
Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

Overview of modern algorithms for world procedural
generation in computer games
Ivan F. Laitaruk, Tetyana O. Hryshanovych

Lesya Ukrainka Volyn National University, 13 Voli Ave., Lutsk, 43025, Ukraine

Abstract
This article analyzes the most common algorithms and approaches of worlds’ procedural generation that are used
today, and considers real use cases of these methods in order to obtain the best understanding of the use of these
algorithms in specific situations. There are also the estimations of algorithms’ time complexities to determine
whether they are justified with high-quality output virtual environment. Among such algorithms are graph
grammar, Fortune’s algorithm, Perlin noise construction, cellular automaton construction, genetic algorithm and
others.

Keywords
Graph grammar, Voronyi diagram, Fortune’s algorithm, Minkowski metric, Perlin noise, cellular automaton,
genetic algorithm

1. Introduction

The repetitiveness of game elements leads to fast indifference from players, so sometimes developers
decide to add “randomly” generated objects, textures, storylines, quests, worlds, etc. Data generation
using algorithmic functions with randomness is called procedural content generation (PCG). The issue
of this approach is that such algorithms are frequently resource-intensive and unpredictable in the
generated content.

The purpose of the work is to assess the algorithmic complexity of world procedural generation
algorithms: graph grammar, Fortune’s algorithm for constructing Voronyi diagram, Perlin noise, cellular
automaton and genetic algorithm. It is also necessary to analyze the use of distance metrics in the
Voronyi diagram, fractional Brownian noise, and physics simulation as approaches to procedural
generation.

2. Generative grammar

Generative grammar was originally used to create phrases by specifying rules to select a lexeme
(term) from a set of logically correct options [1]. Therefore, it is possible to form a given number of
grammatically correct constructions. Based on this, other grammars were developed such as graph
rewriting1 and form grammar.

2.1. Graph grammar

Graph grammar is commonly used for world-building of different types of dungeons, castles, and
other structures for role-playing (RPGs) or strategy games. It considers the world to be represented
as a graph [2]. Firstly, an initial graph (randomly selected from a template) is defined, and then rules

CS&SE@SW 2024: 7th Workshop for Young Scientists in Computer Science & Software Engineering, December 27, 2024, Kryvyi
Rih, Ukraine
" laitaruk.ivan2024@vnu.edu.ua (I. F. Laitaruk); hryshanovych.tatiana@vnu.edu.ua (T. O. Hryshanovych)
~ https://vnu.edu.ua/uk/staff/hryshanovych-tetyana-oleksandrivna (T. O. Hryshanovych)
� 0009-0002-9832-7759 (I. F. Laitaruk); 0000-0002-3595-6964 (T. O. Hryshanovych)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1Graph rewriting can sometimes be used instead of graph grammar.

152

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:laitaruk.ivan2024@vnu.edu.ua
mailto:hryshanovych.tatiana@vnu.edu.ua
https://vnu.edu.ua/uk/staff/hryshanovych-tetyana-oleksandrivna
https://orcid.org/0009-0002-9832-7759
https://orcid.org/0000-0002-3595-6964
https://creativecommons.org/licenses/by/4.0/deed.en

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

for subgraph transitions from one to another are sequentially applied. Typically, rewriting rules are
specified manually to ensure logical transitions.

The most popular approach to graph rewriting is the algebraic approach, in which the double pushout
and the single pushout methods are defined. The double pushout method involves using rules of three
graphs: a left-hand 𝐿, a right-hand 𝑅, and a context 𝐾 (often called the interface). The graphs 𝐿 and
𝑅 specify a transition using the context 𝐾: 𝐿 ⊇ 𝐾 ⊆ 𝑅. There is a homomorphic subgraph to 𝐿 in
the graph 𝐺 and all elements that are present in 𝐿 but not in 𝐾 are removed from 𝐺. After that, the
elements of 𝑅 that are not in 𝐾 are glued to 𝐺 (figure 1). This method is strict, which allows to avoid
cases where conflicting changes are applied to the same subgraph. The single pushout method is
simplified and operates only with graphs 𝐿 and 𝑅. Elements of 𝐺 that do not correspond to graph 𝑅
are removed, and new elements from 𝑅 are added to 𝐺 (figure 2). This method is more flexible, but can
cause issues with compatibility of changes.

Figure 1: Double pushout example. Subgraph
𝐿 is matched with part of graph 𝐺 and with a
context 𝐾 , this part can be replaced to
subgraph 𝑅.

Figure 2: Single pushout example. The
absence of context 𝐾 can cause redundancy
in result graph.

The time complexity of graph rewriting mostly depends on the sizes of an input graph 𝐺 and a
left-hand graph 𝐿, since finding subgraph homomorphism is an NP-complete problem, that can lead
to exponential complexity. Therefore, the time complexity of searching for a mapping position in a
graph 𝐺 by a graph 𝐿 is 𝑂(𝑉𝐺 * 𝑉𝐿) in simple cases, and 𝑂(𝑉 𝑉𝐿

𝐺) in the worst case, where 𝑉𝐺 is the
number of vertices in 𝐺 and 𝑉𝐿 is the number of vertices in 𝐿. The time of applying a rule is 𝑂(𝑉𝑅),
however, it is usually a constant value. Considering that rewriting a graph processes 𝑛 rewriting rules,
the time complexity is 𝑂(𝑛 * 𝑉𝐺 * 𝑉𝐿) in the simple case and 𝑂(𝑛 * 𝑉 𝑉𝐿

𝐺) in the worst case. The space
complexity depends on the size of the graph 𝐺 and all rewriting rules – 𝑂(𝑛* (|𝐿|+ |𝐾|+ |𝑅|)), where
𝑛 is the number of rules, |𝐿|, |𝐾|, |𝑅| are the sizes of graphs 𝐿, 𝐾 , and 𝑅 respectively. When applying
the single pushout, the context size 𝐾 will be absent in the space complexity.

Generating graph rewriting rules can be a challenge, as all rules must modify the graph in a way that
can actually be generated. Paul Merrell proposes a new method for generating graph rewriting rules
[3] (figure 3-4).

The first step is to select graphs that will serve as examples for generation. It is required that the
result must be locally similar to the examples. This means that every part of the generated graph should
be similar to the example at small scales, but its large-scale structure can be completely different. The
examples are broken down into the primitives and glued together by all possible ways. The primitives
and all glued graphs are organized into a hierarchy of subgraphs. If the new subgraph can be simplified
to the one higher in the hierarchy, then a rewrite rule can be formed (new subgraph ↔ simpler subgraph)
(figure 5).

Graphs 𝐿 and 𝑅 are mutually gluable if they have the same boundary string: 𝜕𝐿 = 𝜕𝑅. The graph
boundary string is described by positive ∧ and negative ∨ turns of the subgraph and also its half-edges
(figure 6). If the positive and negative turns are consecutive, they can be reduced: 𝑎 ∧ 𝑥 ∧ ∨ = 𝑎 ∧ 𝑥.
If the numbers of half-edges, positive and negative turns are the same, then the boundary strings of

153

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

Figure 3: Examples for Paul Merrell’s
graph rewriting algorithm.

Figure 4: Generated city with graph
rewriting based on examples.

Figure 5: Input example, breaking it down into primitives, constructing a hierarchy, and forming graph rewriting
rules with Paul Merrell’s method (from left to right).

the subgraphs are also the same. Due to the reason that all our graphs are planar, they can be glued in
linear time. There are two operations to directly glue subgraphs: loop glue and branch glue. They can
be considered more in Paul Merrell’s publications.

After applying a rewriting rule, there is a process of randomly defining the edge lengths of the graph.
If the lengths are organized so that the graph is planar, then the decision is made, otherwise, the edge
lengths are redefined.

Figure 6: Graph boundary string of subgraph 𝐺1 by Paul Merrell. 𝜕𝐺1 = 𝑦 ∧ 𝑏 𝑎 means that through the
path of graph 𝐺1 we meet half-edges 𝑦, 𝑏 and 𝑎, and one positive turn ∧. A starting point does not matter:
𝑦 ∧ 𝑏 𝑎 = ∧𝑏 𝑎𝑦 = 𝑏 𝑎𝑦∧.

3. Space distribution

The space distribution methods refer to the algorithms that divide the entire game space among
individual generation elements (e.g., rooms). Such algorithms were originally used in computer graphics
for texture generation, and later found wider application.

154

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

3.1. Voronyi diagram

The Voronyi tessellation2 [4] describes the entire territory, dividing it so that any point 𝑟 inside a
separated element is the closest to the corresponding partition point 𝑎: 𝑑𝑖𝑠𝑡(𝑟, 𝑎) < 𝑑𝑖𝑠𝑡(𝑟, 𝑏), if 𝑎 and
𝑏 are partition points of the diagram. This can be achieved, if we draw perpendicular bisectors of the
lines connecting each pair of randomly given points and choose the part of the bisector that does not
intersect with others (figure 7):

𝑉 (𝑎𝑖) =
⋂︁

1≤𝑗≤𝑛
𝑗 ̸=𝑖

ℎ(𝑎𝑖, 𝑎𝑗) (1)

where 𝑎 is partition point, ℎ(𝑎𝑖, 𝑎𝑗) is half-plane formed by drawing a perpendicular bisector and
containing 𝑎𝑖 and not containing 𝑎𝑗 . However, there are better algorithms for constructing a Voronyi
diagram that do not require a pairwise search of all points.

Figure 7: Constructing a Voronyi tessellation
cell using perpendicular bisectors.

Figure 8: Constructing a Voronyi tessellation
using the sweep line of Fortune’s algorithm.

Fortune’s algorithm [4] suggests using a line that sequentially “sweeps” all points of the diagram
(figure 8). If the line passes the partition point, then the site event is triggered. During this event, a
new arc (parabola) is created, which is a representation of this partition point. The intersection of the
arcs gradually grows and outlines a new edge of the Voronyi diagram. If the middle arc at the place of
three arcs shortens and compresses to one point of the circle, then the circle event is triggered. At this
moment, the middle arc is removed and the vertex of the diagram is formed. Since the number of events
processed by the algorithm is 𝑛, and the complexity of operations with data structures (priority queue
of events and arc tree) of each event takes 𝑂(log 𝑛) time, then this algorithm has a time complexity
𝑂(𝑛 log 𝑛), where 𝑛 is the number of partition points. Due to the storage of the previously mentioned
data structures, the space complexity of the algorithm is 𝑂(𝑛).

Using various distance metrics, it is possible to achieve versatile partitions of the Voronyi tessellation.
The Manhattan (figure 9) or Euclidean (figure 10) distance are the most common metrics, but they lead
to straight edges of the diagram. An interesting approach is to use the Minkowski metric [5], which
will make the edges curvilinear. To calculate the distance between points 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) and
𝐵 = (𝑏1, 𝑏2, . . . , 𝑏𝑛) the formula can be used:

𝑑𝑖𝑠𝑡(𝐴,𝐵, 𝑝) =

(︃
𝑛∑︁

𝑖=1

|𝑎𝑖 − 𝑏𝑖|𝑝
)︃ 1

𝑝

(2)

If 𝑝 = 1, this is the Manhattan distance, 𝑝 = 2 is the Euclidean distance. When 𝑝 > 2 (but not too big),
the edges of the Voronyi diagram become curvilinear (figure 11). This can be used, for example, to
generate biomes – different areas in the game world, which are defined by climate, terrain, vegetation,
fauna, etc. It is possible to determine the belonging of each group of Voronyi cells to a specific biome

2More popular name ’Voronoi diagram’ is replaced with ukrainian correct transliteration option. Also names ‘Voronyi
tessellation’, ‘Voronyi decomposition’ or ‘Dirichlet tessellation’ are commonly used.

155

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

using algorithms to combine the cells in a shared entity. Muzzin [6] describes generating biomes for a
two-dimensional strategy game with rectangular or hexagonal cells in his paper “How to Use Voronoi
Cells for Strategy Game Maps”. Another approach to generate biomes with indirect edges is to use
gradient noise.

Since the Voronyi diagram generation algorithm is used only to distribute the game space, it is not
universal for various world generation and does not provide a wide range of input parameters:

1. The number of partition points;
2. Algorithm for random placement of the partition points (for example, each point in a separate

square cell);
3. Parameter 𝑝 according to the Minkowski metric.

To summarize the Voronyi diagram’s usability, it can be helpful for developing the real-time strategies
(RTS), simulation, survival, and exploration games.

Figure 9: Voronyi diagram using
manhattan distance, 𝑝 = 1.

Figure 10: Voronyi diagram using
euclidean distance, 𝑝 = 2.

Figure 11: Voronyi diagram using
Minkowski distance of 𝑝 = 3.

3.2. Gradient noises

The idea of gradient noises is to create a field divided into cells and distribute randomly specified
gradients, where the value in the intermediate cells is found by interpolation of dot products of cells.

Figure 12: Graphical representation of
Perlin noise calculation at point 𝑃 .

Figure 13: Graphical interpretation of Perlin noise as height
maps, where 0 is the lowest height, 1 is the highest height.

Perlin noise [7, 8, 9] is one of the simplest gradient noises. Firstly, the entire space is divided into a
grid, each vertex of which is represented of a random gradient {−→𝑔1 ,−→𝑔2 , . . . ,−→𝑔2𝑛}, where 𝑛 is the number
of dimensions. Then for every single point 𝑃 we calculate the vectors from four nearest vertices of
the grid to the point 𝑃 : {−→𝑎1,−→𝑎2, . . . ,−→𝑎2𝑛}. Next step is finding dot products of {−→𝑔1 ,−→𝑔2 , . . . ,−→𝑔2𝑛} and
{−→𝑎1,−→𝑎2, . . . ,−→𝑎2𝑛} and these values are interpolated. For example, considering a two-dimensional space,
this process consists of interpolating the upper left and the lower left products 𝑣1 = 𝑙𝑒𝑟𝑝(−→𝑎1*−→𝑔1 ,−→𝑎2*−→𝑔2)

156

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

and the upper right and the lower left products 𝑣2 = 𝑙𝑒𝑟𝑝(−→𝑎3 * −→𝑔3 ,−→𝑎4 * −→𝑔4), and after that finding the
interpolation of 𝑣1 and 𝑣2 (figure 12). Therefore, we obtain a value from 0 to 1, which can be graphically
interpreted at point 𝑃 and all other points (figure 13).

The time complexity of Perlin noise depends on the number of points 𝑛𝑝 and dimensions 𝑛. We
have already seen that if 𝑛 = 2, then the number of operations for one point is 4. Therefore, the time
complexity of Perlin noise is 𝑂(𝑛𝑝 * 2𝑛).

Fractional Brownian noise (FBN) [9] extends the idea of classical Brownian motion, which describes
the random movement of a particle. In general, FBN works by layering ordinary noise (e.g. Perlin noise)
with varying amplitude and frequency parameters. One such layer is called an octave of Brownian
noise. The amplitude controls the pitch of the noise, so with each next octave, this coefficient decreases
so that each layer becomes smoother and less contrasting. The frequency increases with the transition
to the next octave and adds rough small details. FBN has the fractal property of self-similarity: a change
in scale partially repeats the original appearance of space.

Gradient noise is often used to define a height map of open world. The game Minecraft uses such
algorithms for world procedural generation [10]. To do this, congruent generators are firstly used to
create Perlin noise, which serve as octaves of the FBN. After that, the map is processed in a multilayer
stack of operators similar to cellular automaton to define biomes (figure 14). Each layer takes the biome
map from the previous one, adds some details and passes it to the next one. Also, each biome has the
parameters of the average depth and its average deviation (figure 15). Minecraft procedural generation
is a good example of open world PCG, developed over the years.

Figure 14: Result of generation the
Minecraft world, top view. Figure 15: Diagram of terrain height map generation in Minecraft.

As it is seen, gradient noises are frequently used in 3D adventure, exploration, or survival games but
generating randomized and smooth 2D terrains and obstacles for platformer games is also a common
way of its exploitation.

4. Simulative algorithms

Simulative algorithms generate the world based on the reproduction of the change of a real object
over time. In such algorithms, time is expressed in the number of iterations and plays a key role in the
shape and distribution of the game space.

4.1. Cellular automaton

In a cellular automaton [11], the game space is divided into cells with their coordinates – 𝑥𝑖,𝑗 for
two-dimensional space. Each cell is defined by one of at least two states: {path, wall}. In the initial
step, the state of each cell is randomly selected, after which an iterative process begins: the state of the

157

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

cell of the next generation 𝑥𝑡+1
𝑖,𝑗 is determined by the state of this 𝑥𝑡𝑖,𝑗 and the neighbor 𝑁(𝑥𝑡𝑖,𝑗) cells in

this generation. This can be written as

𝑥𝑡+1
𝑖,𝑗 = 𝑓

(︀
𝑥𝑡𝑖,𝑗 , 𝑁

(︀
𝑥𝑡𝑖,𝑗
)︀)︀

, 𝑥𝑖,𝑗 ∈ {𝑝𝑎𝑡ℎ, 𝑤𝑎𝑙𝑙} (3)

There are two commonly used approaches to define neighbor cells: the von Neumann neighborhood
and the Moore neighborhood. The von Neumann neighborhood (figure 16) defines neighbor cells
as all those that have a common side with the current cell or the distance to which according to the
Manhattan metric is equal to one (for the range of one, 𝑟 = 1). The number of cells depends on the
range 𝑟 and can be calculated as 𝑟2 + (𝑟 + 1)2. In contrast, the Moore neighborhood (figure 17)
defines that neighbor cells are those to which the Euclidean distance is equal to one (for the range of
one, 𝑟 = 1). Similarly, the number of neighbor cells is (2𝑟 + 1)2 depending on the range 𝑟.

Figure 16: Red cells are neighbors according
to the von Neumann neighborhood of 𝑟 = 1.

Figure 17: Red cells are neighbors according
to the Moore neighborhood of 𝑟 = 1.

From this we can conclude that regardless of which neighborhood is used, the time complexity of
one iteration of a cellular automaton in a two-dimensional space is 𝑂(𝑛𝑟2), where 𝑛 is the number of
cells, 𝑟 is the range of neighbor cells. Since in the last iteration the whole space is remembered to form
a game space of the next iteration, the space complexity of a cellular automaton is 𝑂(𝑛).

Cellular automaton approaches are widely used to generate open worlds and simulate the change
in the position of fluids over time [11] (figure 18). In Noita, the environment responds dynamically
to player actions. For example, if a player casts a fire spell, it can ignite nearby flammable objects,
spread through adjacent combustible pixels, and potentially create chain reactions. Cellular automaton
rules dictate how these effects propagate, often resulting in unpredictable and emergent behaviors that
enhance the game’s chaos and complexity.

Figure 18: A computer game Noita [12] that uses cellular automaton algorithms.

It is worth noting that generation a world with such algorithms does not necessarily guarantee the
presence of a single connected path, but when given a well-chosen cell transition function from one

158

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

state to another, there is a growing tendency for paths and walls to be less distributed, which makes
the game space more clustered. In addition, there are relatively few parameters that can be changed to
control the generation process:

1. A percentage of inaccessible space (walls);
2. The number of iterations (generations);
3. Definition of neighbor cells;
4. The function of transition from one state to another.

Therefore, cellular automata do not provide sufficient control over world PCG, leading to a long
process of trial and error to ensure specific gameplay features. However, they are perfect for procedural
maze or dungeon generation in roguelike, survival, and puzzle games.

4.2. Genetic algorithms

Evolutionary genetic algorithms [13] are used to find the optimal solution to optimization problems.
Each solution of such problem is expressed in the form of information encoded in a string – a gene
(chromosome). The set of all possible solutions is a population. The quality of a chromosome
is calculated using a fitness function, which takes into account values that are important for the
population. The transition to the next population occurs using the operations of crossing, mutation and
selection, which leads to the fact that the average value of the fitness function gradually increases in
the next iteration.

When interpreting this approach to world PCG, the ideas of generative grammar are used: a generator
graph (figure 19), which determines the generation dependency of certain elements on each other, and
a derivation tree (figure 20), which describes an individual in the current population. Each vertex in
such a tree is a gene. A population is all possible generated worlds with specified dependencies.

Figure 19: The generator graph with its parameters, consisting of a room whose position is either independent
or depends on the position of other rooms, treasures and the finish line, which depend on the position of the
rooms.

Mutation, which changes an individual independently of the others, and crossover, which relies
on two “parents” to create an individual, are used to obtain new members of the population. These
operations are applied with a certain probability: mutation only, crossover only, or both mutation and
crossover.

There are three types of mutation: grow, cut and alter. Grow adds a random gene to a gene that has
not reached the maximum number of children. Cut removes a random gene and the entire subtree that
corresponds to it. Alter is characterized by rewriting the parameters of a particular gene to random
ones.

During crossover, a random gene (along with the entire subtree) from one parent and a compatible
gene from the other parent are selected. After exchanging the subtrees of these individuals, two new
representatives of the population are formed (figure 22).

159

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

Figure 20: The derivation tree consisting
of rooms (numbers), treasures (T), and a
finish line (F).

Figure 21: A model of possible game space
for the derivation tree in figure 20.

Figure 22: The derivation trees with tagged genes for crossover (left), the result of crossover (right). Numbers
are rooms, T is treasure, F is a finish line. Node 4 was randomly chosen for crossover from the first tree and
nodes 1, 2, 3, 5, 6, F are compatible to be switched from the second tree. Node 6 is randomly chosen from the
second tree.

The selection of the next population can be performed with one of several methods to randomly
choose the best individuals. Using roulette wheel selection algorithm, we choose an individual 𝐼 with a
probability 𝑝𝐼 = 𝑓𝐼∑︀

𝑗
𝑓𝑗

, where 𝑓𝐼 is the value of the fitness function for this individual 𝐼 and
∑︀
𝑗
𝑓𝑗 is the

sum of all individuals fitness function values of current generation. The k-tournament selection method
randomly selects 𝑘 individuals from the population and keeps only those with the best fitness function
values. In practice, this algorithm is implemented more often than the roulette wheel selection, since it
lacks stochastic noise.

After a genetic algorithm processed, the graph should be virtually represented (figure 21). The graph
representation algorithm can differ depending on game space type (e.g., building or open world) and
they also use similar to a generator graph structure.

The time complexity estimation of genetic algorithms is often difficult because the overall complexity
depends on the complexity of the genetic operations [14]. In general case, we can estimate it as
𝑂(𝐺 * 𝑀 * 𝑁 * 𝑂(𝑓) * 𝑂(𝑠) * (𝑂(𝑐𝑜) + 𝑂(𝑚))), where 𝐺 is the number of generations, 𝑀 is the
number of an individual’s genes, 𝑁 is the size of a population, 𝑂(𝑓) is the time complexity of the
fitness function, 𝑂(𝑐𝑜), 𝑂(𝑚) and 𝑂(𝑠) are the time complexities of crossover, mutation and selection
operations respectively. If we assume that genetic operations have constant execution time, then the
complexity of the genetic algorithm reduces to 𝑂(𝐺𝑀𝑁). It should be noted that the genetic algorithm

160

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

is a general approach. For example, sequential Monte Carlo methods and their modifications are used
for many problems.

Genetic algorithms provide a wide range of parameters for controlling a generation process. If we
consider the problem of generating sequentially connected rooms and rely on the given generator graph
in figure 19, then the following parameters can be specified:

1. The area of the game space;
2. The number of rooms;
3. The size of rooms;
4. The number of treasures;
5. Rewards from treasures;
6. The position of treasures;
7. The position of the finish;
8. The distance from the start to the finish.

The number of parameters will grow rapidly as the complexity of the game mechanics increases.
Therefore, a genetic algorithm is a universal approach that provides the ability to clearly specify the
features for generation. Genetic algorithms are quite generic but the most popular its use cases cover
simulation, strategy, combat (tower defense) games.

4.3. Physics simulation

If a generated world is abstractly represented by a graph, then physics simulation can be used to
transition to an actual physical representation of the game map. Usually, this approach is helpful in
action, adventure, and survival games, where player can interact with environment and cause world
terrain changes.

By writing each vertex of the graph into a collider that describes its geometric volumes (a circle in
2D), you can simulate the use of a certain force on this graph with randomly given parameters, which
will lead to different isomorphic options of generating one world (figure 23). Each vertex is completely
incapable of deformation rigid body, but can be characterized, for example, by mass and velocity, which
will allow to use momentum between bodies. For edges, a stiffness coefficient is specified, which allows
to describe how much the final distance between vertices can differ from the initial one.

Figure 23: Example of graph representation using surface tension force simulation. Paths between rooms are
generated at the contact points of the circles after the force has been applied.

5. Conclusions

Considered algorithms and approaches are computationally complex, since their growth varies from
linearithmic to exponential. This is due to the fact that today’s computers are quite powerful, so
developers neglect optimization measures for such algorithms in order to ensure more correct and
predictable world generation. Table 1 shows the generalized results of the analysis, which do not

161

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

compare the algorithms with each other. These methods are not interchangeable: usually a combination
of different algorithms and approaches is used, as discussed in this article.

Table 1
General characteristics of world PCG algorithms and approaches.

World PCG
method

Usage Approaches/modifications The time complexity estimation

Graph
grammar

Generation of cities,
castles, trees,

dungeons

The single/double pushout,
Paul Merrell’s modification

𝑂(𝑛 * 𝑉𝐺 * 𝑉𝐿) in general,
𝑂(𝑛 * 𝑉 𝑉𝐿

𝐺) in worst case:
𝑛 rewriting rules,

𝑉𝐺 – the number of 𝐺 vertices,
𝑉𝐿 – the number of 𝐿 vertices

Voronyi
diagram

Generation of rooms,
dungeons, buildings,

biomes

Manhattan metric,
Euclidean metric,
Minkowski metric

Iterating through all points: 𝑂(𝑛2),
Fortune’s algorithm: 𝑂(𝑛 log 𝑛), 𝑛
– the number of partition points

Perlin noise
Generation of height

maps, biomes
Octaves of fractional

Brownian noise

𝑂(𝑛𝑝 * 2𝑛), 𝑛𝑝 – the number of
points, 𝑛 – the number of

dimensions

Cellular
automaton

Generation of
dungeons, liquid

movement simulation

Moore/von Neuman
neighborhood

One iteration in 2D – 𝑂(𝑛𝑟2):
𝑛 – the number of cells,
𝑟 – neighborhood range

Genetic
algorithms

Generation of
buildings, dungeons,
worlds tied to game

logic

Fitness function, algorithms
of crossover, mutation and

selection operations

𝑂(𝐺𝑀𝑁): 𝐺 – the number of
generations, 𝑀 – the number of an

individual’s genes,
𝑁 – the size of a population.

Declaration on Generative AI: The authors have not employed any Generative AI tools.

References

[1] J. McCollum, Generative grammars as a form of procedural content generation, The Shaggy Dev,
2022. URL: https://shaggydev.com/2022/03/16/generative-grammars/.

[2] J. McCollum, An introduction to graph rewriting for procedural content generation, The Shaggy
Dev, 2022. URL: https://shaggydev.com/2022/11/20/graph-rewriting/.

[3] P. Merrell, Example-Based Procedural Modeling Using Graph Grammars, ACM Transactions on
Graphics 42 (2023) 1–16. doi:10.1145/3592119.

[4] D. Mount, CMSC 754: Lecture 11 Voronoi Diagrams and Fortune’s Algorithm, University of
Maryland, 2020. URL: https://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect11-vor.pdf.

[5] V. Chugani, Minkowski Distance: A Comprehensive Guide, DataCamp, 2024. URL: https://www.
datacamp.com/tutorial/minkowski-distance.

[6] J. F. Muzzin, How To Use Voronoi Cells for Strategy Game Maps, Medium, 2023. URL: https:
//medium.com/@jaemuzzin/how-to-use-voronoi-cells-for-strategy-game-maps-1deaee9a4b34.

[7] R. MacWha, Generating Digital Worlds Using Perlin Noise, Medium, 2021. URL: https://medium.
com/nerd-for-tech/generating-digital-worlds-using-perlin-noise-5d11237c29e9.

[8] Suboptimal Engineer, What is Perlin Noise?, YouTube, 2023. URL: https://www.youtube.com/
watch?v=7fd331zsie0.

[9] E. Dalefield, Distributed Architecture for Procedural Terrain Generation in Video
Games, Master’s thesis, Victoria university of Wellington, Wellington, 2024. URL:
https://openaccess.wgtn.ac.nz/articles/thesis/Distributed_Architecture_for_Procedural_
Terrain_Generation_in_Video_Games/25658514?file=45770220.

[10] A. Zucconi, The World Generation of Minecraft, 2022. URL: https://www.alanzucconi.com/2022/
06/05/minecraft-world-generation/.

162

https://shaggydev.com/2022/03/16/generative-grammars/
https://shaggydev.com/2022/11/20/graph-rewriting/
http://dx.doi.org/10.1145/3592119
https://www.cs.umd.edu/class/spring2020/cmsc754/Lects/lect11-vor.pdf
https://www.datacamp.com/tutorial/minkowski-distance
https://www.datacamp.com/tutorial/minkowski-distance
https://medium.com/@jaemuzzin/how-to-use-voronoi-cells-for-strategy-game-maps-1deaee9a4b34
https://medium.com/@jaemuzzin/how-to-use-voronoi-cells-for-strategy-game-maps-1deaee9a4b34
https://medium.com/nerd-for-tech/generating-digital-worlds-using-perlin-noise-5d11237c29e9
https://medium.com/nerd-for-tech/generating-digital-worlds-using-perlin-noise-5d11237c29e9
https://www.youtube.com/watch?v=7fd331zsie0
https://www.youtube.com/watch?v=7fd331zsie0
https://openaccess.wgtn.ac.nz/articles/thesis/Distributed_Architecture_for_Procedural_Terrain_Generation_in_Video_Games/25658514?file=45770220
https://openaccess.wgtn.ac.nz/articles/thesis/Distributed_Architecture_for_Procedural_Terrain_Generation_in_Video_Games/25658514?file=45770220
https://www.alanzucconi.com/2022/06/05/minecraft-world-generation/
https://www.alanzucconi.com/2022/06/05/minecraft-world-generation/

Ivan F. Laitaruk et al. CEUR Workshop Proceedings 152–163

[11] T. Pagáč, Simulating Game Worlds Using Cellular Automata, Master’s thesis, Masaryk University,
Brno, 2022. URL: https://is.muni.cz/th/w12aw/SimulatingWorldsCA.pdf.

[12] P. Purho, Noita: a Game Based on Falling Sand Simulation, 2019. URL: https://80.lv/articles/
noita-a-game-based-on-falling-sand-simulation/.

[13] V. Kraner, I. Fister, L. Brezočnik, Procedural content generation of custom tower defense game
using genetic algorithms, in: I. Karabegović (Ed.), New Technologies, Development and Application
IV, volume 233 of Lecture Notes in Networks and Systems, Springer International Publishing, Cham,
2021, pp. 493–503. doi:10.1007/978-3-030-75275-0_54.

[14] Y. Pyrih, Computational complexity evaluation of a genetic algorithm, Information and Com-
munication Technologies, Electronic Engineering 4 (2024) 52–60. URL: https://doi.org/10.23939/
ictee2024.01.052.

163

https://is.muni.cz/th/w12aw/SimulatingWorldsCA.pdf
https://80.lv/articles/noita-a-game-based-on-falling-sand-simulation/
https://80.lv/articles/noita-a-game-based-on-falling-sand-simulation/
http://dx.doi.org/10.1007/978-3-030-75275-0_54
https://doi.org/10.23939/ictee2024.01.052
https://doi.org/10.23939/ictee2024.01.052

	1 Introduction
	2 Generative grammar
	2.1 Graph grammar

	3 Space distribution
	3.1 Voronyi diagram
	3.2 Gradient noises

	4 Simulative algorithms
	4.1 Cellular automaton
	4.2 Genetic algorithms
	4.3 Physics simulation

	5 Conclusions

