CEUR-WS.org/Vol-3917/paperl2.pdf

C

CEUR

Workshop
Proceedings

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Optimizing the process of ER diagram creation with
PlantUML

Anatolii O. Kurotych, Lesia V. Bulatetska

Lesya Ukrainka Volyn National University, 9 Bankova Str., Lutsk, 43025, Ukraine

Abstract

Relational databases are widely used for storing and processing structured information, while their visualization
is a key phase in the architectural design of information systems. One of the most popular tools for creating
ERD is PlantUML, which implements the “diagram as code” approach for generating diagrams. This research
analyzes PlantUML’s capabilities for building ERD and explores tools that improve the diagrams’ quality and
automate their generation process. The shortcomings of PlantUML’s basic functionality for creating ERD are
described. Additional PlantUML features are described, such as improving the appearance and readability of
diagrams by highlighting primary and foreign keys, removing unnecessary elements, and creating legends for
user convenience. A plugin module has been developed to enhance the readability of PlantUML code (hereafter
referred to as ‘PUML code’) by structuring it into functions and procedures, making diagrams easier to create and
maintain. The benefits of the modular approach include standardized styles and a minimized amount of PUML
code. The article also introduces the Sqlant tool, which allows PUML code to be automatically generated from
a PostgreSQL relational database. The PlantUML, combined with automation tools like Sqlant and a modular
approach, is an effective tool for producing high-quality ERD. It can be particularly beneficial in environments
where database structures undergo frequent changes. Despite the limitations of the official documentation,
PlantUML has significant potential to extend its functionality.

Keywords
entity relationship diagram (ERD), computer-aided software engineering (CASE), PlantUML, automatization,
relational databases, PostgreSQL, command-line interface (CLI)

1. Introduction

Relational databases have become a standard in software development due to their ability to help solve
a wide range of tasks, especially given the popularity of web technologies. As the use of relational
databases has grown, so has the number of professionals requiring database skills. Today, SQL knowledge
is essential for software engineers, as well as technical support specialists, data analysts, business
analysts, marketers, and other IT professionals. Teams of specialists often interact through internal wiki
systems such as Confluence, Notion, etc., where information about projects and products, including
database schemas, is shared.

ERDs are used to design databases [1, 2]. The process of building ERD is an important stage in
software development, as it provides structured data visualization that contributes to the creation of
high-quality information systems. Computer-aided software engineering (CASE) tools are often used to
create ER diagrams. CASE tools support the automation of the database modeling process and allow
the model to be changed flexibly during the development process. Many companies prefer open-source
software tools that allow them to adapt to specific needs and integrate with other systems. However,
choosing the right CASE tool can be difficult due to the large number of options available. Database
modeling tools can be divided into two main categories based on how users interact with them to create
diagrams: GUI-oriented or code-as-diagram.

Tools such as Lucidchart [3], ER/Studio [4], SQL Developer Data Modeler [5], draw.io (diagrams.net)
[6], MySQL Workbench [7], Microsoft Visio [8], and DBeaver [9] are GUI-oriented. They provide a

CS&SE@SW 2024: 7th Workshop for Young Scientists in Computer Science & Software Engineering, December 27, 2024, Kryvyi
Rih, Ukraine
@) akurotych@gmail.com (A. O. Kurotych); bulatetska.lesya@vnu.edu.ua (L. V. Bulatetska)

&’ https://kurotych.com/ (A. O. Kurotych); https://tinyurl.com/5n6ndd33 (L. V. Bulatetska)
® 0009-0006-8186-4063 (A. O. Kurotych); 0000-0002-7202-826X (L. V. Bulatetska)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

47

mailto:akurotych@gmail.com
mailto:bulatetska.lesya@vnu.edu.ua
https://kurotych.com/
https://tinyurl.com/5n6ndd33
https://orcid.org/0009-0006-8186-4063
https://orcid.org/0000-0002-7202-826X
https://creativecommons.org/licenses/by/4.0/deed.en

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

graphical interface for creating diagrams, which better suits less technical users. Tools that use textual
descriptions (code-as-diagram approach) allow users to create database models using a specialized
code-like language [10]. One of the biggest advantages of this approach is how easily it integrates with
version control systems such as Git. It allows storing diagrams directly with the code, greatly facilitating
the process of tracking changes, managing versions, and ensuring effective team collaboration [11]. In
addition, changes can be made by editing the text directly, without the need to manipulate graphical
elements.

PlantUML is one such tool. PlantUML is an open-source tool for generating diagrams based on
text descriptions (PUML code) that allows simplifying the process of visualizing the physical model
of relational databases [12, 13, 14, 15, 16]. It is available both as a plugin for many development
environments (IDEs) [17, 18, 19] and as standalone software [13]. This makes it an ideal choice for
engineers who value the flexibility, speed, and simplicity of a text-based approach. In contrast, tools
focused on graphical interfaces do not offer the same degree of automation and integration [20].

Despite its wide functionality, PlantUML is insufficiently documented at the official level, which
creates difficulties in its use. Therefore, the issues of improving the quality of diagrams and optimizing
the process of their generation require additional research [21]. The relevance of this work lies in the
need to expand the study of PlantUML capabilities to more effectively display the physical model of
databases and explore ways to improve methods for generating ERD, especially in large projects with
frequent changes in database structure. In addition, automating the creation of PUML code directly from
the database will not only reduce the time required to develop diagrams, but also increase their accuracy
and relevance, allowing you to instantly reflect changes. This approach will make PlantUML even
more efficient for development teams, providing integration with existing databases and documentation
systems.

The research aims to explore the capabilities of PlantUML, develop improved approaches to creating
ERDs to provide more convenient and accurate modeling of relational databases and develop an
automated system for generating PUML code directly from an existing database.

2. Methods and tools

PUML code was tested on the official PlantUML website (https://www.plantuml.com/plantuml/uml).
GitHub (developer platform) was used to host the PlantUML module. SQL queries were checked using
RDBMS PostgreSQL version 15.0.

Docker (version 27.3.1) was used to spin up the local PlantUML server (version 1.2024.8) in the
section 7.

3. Improving the PlantUML diagram appearance

The study is based on PlantUML diagram types such as the “Entity Relationship Diagram” which, as
stated in the documentation, is an extension of the “Class Diagram” with support for relationship
descriptions like “Information Engineering Relations”. Figure 1 shows an example of an ERD, taken
from the documentation [12].

Let’s take a PostgreSQL database and create the “customer” and “customer_order” tables, which are
connected using a foreign key. Additionally, define and use the enumerated type “shipping_method”
(figure 2).

3.1. Entity

According to the PlantUML documentation [12, 13, 14], the “customer_order” entity for the ER diagram
can be described in the PlantUML language as shown in figure 3.

The PlantUML documentation suggests using the “*” symbol as a visibility modifier to indicate
mandatory attributes [12, 13, 14]. In our case, these are all fields that have the “NOT NULL” constraint.

48

https://www.plantuml.com/plantuml/uml

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Figure 1: View of the ERD taken from the documentation [12].

CREATE TYPE shipping_method AS ENUM ('standard', 'express', 'international');
CREATE TABLE customer (
id bigserial PRIMARY KEY,
address text NOT NULL,
name text NOT NULL,
registered_at timestamp with time zone NOT NULL
)
CREATE TABLE customer_order (
id bigserial PRIMARY KEY,
customer_id bigint NOT NULL,
shipping _method shipping_method,
shipping_address text NOT NULL,
total_price numeric NOT NULL,
ordered_at TIMESTAMP WITH TIME ZONE NOT NULL,
comment_to_order TEXT,
FOREIGN KEY (customer_id) REFERENCES customer (id)

)5

Figure 2: SQL script to create the “customer” and “customer_order” tables and the “shipping_method” enumer-
ated data type.

Since “Entity Relationship Diagram” (in PlantUML) is intended not only for displaying schemes of
relational databases, such a view (Figure 3) has a number of disadvantages:

« A circle with the letter “E” to the left of the table name has no information value in our case.

+ Foreign keys are weakly highlighted, they are usually distinguished by colors or additional
symbols.

« “*” symbol, which indicates that a field is mandatory (NOT NULL constraint) and depicted as a
black circle to the left of the variable name, may be confusing to a diagram user unfamiliar with
PlantUML.

« The same font style for the variable name and its type makes them difficult to distinguish.

According to the authors’ studies [22, 23], syntax highlighting plays an important role in working
with source code. Therefore, a number of the shortcomings described above are considered to be fair.

Using the additional features of PlantUML, the following result can be achieved (figure 4). In figure 4(b),
the following rendering flaws have been fixed:

« Deleted letter (E) near the name of the table (using the command “hide circle”).
« The primary key is represented by the “golden key” symbol.

49

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

(@) (b)

Figure 3: PUML code (a) and view of the customer order entity (b) according to PlantUML documentation.

« The foreign key is represented by the “gray key” symbol.

Among the disadvantages, it should be noted that the PUML code in figure 4(a) has become more
‘disorganized’ and less readable.

(@)

(b)

Figure 4: PUML code (a) after improvement and the rendered result (b).

3.2. Enum

Most SQL databases (MySQL, PostgreSQL, Oracle, etc.), as well as most programming languages, support
the enum data type. Using the “entity” keyword creates an unwanted artifact during rendering the
diagram (figure 5, marked with a red arrow).

50

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

(a) (b)

Figure 5: PUML code (a) and an unwanted artifact when using the “entity” keyword to create an enum data
type in PlantUML (b).

To remove this artifact, the ‘object’ keyword should be used. Additionally, highlighting the name of
the list by adding the identifier ‘(E)’ can help make it easier to distinguish from other objects (figure 6).

Figure 6: Enum PUML code (a) and rendered result (b).

3.3. Legend

Since some symbols (as mentioned above in disadvantages) may not be clear to the end user, a “legend”
can be used to explain their meaning. As the diagram becomes more complex, the legend can be
expanded. For example, in figure 7 shows four objects in the legend: Foreign Key, Primary Key, Not
NULL, and Enum.

(a) (b)

Figure 7: PUML code (a) and appearance of the legend (b).

3.4. Overview of types of relationships

PlantUML uses the relationship description based on the Information Engineering notation. Figure 8
shows the types of relationships that are supported.
Also, it is worth mentioning that it is possible to add a comment text to each relationship (figure 9).

51

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Figure 8: Types of relationships supported by PlantUML.

Figure 9: Comment to relationship.

4. Improving the quality of PlantUML code

The readability of the PUML code is an important characteristic because it is responsible for rendering
the diagrams and can be read and edited by different team members. To improve the readability and
convenience of writing PUML code, it’s worth reducing its volume. This can be achieved by using
built-in functions (!function) and procedures (!procedure) or by creating your own, which are organized
into plugin modules. It is important to note that there are built-in functions beginning with the symbol
’%’. You can find their brief descriptions on the official PlantUML website in the ‘Builtin functions’
section [13]. One such function, ‘%splitstr’, which splits the text into an array of strings, was used in
the following example for the ‘enum’ procedure. In PlantUML, functions differ from procedures in that
functions must return a result. Additionally, as in other programming languages, both functions and
procedures can accept parameters. Figure 10 shows two functions (column, table) and their usage. The
result of this code is shown in figure 4.

Figure 11 shows the enum procedure and its usage. The result of this code is shown in figure 6(b).

As can be seen from figures 10 and 11, the amount of code has increased rather than decreased
because the example only shows one entity that uses custom functions. However, when there are more
tables, this approach will be more efficient.

5. Designing a plugin module for PlantUML

Procedures and functions that are used for the design of ERDs should be placed in a separate file with
the .puml extension and included in the main file using the “linclude” command. This approach provides
modularity and improves code organization. The module file db_ent.puml was created with the next
content:

« Functions: table($name), column($name, $type, $pk=false, $tk=false, $nn=false);
+ Procedures: enum($name, $variants), add_legend().

To use the module, it must be placed on any web resource so that it has a permanent HTTP(s) address
and is available to users. In this study, a public GitHub repository was used to host the PlantUML
module. It can be accessed at the following address: https://raw.githubusercontent.com/kurotych/
sqlant/b2e5db9ed8659{281208a687a344b34{38129cd/puml-lib/db_ent.puml After the PlantUML module
is hosted on web resource there is a possibility to include it in PUML code (figure 12).

This approach gives us the following advantages:

« PUML code file contains only the logic of the diagram without unnecessary code-specific details,
which improves the code readability.

+ Generic code can be reused in other files without the need for repetition.

+ Changes in the PlantUML module are automatically reflected in all related diagrams, which is
useful for fixing bugs.

52

https://raw.githubusercontent.com/kurotych/sqlant/b2e5db9ed8659f281208a687a344b34ff38129cd/puml-lib/db_ent.puml
https://raw.githubusercontent.com/kurotych/sqlant/b2e5db9ed8659f281208a687a344b34ff38129cd/puml-lib/db_ent.puml

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Figure 10: Definitions of “column” and “table” functions and their usage.

Figure 11: Enum procedure and its usage.

+ The standardization of styles and procedures for all project participants simplifies teamwork.

This approach makes it easy to scale projects and keep code clear and organized. Designing functions
(and procedures) in a module will provide an advantage even in the case with a single entity in a
diagram.

6. Automation of PlantUML code generation for PostgreSQL RDBMS

A software tool called Sqlant (https://github.com/kurotych/sqlant, [24]) was developed to automate
the generation of PlantUML code. Starting from version 0.4, it implements the diagram generation

53

https://github.com/kurotych/sqlant

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Figure 12: Including an external PUML module into code.

approach described in this study. It can be installed using Cargo (a package manager for Rust projects)
[25]. For users of the GNU/Linux operating system, a statically compiled binary can be downloaded at
https://github.com/kurotych/sqlant/releases [24]. Sqlant is a CLI (command-line interface) tool that
generates PUML code (mermaid generation is also supported [26]) based on a connection string. The
result is output to stdout, which can be redirected to a file. Figure 13 shows the sequence diagram of the
engineer’s workflow with the Sqlant tool. Sqlant requires one mandatory parameter: the connection
string (CON_STRING), which contains the database address and authentication data. The database
must be accessible for connection from the Sqglant runtime.

Figure 13: PlantUML and Sqlant sequence usage.

The internal Sqlant workflow operates as follows:

1. Retrieve information about the database schema, including table names, columns, foreign keys,
and other related metadata.

2. Generate PUML code based on the retrieved information.

3. Output the PUML code to standard output, which can be redirected to a file using standard OS
utilities.

After that, the user executes the received code on the PlantUML server side and receives the result
in the form of a diagram. The generated diagram can be downloaded in several formats: PNG, SVG,
ASCII Art. This tool supports several options for customizing the result. After installation, users can
familiarize themselves with these options by using the --help argument (figure 14).

54

https://github.com/kurotych/sqlant/releases

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

Figure 14: Output of the - -help command in Sqlant.

7. Data security: installing the PlantUML server locally

It is worth noting that in the above examples, the plantuml.com site was used to convert PUML code into
PNG/SVG format. This site may (potentially) save these diagrams, as PlantUML generation occurs on the
server side. This could be unacceptable for many companies, as it may expose the internal architecture of
the database to third parties. Since PlantUML is an open-source product, its source code can be reviewed,
and it can be installed locally. One option for installation is using the Docker containerization system.
The following command will launch the PlantUML server (https://github.com/plantuml/plantuml-server)
with a web interface accessible locally at the address: http://localhost:8080 (figure 15).
docker run -d -p 8080:8080 plantuml/plantuml-server:jetty

Figure 15: Local PlantUML server.

55

https://github.com/plantuml/plantuml-server
http://localhost:8080

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

When replacing the use of plantuml.com with a locally installed plantuml.jar file (https://plantuml.
com/download) or a locally installed Docker container running the PlantUML server, this approach
becomes easily automatable. As a result, some engineers integrate this process into their bash scripts,
which can then be used in the CI (Continuous Integration) workflow (figure 16) [27].

Figure 16: An example of automation (part of a bash script) [27].

8. Conclusions

During the study of PlantUML capabilities, the main functions of this tool for creating ERDs were
analyzed. An approach is proposed, which includes the development of a plugin module to simplify the
process of modeling the physical structure of databases. The module allows you to standardize code,
improve readability, reduce duplication, and facilitate teamwork. In addition, automation of the PUML
code generation process from the PostgreSQL relational database was implemented. The Sqlant tool
was developed for automation purposes [24]. Sqlant retrieves information about the database schema,
generates PUML code that can be used to visualize the ERDs in the PlantUML environment. Despite
the lack of official documentation, PlantUML has shown significant potential for integration into the
work of development teams due to its flexibility, modularity, and open-source nature.

Declaration on Generative Al: During the preparation of this work, the author used ChatGPT in order to: Grammar
and spelling check. After using this tool/service, the authors reviewed and edited the content as necessary and take full

responsibility for the publication’s content.

References

[1] D. Martinez, L. Po, J. R. R. Trillo-Lado, R.and Viqueira, A conceptual data modeling framework
with four levels of abstraction for environmental information, Environmental Modelling and
Software 183 (2025) 1-23. d0i:10.1016/j .envsoft.2024.106248.

[2] S. Hettiarachchi, C. Sugandhika, A. Kathriarachchi, S. Ahangama, G. T. Weerasuriya, A Scenario-
based ER Diagram and Query Generation Engine, in: B. H. Sudantha, R. D. Wageeshani (Eds.),
Proceedings of the 4th International Conference on Information Technology Research (ICITR),
Information Technology Research Unit Faculty of Information Technology University of Moratuwa
Sri Lanka, IEEE, Moratuwa, Sri Lanka, 2019, pp. 1-5. d0i:10.1109/ICITR49409.2019.9407793.

[3] Lucid Software Inc., Documentation and Implementation Level 1 | Lucidchart, 2025. URL: https:
/Iwww.lucidchart.com/pages/templates/documentation-and-implementation-level-1.

[4] ER/Studio Data Architect Product Documentation - Embarcadero Technologies, 2024. URL: https:
//docs.embarcadero.com/products/er_studio/.

[5] Oracle, SQL Developer Data Modeler Documentation Release 18.1, 2025. URL: https://docs.oracle.
com/database/sql-developer-data-modeler-18.1/.

[6] JGraph Ltd, draw.io Documentation, 2023. URL: https://www.drawio.com/doc/.

[7] Oracle, MySQL :: MySQL Workbench Manual, 2025. URL: https://dev.mysql.com/doc/workbench/
en/.

[8] Microsoft, Visio help & learning, 2025. URL: https://support.microsoft.com/en-us/visio.

56

https://plantuml.com/download
https://plantuml.com/download
http://dx.doi.org/10.1016/j.envsoft.2024.106248
http://dx.doi.org/10.1109/ICITR49409.2019.9407793
https://www.lucidchart.com/pages/templates/documentation-and-implementation-level-1
https://www.lucidchart.com/pages/templates/documentation-and-implementation-level-1
https://docs.embarcadero.com/products/er_studio/
https://docs.embarcadero.com/products/er_studio/
https://docs.oracle.com/database/sql-developer-data-modeler-18.1/
https://docs.oracle.com/database/sql-developer-data-modeler-18.1/
https://www.drawio.com/doc/
https://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/workbench/en/
https://support.microsoft.com/en-us/visio

Anatolii O. Kurotych et al. CEUR Workshop Proceedings 47-57

[9] DBeaver Documentation, 2024. URL: https://dbeaver.com/docs/dbeaver/.

[10] Terrastruct, Text to diagram, 2025. URL: https://text-to-diagram.com/.

[11] The Mibex Software team, Optimizing documentation with PlantUML - Integration, Efficiency,
and Best Practices, 2024. URL: https://mibexsoftware.com/blog/plantuml/.

[12] Drawing UML with PlantUML: PlantUML Language Reference Guide (Version 1.2023.11), 2023.
URL: https://pdf.plantuml.net/PlantUML_Language_Reference_Guide_en.pdf.

[13] Open-source tool that uses simple textual descriptions to draw beautiful UML diagrams, 2025.
URL: https://plantuml.com/.

[14] The Hitchhiker’s Guide to PlantUML documentation, 2020. URL: https://crashedmind.github.io/
PlantUMLHitchhikersGuide/.

[15] E. Gosselin, PlantUML for database modeling, 2024. URL: https://medium.com/@elvis.gosselin/
plantuml-for-database-modeling-1b71e6d4622d.

[16] R.Léger, SQL + PlantUML: Generate Automatic Database Diagrams, 2020. URL: https://tinyurl.
com/2bm52k8;j.

[17] A. Akundi, J. Ontiveros, S. Luna, Text-to-Model Transformation: Natural Language-Based Model
Generation Framework, Systems 12 (2024) 369. doi:10.3390/systems12090369.

[18] J.Lund, L. B. Jensen, N. Battle, P. G. Larsen, H. D. Macedo, Bidirectional uml visualisation of vdm
models, 2023. doi:10.48550/arXiv.2304.06618. arXiv:2304.06618.

[19] V. Krasa, PlantUML Integration - Intelli] IDEs Plugin | Marketplace, 2024. URL: https://plugins.
jetbrains.com/plugin/7017-plantuml-integration.

[20] Appmus, Best PlantUML Alternatives & Reviews, 2021. URL: https://appmus.com/software/
plantuml.

[21] D. Rouabhia, I. Hadjadj, Enhancing Class Diagram Dynamics: A Natural Language Approach with
ChatGPT, 2024. doi:10.48550/arXiv.2406.11002. arXiv:2406.11002.

[22] T.R. Beelders, J.-P. L. du Plessis, Syntax highlighting as an influencing factor when reading and
comprehending source code, Journal of Eye Movement Research 9 (2016). doi:10.16910/jemr.
9.1.1.

[23] A. Sarkar, The impact of syntax colouring on program comprehension, in: Proceedings of the 26th
Annual Conference of the Psychology of Programming Interest Group, PPIG2015, Bournemouth,
2015, pp. 49-58. URL: https://ppig.org/files/2015-PPIG-26th-Sarkar1.pdf.

[24] A. Kurotych, GitHub - kurotych/sqlant: Generate PlantUML/Mermaid ER diagram textual descrip-
tion from SQL connection string, 2024. URL: https://github.com/kurotych/sqlant.

[25] The Cargo Book, 2025. URL: https://doc.rust-lang.org/cargo/.

[26] Mermaid | Diagramming and charting tool, 2025. URL: https://mermaid.js.org/.

[27] hoopoe/scripts/setup.sh at 3ac947c657ec989bc36eea897f1a5061518a8429 - wildonion/hoopoe, 2024.
URL: https://github.com/wildonion/hoopoe/blob/3ac947c657ec989bc36eea897f1a5061518a8429/
scripts/setup.sh#L16.

57

https://dbeaver.com/docs/dbeaver/
https://text-to-diagram.com/
https://mibexsoftware.com/blog/plantuml/
https://pdf.plantuml.net/PlantUML_Language_Reference_Guide_en.pdf
https://plantuml.com/
https://crashedmind.github.io/PlantUMLHitchhikersGuide/
https://crashedmind.github.io/PlantUMLHitchhikersGuide/
https://medium.com/@elvis.gosselin/plantuml-for-database-modeling-1b71e6d4622d
https://medium.com/@elvis.gosselin/plantuml-for-database-modeling-1b71e6d4622d
https://tinyurl.com/2bm52k8j
https://tinyurl.com/2bm52k8j
http://dx.doi.org/10.3390/systems12090369
http://dx.doi.org/10.48550/arXiv.2304.06618
http://arxiv.org/abs/2304.06618
https://plugins.jetbrains.com/plugin/7017-plantuml-integration
https://plugins.jetbrains.com/plugin/7017-plantuml-integration
https://appmus.com/software/plantuml
https://appmus.com/software/plantuml
http://dx.doi.org/10.48550/arXiv.2406.11002
http://arxiv.org/abs/2406.11002
http://dx.doi.org/10.16910/jemr.9.1.1
http://dx.doi.org/10.16910/jemr.9.1.1
https://ppig.org/files/2015-PPIG-26th-Sarkar1.pdf
https://github.com/kurotych/sqlant
https://doc.rust-lang.org/cargo/
https://mermaid.js.org/
https://github.com/wildonion/hoopoe/blob/3ac947c657ec989bc36eea897f1a5061518a8429/scripts/setup.sh#L16
https://github.com/wildonion/hoopoe/blob/3ac947c657ec989bc36eea897f1a5061518a8429/scripts/setup.sh#L16

	1 Introduction
	2 Methods and tools
	3 Improving the PlantUML diagram appearance
	3.1 Entity
	3.2 Enum
	3.3 Legend
	3.4 Overview of types of relationships

	4 Improving the quality of PlantUML code
	5 Designing a plugin module for PlantUML
	6 Automation of PlantUML code generation for PostgreSQL RDBMS
	7 Data security: installing the PlantUML server locally
	8 Conclusions

