenses/by/4.0/deed.en

complex discrete action or even continuous action
space is introduced into the penetration testing pro-
cess, and the improved intelligent penetration test-
ing agent (ASAC) can cope with the complex and
changeable network environment and the exponen-
tial growth of the action space.

2. Related work
Traditional penetration testing (PT) relies on manual meth-
ods, which become impractical as the systems grow in size
and complexity. By simulating 20 attack strategies of real
attackers, automated penetration testing technology uses
various algorithm models to automate the penetration of 21
target networks, significantly reducing test cost and improv-
ing penetration efficiency [1] [2]. Automated penetration
testing is an important application of artificial intelligence
technology in the field of network security [3]. Zang et al.
[4] summarized the current research progress of attack path
discovery in automated penetration testing, and proposed
future research directions. Modeling the attack environ-
ment through Markov process can well help us describe
and calculate the penetration test path. Literature [5] mod-
eled the environment as Markov decision process diagram
based on the attack graph, and used the value iterative algo-
rithm to find the optimal penetration path. This approach
can help penetration testers find the most effective attack
path, thereby improving the efficiency and success rate of
penetration testing. Literature [6] proposes an automatic
attack planning algorithm (NIG-AP) based on network in-
formation gain, which formalizes penetration testing into a
Markov decision process, finds potential attack paths from
the attacker’s perspective, and uses network information to
optimize attack strategies. Zhou et al. [7] proposed an at-
tack path planning algorithm based on network information
gain, which formalized penetration testing into a Markov de-
cision process, used network information to obtain rewards,
and guided agents to choose the best response actions. The
method based on reinforcement learning, which can simu-
late the uncertainty of offense and defense in the real world
by designing the probability of success of action execution,
is an important research direction in this field. Schwartz
et al. [8] designed a lightweight network attack simulator
NASim, which provides a benchmark platform for network
attack defense simulation test. They verify the effectiveness
of basic reinforcement learning algorithms, such as Deep
Q-learning Network(DQN), in the application of penetra-
tion path discovery. In order to improve the convergence
speed of DQN algorithm in path discovery problems, Zhou
Shicheng et al. [9] proposed an improved reinforcement
learning algorithm, noise-double-dueling DQN. Hoang Viet
Ngueyen et al. [10] introduced an A2C algorithm with dual
agent architecture, which is responsible for path discovery
and host utilization respectively. Zeng Qingwei et al. [11]
suggested using hierarchical reinforcement learning algo-
rithm to solve the problem of path discovery and host utiliza-
tion being handled separately. In summary, current research
on the discovery of intelligent penetration test paths is still
in the preliminary stage. The advantage of MDP model is
that it can model the uncertainty in the process of penetra-
tion testing well, but it brings the increase of computational
complexity, which is difficult to apply to large-scale network
scenarios. The method based on reinforcement learning is
only experimentally verified in simple network scenarios,

and there is still much room for improvement in the con-
vergence speed and scalability of the algorithm.Based on
the above research, we further study penetration testing in
complex scale scenarios. In this paper, the infiltration test
attack path is modeled from the perspective of multi-step
attack, and it is combined with MDP. On this basis, an in-
telligent decision method for complex computing network
attacks is proposed.

3. Methodology

3.1. Markov Decision Model
Figure 1 shows a typical penetration testing scenario, which
we use as a case study to illustrate the issues discussed in this
article. The target network consists of the extranet, DMZ,
and intranet subnets. The subnets contain user nodes and
data nodes (sensitive nodes). The function of the intelligent
penetration agent is to determine the attack target of each
step according to the state observation to reach the final
sensitive node and plan the optimal scheme.

Figure 1: Example of Penetration Testing

The Markov Decision Process (MDP) is commonly mod-
eled as a quadruple ⟨𝑆,𝐴,𝑅, 𝑃 ⟩, where:

• 𝑆 represents the set of penetration states observed
by the agent, such as network topology, host infor-
mation, and vulnerability details. These states cor-
respond to various stages in the penetration testing
process, which typically proceeds in the following
sequence:

– a) Information Gathering: The initial
phase, where information regarding the net-
work, systems, and potential vulnerabilities
is collected.

– b) Vulnerability Assessment: The process
of identifying and evaluating weaknesses or
vulnerabilities within the network and sys-
tems.

– c) Exploitation: The stage where discovered
vulnerabilities are exploited to gain unautho-
rized access to systems.

– : d) Privilege EscalationThe process of ele-
vating access privileges once entry has been
gained, allowing deeper penetration into the
network.

– e) Maintaining Access: Ensuring persistent
access to the compromised system.

– f) Reporting: The final phase, in which
findings are documented, including discov-
ered vulnerabilities and the level of access
achieved.

• 𝐴 denotes the set of possible attack actions, cor-
responding to the aforementioned stages. These
actions include network scanning, host scanning,
vulnerability exploitation, privilege escalation, and
others available to the agent.

• 𝑅 is the reward function 𝑅(𝑠), which assigns a re-
ward based on the different penetration states. For
example, gaining the highest level of permission on
a sensitive host might yield a reward of 100, while
breaching an Intranet subnet host could result in a
reward of 1, and no reward is given for breaching a
DMZ host.

• 𝑃 represents the state transition function
𝑃 (𝑠, 𝑎, 𝑠′) = 𝑃𝑟(𝑠′|𝑠, 𝑎), which defines the
probability of transitioning from one state to
another after performing a given action. This is
typically associated with the success rate of the
attack actions.

The objective of the MDP is to select the optimal policy
𝑎𝑡 = 𝜋(𝑠𝑡) that maximizes the long-term cumulative re-
ward 𝐺(𝑠0) for the current state, as expressed in equation
(1).

𝐺 (𝑠0) = 𝐸

{︃
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑅 (𝑠𝑡+1)𝑃 [𝑠𝑡, 𝜋 (𝑠𝑡) , 𝑠𝑡+1]

}︃
(1)

where 𝛾 ∈ (0, 1) denotes the discount factor, used to
balance the importance of current rewards against future
rewards.

3.2. Attack cost quantification model
Designing a quantitative attack cost model can comprehen-
sively consider the investment and return of attack behavior
from multiple dimensions, so as to provide a more objective
basis for network security evaluation. For the MDP process
discussed above, the penetration test adopts multiple attack
modes to penetrate the network. Assuming that the threat
of a certain type of attack is 𝑋 , the launching cost of such
an attack is 𝐴, the attack cost of node i is 𝑁 , and the attack
value is 𝑉 , then the attack cost of a certain node 𝑗 is at-
tacked. Suppose that on the optimal attack path, the state of
node 𝑖 relative to the attacker is S,After the attack fails, the
network will detect the attack, thus increasing the attack
cost.LC(limit cost) a given cost, it is assumed that the re-
sources held by the attacker can consume LC at most, which
can help the intelligent agent accelerate the convergence
speed during the network search attack.

𝐶 = min(𝐶) =
∑︁
𝑖<𝑗

(𝑎𝑖 + 𝑛𝑖) · 𝑠𝑖 (2)

it satisfies inequality as (3):

𝐶 <= 𝐿𝐶 (3)

Damage to the network as (4):

𝑊 = max(𝑊) =
∑︁
𝑖<𝑗

(𝑥𝑖 + 𝑣𝑖) · 𝑝𝑖 (4)

So the attack reward function (5) in the current state

𝑅 = 𝑊 − 𝐶 =
∑︁
𝑖<𝑗

{(𝑥𝑖 + 𝑣𝑖) · 𝑝𝑖 − (𝑎𝑖 + 𝑛𝑖) · 𝑠𝑖} (5)

𝑃 is the breach probability of a node, and the attack threat
degree is related to the corresponding service vulnerability
scores of different nodes in different networks.

3.3. Improved Soft Actor-Critic Algorithm
Reinforcement learning algorithms can be categorized into
three main types: value-based, policy-based, and actor-
critic-based. SAC is an off-policy reinforcement learning
algorithm that combines maximum entropy learning with
the actor-critic framework. It learns a policy network to
select optimal penetration actions while estimating state
and action values, thereby maximizing the policy’s entropy
to encourage exploration and diversification in attack path
selection. Currently, SAC is an efficient model-free rein-
forcement learning algorithm capable of learning stochastic
policies, achieving state-of-the-art results in many standard
environments. Figure 2 shows the architecture of the im-
proved Attack Soft Actor-Critic(labelled as ASAC) algorithm.
The ASAC algorithm consists of a policy network and four
value function networks. The policy network acts as the ac-
tor, outputting attack actions toward the environment, while
the four value networks evaluate the policy network. Since
it is a model-free algorithm, SAC uses an experience replay
buffer to store all actions and environmental feedback data,
and updates the networks through random sampling. Given
that actions in reinforcement learning are often highly cor-
related, this approach allows the neural network to achieve
more effective training.Different from other RL algorithms,
in order to encourage exploration, the concept of entropy
is added in SAC algorithm, and entropy regularization in-
creases the exploration degree of reinforcement learning
algorithm. The greater 𝛼 is, the stronger the exploration is,
which helps to accelerate the subsequent strategy learning
and reduce the possibility of the strategy falling into poor
local optimal.

3.3.1. Policy network design

It can be seen that the input of the policy network Actor is
the network status 𝑠𝑡, the output is 𝑃𝑖(𝑎𝑖|𝑆𝑡) action policy,
and the update loss expression of its neural network is :

MSELoss = −
1

|ℬ|

∑︁
(𝑠𝑡,𝑎𝑡,𝑟𝑡+1,𝑠𝑡+1)∈ℬ

𝐸𝑎′
𝑡∼𝜋(·|𝑠𝑡;𝜃)

[︀
𝑞0

(︀
𝑠𝑡, 𝑎

′
𝑡

)︀
− 𝛼 ln𝜋

(︀
𝑎′𝑡|𝑠𝑡; 𝜃

)︀]︀ (6)

E𝑎′
𝑡∼𝜋(·|𝑠𝑡;𝜃)

[︁
𝑞0

(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(0)
)︁
− 𝛼 ln𝜋

(︀
𝑎′𝑡|𝑠𝑡; 𝜃

)︀]︁
=

∑︁
𝑎′
𝑡∈𝒜(𝑠𝑡)

𝜋 (𝑎𝑡|𝑠𝑡; 𝜃)
[︁
𝑞0

(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(0)
)︁
− 𝛼 ln𝜋

(︀
𝑎′𝑡|𝑠𝑡; 𝜃

)︀]︁
(7)

You can observe the Equation (7) that the three ele-

ments in the equation — 𝜋(𝑎𝑡|𝑠𝑡; 𝜃), 𝑞0
(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(0)
)︁

,

Figure 2: Architecture of ASAC

and ln𝜋 (𝑎′
𝑡|𝑠𝑡; 𝜃) — are fully aligned with the Loss func-

tion depicted in the graph. It’s important to note that

𝑞0
(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(0)
)︁

can be replaced by 𝑞1
(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(1)
)︁

, since
both Q-critic networks function equivalently.Based on the
idea of Double DQN, SAC uses two Critic networks, but each
time a Critic network is used, it picks a network with a small
value, thereby alleviating the problem of overestimation.

The symbol ℬ represents the experience buffer, meaning
that when calculating the Loss, you need to take the average
of the samples drawn from the buffer. This ensures that
the expected average meaningfully represents the sample’s
overall outcome.

Here, 𝛼 is the entropy coefficient, which controls the
importance of the entropy term ln𝜋 (𝑎𝑡+1|𝑠𝑡; 𝜃), and its
significance increases as 𝛼 increases.

3.3.2. Q Critic network design

Based on the optimal Bellman equation, we use 𝑈
(𝑞)
𝑡 =

𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) as the true value estimate for the state 𝑠𝑡,
while the 𝑞𝑖(𝑠𝑡, 𝑎𝑡) value (where 𝑖 = 0, 1) is used as the
predicted value estimate for state 𝑠𝑡 with the actual action
𝑎𝑡. Finally, the MSE loss is used as the loss function to train
the neural networks 𝑄0 and 𝑄1.

Note that using MSE loss implies taking the average of
the data sampled from the experience buffer (denoted as ℬ)
across a batch, as follows:

Loss =
1

|ℬ|
∑︁

(𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1)∈ℬ

[︁
𝑞𝑖
(︁
𝑠𝑡, 𝑎𝑡;𝑤

(𝑖)
)︁
− 𝑈

(𝑞)
𝑡

]︁2
3.3.3. V Critic network design

Using the following equation with entropy for state value
estimation, the V critic network outputs the true value:

𝑈
(𝑣)
𝑡 = E𝑎′

𝑡∼𝜋(·|𝑠𝑡;𝜃)

[︂
min
𝑖=0,1

𝑞𝑖
(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(𝑖)
)︁
− 𝛼 ln𝜋

(︀
𝑎′
𝑡|𝑠𝑡; 𝜃

)︀]︂

which can be written as:

𝑈
(𝑣)
𝑡 =

∑︁
𝑎′
𝑡∈𝒜(𝑠𝑡)

𝜋
(︀
𝑎′𝑡|𝑠𝑡; 𝜃

)︀ [︂
min
𝑖=0,1

𝑞𝑖

(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(𝑖)
)︁
− 𝛼 ln𝜋

(︀
𝑎′𝑡|𝑠𝑡; 𝜃

)︀]︂

We observe that 𝜋 (𝑎′
𝑡|𝑠𝑡; 𝜃) ,min𝑖=0,1 𝑞𝑖

(︁
𝑠𝑡, 𝑎

′
𝑡;𝑤

(𝑖)
)︁

,ln𝜋 (𝑎′
𝑡|𝑠𝑡; 𝜃) in these terms perfectly match the loss cal-

culation described in Figure 2.
The output of the V critic network is used as a predicted

value, and finally, MSE loss is applied as the loss function,
training the V neural network.

3.3.4. Maximum entropy reinforcement learning

As we mentioned earlier,entropy represents a measure of
the degree of randomness of a random variable. Specif-
ically, if 𝑋 is a random variable and its probability den-
sity function is 𝑝, then its entropy 𝐻(𝑋) is defined as
𝐻(𝑋) = E𝑥∼𝑝[− log 𝑝(𝑥)].

3.3.5. Regional Experience Replay Buffer

In a large-scale network environment, direct use of a sin-
gle experience playback pool may cause the experiences
of different subnets or nodes to interfere with each other,
thus reducing training efficiency. To solve this problem, the
experience playback pool can be divided into multiple re-
gional playback pools (each region corresponds to a subnet
or node) to store and utilize the experience more targeted.

Divide the experience pool: The experience pool is di-
vided into multiple subpools based on the network topology.
Each subpool is dedicated to storing experiences from a
particular subnet or node. This division ensures that the
experience within each region is more homogeneous and
avoids the mixing of different regional experiences.

Intra-zone sampling: At each policy update, SAC agents
can sample experiences from the playback pool associated
with the current zone of operation. For example, if the
agent is currently in subnet A, it will preferentially sample
from subnet A’s experience pool. This targeted sampling
method can improve the learning efficiency of the model,
because the experience of sampling is more relevant and
can optimize the strategy within the region faster.

Cross-region sampling: In a partial update step, a pool
of experience from different regions can be sampled to en-
hance the model’s adaptability to the global network. This
approach balances the relationship between regional focus
and global exploration, so that the model can not only focus
on the strategy optimization of a specific region, but also
understand the dynamics of other regions and enhance the
generalization ability.

Mitigate non-stationarity issues: In complex network
environments, the dynamics of subnets may not be synchro-
nized. For example, some subnets may change frequently,
while others are relatively stable. By storing the experi-
ence pool in different regions, the negative impact of non-
stationarity on the model can be prevented and the stability
of training can be effectively maintained.

3.3.6. Prioritized Experience Replay

In reinforcement learning, not all experiences have the same
impact on policy improvement. Prioritized experience re-
play selects experiences that contribute more significantly

to policy improvement, helping the SAC algorithm make
efficient use of critical experiences and accelerate learning
progress.

1. Priority Calculation: Each experience is assigned
a priority, typically calculated based on the Temporal
Difference (TD) error:

𝛿 =

⃒⃒⃒⃒
𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎)

⃒⃒⃒⃒
The greater the TD error, the higher the potential
for policy improvement, and therefore, the higher
the priority.

2. Experience Sampling: During sampling, experi-
ences with higher priority are more likely to be cho-
sen. This can be achieved by probability sampling,
where the sampling probability 𝑃 (𝑖) is set propor-
tional to the priority level 𝑝𝑖. For example, the sam-
pling probability 𝑃 (𝑖) can be defined as:

𝑃 (𝑖) =
𝑝𝑖

𝛼∑︀
𝑘 𝑝𝑘

𝛼

where 𝑝𝑖 is the priority of experience 𝑖, and 𝛼 con-
trols the level of prioritization. When 𝛼 = 1, sam-
pling is fully prioritized by priority; when 𝛼 = 0,
sampling is uniform.

3. Importance Sampling Weight Correction: To
correct for sampling bias, higher-priority experi-
ences are given lower weights in the gradient calcu-
lation. The importance sampling weight 𝑤(𝑖) can
be used to balance this bias:

𝑤(𝑖) =

(︂
1

𝑁 · 𝑃 (𝑖)

)︂𝛽

where 𝑁 is the size of the experience buffer, and 𝛽
is a parameter that adjusts the degree of importance-
sampling correction. When 𝛽 = 1, the correction is
fully applied. Typically, 𝛽 starts from 0 and gradually
increases to avoid instability due to high weights
early in training.

The flow of the improved ASAC(Attacker Soft Actor
Critic) algorithm is as Algorithm 1.

Line 1-4: Initialize the Critic, Actor, and target network
parameters, along with regional experience replay buffers
and temperature parameter. Line 5: Start the loop for each
episode, sampling the initial state and determining the re-
gion. Line 7-10: At each time step, sample an action, execute
it, observe the outcome, and store the experience in the re-
spective regional replay buffer. Line 11-19: Perform training
steps by sampling a mini-batch with prioritized experience
replay, calculating TD errors and priorities, updating Critic
and Actor networks, and adjusting temperature. Line 20:
Update the target networks with a soft update mechanism.

4. Experiment and Discussion

4.1. network configuration
To simulate a realistic observation-based penetration pro-
cess, we assume that both topology and host information
must be obtained through scanning or feedback from attack
actions. Therefore, the Information Gathering step is car-
ried out through 4 steps: (1) subnet scan (subnet_scan) to

Algorithm 1 Framework of ASAC Algorithm
Initialize Critic network parameters 𝜔1, 𝜔2 and Actor
network parameters 𝜃
Initialize target network parameters 𝜔−

1 , 𝜔−
2

Initialize regional experience replay buffers
ℛ1,ℛ2, . . . ,ℛ𝑁

Initialize temperature parameter 𝛼
for each episode do

Sample initial state 𝑠1, determine the current region
for each time step 𝑡 = 1→ 𝑇 do

Sample action 𝑎𝑡 ∼ 𝜋𝜃(·|𝑠𝑡) from the policy net-
work
Execute action 𝑎𝑡, observe reward 𝑟𝑡 and next state
𝑠𝑡+1

Store (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in the corresponding re-
gional replay bufferℛ𝑖

for training steps 𝑘 = 1→ 𝐾 do
Sample a mini-batch {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1)}𝑁𝑖=1

from all regional replay buffers using prioritized
sampling
Calculate the TD error 𝛿𝑖 = 𝑟𝑖 +
𝛾min𝑗=1,2 𝑄𝜔−

𝑗
(𝑠𝑖+1, 𝑎𝑖+1)−𝑄𝜔𝑗 (𝑠𝑖, 𝑎𝑖)

Update priority for each sample based on 𝛿𝑖 and
adjust sampling probabilities
Calculate target value 𝑦𝑖 = 𝑟𝑖 +
𝛾min𝑗=1,2 𝑄𝜔−

𝑗
(𝑠𝑖+1, 𝑎𝑖+1)

Update Critic networks: for 𝑗 = 1, 2, minimize
the loss function
Update Actor network using reparameterization
trick to sample action �̃�𝑖

Update temperature parameter 𝛼 to minimize
entropy objective

end for
Update target network parameters:

𝜔−
𝑗 ← 𝜏𝜔𝑗 + (1− 𝜏)𝜔−

𝑗 , 𝑗 = 1, 2

end for
end for

discover all hosts in the subnet; (2) operating system scan
(os_scan) to obtain the operating system type of the target
host; (3) service scan (service_scan) to obtain the service
type of the target host; (4) process scan (process_scan) to
obtain information about processes on the target host. By
performing the scan actions, the PT Agent can acquire the
corresponding host information as an observed state. The
VE actions and PE actions must be performed based on
the specific requirements. In addition, a certain probability
of success is set according to the Common Vulnerability
Scoring System (CVSS) [12] to simulate the uncertainty of
attacks in reality. By configuring different VE actions and PE
actions, the PT agent is modelled with different attack capa-
bilities, for example as shown in Table 1. The results of the
attack actions are simulated by updating the compromised
state information of the target host.

The network topology diagram of the simulation experi-
ment in this paper is shown in Figure 3: A total of 6 subnets,
each subnet is set between the firewall and access protocol,
the yellow host is the sensitive host in the network, the
attacker has mastered the two available nodes (1,0), (6,0)
and 4 scanning means, VE, PE and other actions to finally
obtain the sensitive node permissions and related sensitive

Table 1
Attack Actions

Type Name
Prerequisites Results

OS Service Process Prob Privileges

VE
E_SSH Linux SSH — 0.9 User
E_FTP Windows FTP — 0.6 User

E_HTTP — HTTP — 0.9 User

PE
P_Tomcat Linux — Tomcat 1 Root
P_Daclsvc Windows — Daclsvc 1 Root

Attack capabilities configuration in Figure 3

information, the vulnerability information of the network
is shown in the Figure 3. The host configuration is shown
in Table 2.

Figure 3: Network topology sample

Table 2
Host Configurations

Host OS Services Processes
(1, 0) Linux http —
(2, 0) Linux ssh, ftp tomcat
(3, 0) Windows ftp —
(3, 1) Linux ssh —
(4, 0) Windows http daclsvc
(5, 0) Linux ftp, ssh —
(5, 1) Windows ftp daclsvc
(6, 0) Linux http tomcat

4.2. Tests and Analyses
To validate the performance of our model and decision
method, we focus our experiments on answering the follow-
ing three Research Questions (RQs):

4.2.1. RQ1: indicates whether the ASAC algorithm is
feasible in the network environment after
parameter tuning?

In this part, we first perform detailed parameter tuning for
the ASAC algorithm, and a total of four groups of parame-
ters are set, with detailed data shown in Table 3. The goal of
parameter tuning is to find an optimal set of hyperparame-
ters to ensure the stability and effectiveness of the algorithm
in the network environment. We used a combination of grid
search and random search to explore different combinations

Figure 4: Different params combination Tests

of hyperparameters, including learning rate, discount fac-
tor, batch size, and so on. Through many experiments, we
identify a set of optimal hyperparameters and verify them
in the network environment.

Figure 4 shows the performance comparison of ASAC
algorithm under different parameter Settings. The experi-
mental results of each group are smoothed. The experimen-
tal results show that the proxy training obtained by group4
group parameters cannot achieve balance, and basically each
training round cannot reach the optimal condition. But it
doesn’t converge yet. After multiple tuning, the optimal
parameter group group1 is found. After parameter tuning,
the ASAC algorithm shows good performance in the net-
work environment and can converge in about 300 rounds.
It can be seen that the optimized algorithm has a significant
improvement in convergence speed and final performance.

4.2.2. RQ2: Compared with previous algorithms,
does the improved ASAC algorithm have better
performance in the network environment?

In order to verify the performance advantages of the im-
proved ASAC algorithm in the network environment, we
compare the ASAC algorithm with several classical network
optimization algorithms, including Q-learning and DQN
(Deep Q-Network), which have been studied in intelligent
penetration testing.

Figure 4 shows the change of the cumulative reward value
of each round of different algorithms with the number of
training rounds in the network environment. The learning
goal of the agent is to learn to use fewer steps to obtain the
permissions of all sensitive hosts in the target network, so
as to obtain the reward value, so the reward value can be
used to measure the level of the agent’s strategy. It can be
found from the Figure 5 that in the initial stage of training,

Table 3
Hyperparameter Tuning Table Group

Hyperparameter group1 group2 group3 group4
Actor Learning Rate (𝛼) 1e-3 1e-3 1e-3 1e-4

Critic Learning Rate (𝛼) 1e-3 1e-3 1e-3 1e-4

Discount Factor (𝛾) 0.9 0.95 0.95 0.95

Standard Batch Size 128 64 32 32

Prioritized Replay Batch Size 128 64 32 32

Target Update Rate (𝜏) 5e-3 5e-2 5e-2 1e-3

Replay Buffer Size 3e5 3e5 3e5 3e5

Prioritization Parameter (𝛼) 0.8 0.8 0.8 0.8

Regional Buffer Size 5000 5000 5000 5000

Exploration Noise 0.05 0.05 0.1 0.1

Figure 5: Different algorithms Tests

the reward value that the agent can obtain in each turn is
small, but with the progress of training, the reward value
keeps increasing, indicating that the agent gradually learns
the strategy of obtaining the maximum reward value. In the
early exploration process, the cumulative reward value of
ASAC algorithm per round is significantly lower than that
of DQN and Q-learning algorithm. This is because in the
early exploration process of ASAC algorithm, the agent has
no experience to rely on and can only use random strategies
for exploration. It also wastes a lot of attack steps, but with
the progress of training Q-learning can not get better results
due to the explosion of Q table, and the convergence speed
and effect of DQN are not as good as that of ASAC algo-
rithm. Finally, both ASAC and DQN algorithms converge
to a stable cumulative reward value within 600 rounds, and
ASAC algorithm has the best performance and can converge
to the optimal value within 300 rounds.

The experimental results show that the improved ASAC
algorithm has obvious advantages in network environment.
Including convergence speed, decision quality and resource
utilization. ASAC algorithm outperforms other algorithms
in all indexes, especially in the environment dealing with
large-scale networks and high dynamic changes.

4.2.3. RQ3: Is the proposed ASAC scalable across
different network sizes?

In order to verify the scalability of ASAC algorithm, we con-
ducted experiments in different scale network environments.
The experiment was carried out in a network simulation en-
vironment to simulate network topologies of different sizes

and complexity. Table 4 shows five different scale network
environment configurations used in the experiment.

The experimental networks range in size from 8 to 64
nodes and cover different scenarios from small Lans to large
WAN networks. The main indicators we focus on are the
score of ASAC algorithm under different network condi-
tions, and the convergence speed.

Table 4
Network Environment Specifications

Env Name Nodes Subnets Sensitive Nodes
Environment A 8 5 2*100
Environment B 8 6 2*100
Environment C 9 6 2*100
Environment D 32 8 5*100
Environment E 40 10 10*100

As can be seen from Figure 6, in the three heterogeneous
networks A, B and C with the same sensitive host and
slightly different summary points and subnets, the ASAC
algorithm agent has good robustness, and its average cu-
mulative reward value can converge to the optimal value
within 400 rounds in the three similar scenarios.

As the number of subnets and hosts increases, the con-
vergence rate of the algorithm slows down as the num-
ber of hosts and actions that the agent needs to attempt
in each turn increases rapidly. Figure 7 shows the perfor-
mance of ASAC algorithm under different network scales.
It can be seen that the performance of ASAC algorithm de-
creases slightly with the increase of network scale, but it can
still effectively deal with complex problems in large-scale
network environment. In the simulated network environ-
ment of 40 hosts,ASAC algorithm can also converge to the
optimal solution. The experimental results show that the
ASAC algorithm maintains good performance when the
network size increases gradually. In addition, ASAC algo-
rithm also performs well in resource utilization, and can
maintain high resource utilization under different network
sizes. When dealing with complex network topology and
high load, ASAC algorithm can make decisions effectively
to ensure the stability and efficiency of the network.

5. Conclusion
Through the experimental analysis, we can draw the follow-
ing conclusions:

These experimental results validate the effectiveness and

Figure 6: Reward in similar network environment

Figure 7: Reward in complex network environment

superiority of ASAC algorithm, provide an effective tool
for network intelligent penetration attack agents, and also
provide evaluation support for the security subfeature "re-
sistance" defined in ISO/IEC 25000 SQuaRE product quality
model. It provides strong support for the future application
in the field of network optimization.

Quantitative analysis reveals that the ASAC algorithm
not only outperforms traditional methods like Q-learning
and DQN but also demonstrates robust performance under
varying network conditions, contributing to a more reliable
and secure network optimization solution. The ability to
adapt and maintain high security performance across dif-
ferent network scales and configurations provides strong
support for future applications in network security and op-
timization.

However, the algorithm has certain limitations. One no-
table drawback is the lack of comparison between the ASAC
algorithm and other currently optimized attack agent algo-
rithms, which would provide a clearer benchmark for its rel-
ative performance. Despite its promising performance and
stability, the algorithm may still face convergence speed is-
sues in highly dynamic environments. Moreover, the param-
eter tuning process remains relatively complex, potentially
increasing the difficulty of practical implementation. Future
work should focus on developing more efficient adaptive
parameter adjustment mechanisms to improve the ASAC al-
gorithm’s adaptability and robustness in even more complex
and unpredictable environments.

References
[1] Greco C, Fortino G, Crispo B, et al. AI-enabled IoT

penetration testing: state-of-the-art and research chal-
lenges[J]. Enterprise Information Systems, 2023, 17(9):
2130014.

[2] Ghanem M C, Chen T M, Nepomuceno E G. Hierarchi-
cal reinforcement learning for efficient and effective

automated penetration testing of large networks[J].
Journal of Intelligent Information Systems, 2023, 60(2):
281-303.

[3] Wang Y, Li Y, Xiong X, et al. DQfD-AIPT: An Intelligent
Penetration Testing Framework Incorporating Expert
Demonstration Data[J]. Security and Communication
Networks, 2023, 2023(1): 5834434.

[4] ZANG Y C, ZHOU T Y, ZHU J H, et al. Domain-
Independent Intelligent Planning Technology and Its
Application to Automated Penetration Testing Ori-
ented Attack Path Discovery[J]. Journal of Electronics
& Information Technology, 2020, 42(9): 2095-2107.

[5] Ma Q, Liu Y, Wu X S, Qu Y, Wang B L, Liu H R. Optimal
Penetration Path Discovery Based on Value Iterative
Algorithm[J]. Computer Systems and Applications,
2023, 32(12): 197-204.

[6] KANG Haiyan, LONG Molan, ZHANG Congming. Re-
view on the Application of Automated Penetration
Testing[J]. Journal of Cybersecurity, 2023, 1(2): 59-72.

[7] ZHOU T, ZANG Y, ZHU J, et al. NIG-AP: a new method
for automated penetration testing[J]. Frontiers of In-
formation Technology & Electronic Engineering, 2019,
20(9): 1277-1288.

[8] Schwartz J, Kurniawati H. Autonomous penetration
testing using reinforcement learning[J]. arXiv preprint
arXiv:1905.05965, 2019.

[9] Zhou S, Liu J, Zhong X, et al. Intelligent Penetration
Testing Path Discovery Based on Deep Reinforcement
Learning[J]. Computer Science, 2021, 48(07): 40-46.

[10] Nguyen H V, Teerakanok S, Inomata A, et al. The Pro-
posal of Double Agent Architecture using Actor-critic
Algorithm for Penetration Testing[C]//ICISSP. 2021:
440-449.

[11] Zeng Q, Zhang G, Xing C, et al. Intelligent Attack
Path Discovery Based on Hierarchical Reinforcement
Learning[J]. Computer Science, 2023, 50(07): 308-316.

[12] CVSS. https://www.first.org/cvss/v4.0/specification-
document. Available online: Feb 1, 2024.

	Introduction
	Related work
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Markov Decision Model
	3.2 Attack cost quantification model
	3.3 Improved Soft Actor-Critic Algorithm
	3.3.1 Policy network design
	3.3.2 Q Critic network design
	3.3.3 V Critic network design
	3.3.4 Maximum entropy reinforcement learning
	3.3.5 Regional Experience Replay Buffer
	3.3.6 Prioritized Experience Replay

	4 Experiment and Discussion
	4.1 network configuration
	4.2 Tests and Analyses
	4.2.1 RQ1: indicates whether the ASAC algorithm is feasible in the network environment after parameter tuning?
	4.2.2 RQ2: Compared with previous algorithms, does the improved ASAC algorithm have better performance in the network environment?
	4.2.3 RQ3: Is the proposed ASAC scalable across different network sizes?

	5 Conclusion

