
Hanna Zemlianukhina et al. CEUR Workshop Proceedings 120–130

Modeling and simulating of Duffing pendulum in the
moved coordinate system
Hanna Zemlianukhina1, Roman Voliansky1 and Nina Volianska2

1National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Beresteiskyi Ave., Kyiv, 03056, Ukraine
2Taras Shevchenko National University of Kyiv, 24 Bohdan Havrylyshyn Str., Kyiv, 04116, Ukraine

Abstract
The paper deals with developing a mathematical framework to design novel discrete-time chaotic systems based
on the known ones. Our development is based on applying coordinate transformation to the domain where
the initial system dynamic is defined. We study the shift of 2D system coordinate origin and use it to define
novel system state variables, which take into account this shift. The dynamical system obtained in such a way is
considered the interval one with piecewise linear interval boundaries. This fact gives us the possibility to consider
possible uncertainty caused by changes in system parameters and the presence of nonlinear functions and rewrite
the system into a linear-like form. Unlike the initial nonlinear ones, performing all coordinate transformations
for such type systems is easy. Our approach is based on transforming the continuous-time system dynamic into
a discrete-time domain due to the possibility of its implementation in modern digital devices. Transformation
into a discrete-time domain allows us to define system dynamics using its previous states to define the piecewise
constant factors in the system equations. The system equation is designed in such a way that it is created on a solid
background and uses information about previous system motions as well as its motion in the moved coordinate
system and motions of the considered moved coordinate system. To make the system dynamic more complex, we
offer to consider its perturbed motions as the difference between motions in the moved and stationary coordinate
system.
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1. Introduction

Nowadays, data transmission using chaotic systems [1] refers to the practical usage of chaos theory
[2] and chaotic signals [3] to secure information transmission. Chaotic systems are susceptible to
initial conditions and exhibit complex, unpredictable behavior over time [4]. These facts about chaotic
systems make them useful in secure communication [5] because chaotic signals can be difficult to
predict, intercept, or reproduce without knowing the exact system parameters [6].

Such unique chaotic systems’ features cause several key concepts in chaotic communication:

• Chaotic modulation involves embedding information into a chaotic signal [7]. The chaotic signal
acts as a carrier wave, which is then modulated by the data. Only receivers knowledgeable about
the chaotic system’s parameters can demodulate and recover the original message.

• Synchronization of chaotic systems requires the transmitter and receiver must use identical or
synchronized chaotic systems [8]. These systems must be synchronized so the receiver can extract
the embedded message from the chaotic signal.

• Chaotic masking assumes the data signal is added to a chaotic carrier signal at the transmitter end
[9]. The chaotic signal masks the data, making it indistinguishable from noise to an eavesdropper.
The receiver, knowing the chaotic system, can subtract the chaotic carrier and retrieve the original
data.
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• The noise-like signals concept assumes that chaotic signals appear similar to noise, making them
hard to distinguish from random background noise in the communication channel [10]. This
property provides inherent security, as an eavesdropper without the system parameters will find
it challenging to extract meaningful data.

The above-shown concepts find their practical implementation in designing various chaotic modula-
tion schemes. The main ones are chaos shift keying (CSK) [11] and chaotic phase modulation (CPM)
[12]. These modulation schemes find their applications in establishing wireless communications. In
this case, chaotic communication can be applied in wireless systems where robustness to interference
is crucial. Since chaotic signals are noise-like and spread across a wide bandwidth, they can be used
in environments with high electromagnetic interference. Also, various optical fiber communication
systems use laser signals to transmit data securely. Optical chaos can be generated using semiconductor
lasers, and synchronization between transmitter and receiver can be achieved with optical feedback.

In summary, chaotic systems offer a promising approach to secure data transmission by leveraging
the unpredictable and noise-like nature of chaos, making it difficult for unauthorized parties to intercept
or decode the communication.

The main drawback of known chaotic systems, which are used to implement chaotic generators and
produce chaotic signals, is some subjectivism in the design of these systems. Since authors do not explain
the influence of terms and factors in their equations, modifying and improving them is tough. We offer
to avoid this drawback by designing novel chaotic systems with applying some transformations to
known ones. Thus, our paper’s goal is to design a novel chaotic system by combining motion equations
of known ones and motions of the origin of the coordinate system where the above-mentioned chaotic
system is considered. We believe that the goal achieving makes a systematic basis in chaotic system
design.

Our paper is organized as follows: at first, we consider the generalized chaotic system and transform
its equations into interval matrix form to represent it in a piecewise linear form. Then, we consider
the system in the discrete-time domain to avoid solving any differential equations. Such a discrete-
time dynamical system is viewed as a system in some coordinate system in which the origin changes
its position relatively to a stationary one. We define the chaotic system position in the stationary
coordinates as the sum of the chaotic system and the origin position. At last, we show the use of our
approach by considering Duffing pendulum equations.

2. Method

2.1. Interval discrete-time model of the generalized second order dynamical system

Let us consider the generalized second order dynamical system

Ẏ = F (Y) +U, Y =

(︂
𝑦1
𝑦2

)︂
; F (𝑌 ) =

(︂
𝑓1 (𝑦1, 𝑦2)
𝑓2 (𝑦1, 𝑦2)

)︂
; U =

(︂
𝑢1
𝑢2

)︂
, (1)

where 𝑦𝑖 are system state variables and 𝑓𝑖(.) are some nonlinear functions, and 𝑢𝑖 are some input
signals.

System nonlinearities make analysis of its motions, their transformations, or synthesis a quite hard
problem which should be solved for each particular case in the separate way. That is why we offer to
use interval methods and replace the system nonlinear functions 𝑓 𝑖(.) with domains Ωi where these
functions are defined and do not exceed them on whole system operation range.

The boundaries for these domains can be defined in a different way. Thus, one can approximate
boundaries for function 𝑓 𝑖(.) by nonlinear function 𝑔𝑖(.) which are more simple than system nonlinear-
ities and which use during system study of design does not cause any difficulties. One of such functions
is a piecewise linear function which for the case of system with two arguments can be written down as
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follows

𝑔𝑖(𝑦1, 𝑦2) =

⎧⎪⎨⎪⎩
𝑎𝑖11𝑦1 + 𝑎𝑖21𝑦2 + 𝑎𝑖01 if (𝑦1 ∈ Ωi1) and (𝑦2 ∈ Ωi1) ;

...
𝑎𝑖1𝑛𝑦1 + 𝑎𝑖2𝑛𝑦2 + 𝑎𝑖0𝑛 if (𝑦1 ∈ Ωin) and (𝑦2 ∈ Ωin) ,

(2)

here 𝑎𝑖𝑗 are factors of piecewise linear approximation which are defined in i-th subdomain Ωij of system
state variables’ values.

It is clear that one can use different mashes to define subdomains Ωij. We believe that the most
accurate one is a triangular mesh which we offer to use to define the subdomains Ωij.

Such an approach allows us to redefine i-th component of vector F in (1) as follows

𝑓𝑖 (𝑦1, 𝑦2) ∈ fi (y1,y2),

fi (y1,y2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[𝑎𝑖11min, 𝑎𝑖11max]y1+
+ [𝑎𝑖21min, 𝑎𝑖21max]y2+
+ [𝑎𝑖01min, 𝑎𝑖01max]

if (y1 ∈ Ωi1) and (y2 ∈ Ωi1) ;

...
[𝑎𝑖1𝑛min, 𝑎𝑖𝑛1max]y1+
+ [𝑎𝑖2𝑛min, 𝑎𝑖2𝑛max]y2+
+ [𝑎𝑖0𝑛min, 𝑎𝑖0𝑛max]

if (y1 ∈ Ωin) and (y2 ∈ Ωij) ,

yi = [𝑦𝑖min, 𝑦𝑖max].

(3)

Here we consider the case when numbers of intervals in upper and lower boundaries equal each
other and equal to 𝑛. In the most general case when upper and lower boundaries are defined with
different numbers of intervals and/or these boundaries are defined for various subdomains Ω𝑖𝑗 , one
should split intervals in (3) and check conditions for each boundary in a separate way.

Let us use (3) to rewrite (1) into linear-like interval form

Ẏ = AY +A0 +U,

A =

(︂
𝑎11 𝑎12
𝑎21 𝑎22

)︂
; A0 =

(︂
𝑎01
𝑎02

)︂
; Y =

(︂
𝑦1
𝑦2

)︂
;

aij =

⎧⎪⎨⎪⎩
[𝑎𝑖𝑗1min, 𝑎𝑖𝑗1max] if (𝑦1 ∈ Ωi1) and (𝑦2 ∈ Ωi1) ;

...
[𝑎𝑖𝑗𝑛min, 𝑎𝑖𝑗1max] if (𝑦1 ∈ Ωin) and (𝑦2 ∈ Ωin) .

(4)

We call (4) as continuous-time interval model for dynamical system (1). Contrary to a solution of
initial system the solution of interval one produce boundary motion trajectories 𝑦𝑖min and 𝑦𝑖max which
are bound motion of initial system and which this system does not exceed.

The main feature of this system is a piecewise constant elements of matrices A and A0. Equations
with piecewise constant factors can be implemented in the simplest way by using digital devices like
MCU. That is why we rewrite them into discrete-time domain by using known approximations of
derivative operator.

𝑑

𝑑𝑡
≈ ℎ

(︀
1, 𝑧−1

)︀
, (5)

here z−1 means backward signal shift in one sample time period 𝑇 , ℎ(.) is a some approximation
function.

We consider the simplest finite difference approximation in our paper

𝑑

𝑑𝑡
≈ 1− 𝑧−1

𝑧−1𝑇
. (6)
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If one substitute (6) into (4), the discrete-time interval model of the considered dynamical system can
be written down

Y = 𝑧−1 (A1Y) + 𝑧−1A10 + 𝑧−1𝑇U,

A1 =

(︂
𝑎11𝑇 + 1 𝑎12𝑇
𝑎21𝑇 𝑎22𝑇 + 1

)︂
, A10 =

(︂
𝑎01𝑇
𝑎02𝑇

)︂
.

(7)

Contrary to (4) the discrete-time state variables model y𝑖 which are defined by using (7) depend on
system previous state that is considered in time moment

𝜏 = 𝑇

[︂
𝑡

𝑇

]︂
− 𝑇, (8)

here operator [.] means taking integer part from the number. It is clear that solution of (7) requires to
save system previous state which can be easy implemented in all MCU programming languages. Also,
it should be mentioned that shift operator in (7) applies to system state variables as components of
Y matrix as well as the previous values of system coordinates are used to define piecewise constant
factors aij in the matrices A1 and A10. Similar to (4) expression (7) allows us to define boundaries for
all possible system motions. Systems (4) and (7) we call as the core of chaotic system and we use it to
design some novel systems.

2.2. Interval model with moving origin

The above-given models are designed for the case of immovable coordinate system in which system
phase portraits and motions are defined.

Nevertheless, sometimes system motions should be considered in some coordinate system which
origin moves relatively some stationary base. To design the model which describe such motions let us
determine the system position in stationary coordinates Y0 as linear combination of its position in
moved coordinates Y and origin position of moved coordinate system Y1.

Y0 = Y1+Y, (9)

here we think that vectors Y0, Y1, and Y have the same size and contain components which define
system position in some phase plane and vector Y1 are defined similar to Y

Y1 = 𝑧−1 (B1Y1) + 𝑧−1B10 + 𝑧−1U1, (10)

here B1 and B10 are some matrices which components are defined similar to components of A1 and
A10 matrices.

If one substitutes (7) into (9), he can write down following expression

Y0 = 𝑧−1 (B1Y1) + 𝑧−1 (A1Y) + 𝑧−1A10 + 𝑧−1B10 + 𝑧−1U+ 𝑧−1U1. (11)

Expression (11) interrelate system motions in moved and stationary coordinate systems. It is clear
that to define motion in stationary coordinate system one should to know system position in moved
coordinate system and position of this coordinate system’s origin. Since the both of positions in the
general case are defined as solution of some equations, it is necessary to solve both of them to define
system position. This fact can cause some computational issues. Also, the knowing of vectors Y1 and
Y can cause the necessity to transmit the components of these vectors from the moving systems to
stationary base. That is why we offer to rewrite (11) in terms of components Y0 vector only.

To perform such a transformation for (11) at first we solve (10) and(7) for Y1 and Y vectors

Y =
(︀
E− 𝑧−1A1

)︀−1
𝑧−1 (A10 +U) ; Y1 =

(︀
E− 𝑧−1B1

)︀−1
𝑧−1 (B10 +U1) , (12)

where E is the 2 × 2 identity matrix.
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Then, we substitute (12) into (9)

Y0 =
(︀
E− 𝑧−1A1

)︀−1
𝑧−1 (A10 +U) +

(︀
E− 𝑧−1B1

)︀−1
𝑧−1 (B10 +U1) (13)

and rewrite it as follows

det
(︀
E− 𝑧−1A1

)︀
det

(︀
E− 𝑧−1B1

)︀
Y0 =

= adj
(︀
E− 𝑧−1A1

)︀
𝑧−1 (A10 +U) + adj

(︀
E− 𝑧−1B1

)︀
𝑧−1 (B10 +U1) ,

(14)

where adj(.) means adjugate matrix and det(.) means matrix determinant.
If one expand multiplication of determinants in left-hand expression of (14), he can rewrite this

formula as follows

Y0 = −q1𝑧
−1Y0− q2𝑧

−2Y0− q3𝑧
−3Y0− q4𝑧

−4Y0+

+ adj
(︀
E− 𝑧−1A1

)︀
𝑧−1 (A10 +U) + adj

(︀
E− 𝑧−1B1

)︀
𝑧−1 (B10 +U1) ,

(15)

where q𝑖 are interval piecewise constant coefficients of the system characteristic polynomial.
Since the system (15) has piecewise constant factors which depend on motion systems (7) and (10)

one should define expressions which interrelate the components of Y0 vector with vectors Y and Y1.
We offer to find these expressions by considering (11) and expression which is obtained from (9) by

shifting it for one sample time
𝑧−1Y0 = 𝑧−1Y1+ 𝑧−1Y, (16)

Solution of (16) and (11) allows us to write down following expressions

𝑧−1Y = (A1−B1)−1 (︀Y0− 𝑧−1B1Y0+ 𝑧−1U1+ 𝑧−1U
)︀
;

𝑧−1Y1 = (A1−B1)−1 (︀𝑧−1A1Y0−Y0+ 𝑧−1U1+ 𝑧−1U
)︀
.

(17)

We call (15) as an interval model of the dynamical system in stationary coordinate system. This model
consists of three parts: the first one use system’s previous coordinates in the stationary coordinate
system to define its current position. The second one uses the system position in the moved coordinate
system and the third one uses information about moving of coordinate system origin.

3. Results and discussion

3.1. Duffing pendulum modeling and simulating in the stationary coordinate system

Let us consider the use of the proposed approach to design the system with chaotic dynamic. We use
the well-known Duffing pendulum [13]

𝑦̇1 = 𝑦2; 𝑦̇2 = −𝑎1𝑦1 − 𝑎2𝑦2 − 𝑎3𝑦
3
1 + 𝑐1 cos 𝑐2𝑡 (18)

as the basis for our system.
Under some pendulum parameters system (18) has a chaotic dynamic. We think that the base system

parameters are 𝑎2=0.02, 𝑎1=1, 𝑎3=5, 𝑐1=8, 𝑐2=0.5. Also, the parametric uncertainty is assumed in the
relative interval 𝜀=[0,9,1.1], which means possibility to 10% parameters drift. This interval allows us to
define intervals of possible pendulum parameters in such a way

ai = 𝑎𝑖𝜀; ci = 𝑐𝑖𝜀. (19)

The pendulum nonlinearity is approximated by piecewise linear domain which is shown in figure 1.
The filled area in this figure shows a domain where pendulum nonlinearity is defined.

This domain is defined by the following intervals on horizontal

y1 =

𝑛⋃︁
𝑖=1

y1i (20)
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Figure 1: Piecewise linear interval approximation of pendulum’s nonlinearity.

and vertical

f(𝑦1) =
𝑛⋃︁

𝑖=1

fi(𝑦1𝑖) (21)

axes.
In formulas (20) and (20) 𝑛 is a number of piecewise linear intervals which for the considered case

equals to 12, fi(𝑦1𝑖) is an 𝑖-th interval of possible values of system nonlinearity and y1i is an 𝑖-th
interval of nonlinear function’s argument

f(𝑦1) = ki𝑦1 + y0i, y1i = [𝑦1𝑖min, 𝑦1𝑖max] , 𝑦1𝑖 ∈ y1i,

ki = [𝑘𝑖min, 𝑘𝑖max] ;y0i = [𝑦0𝑖min, 𝑦0𝑖max] ,
(22)

where 𝑘𝑗𝑖𝑚𝑖𝑛, 𝑘𝑗𝑖𝑚𝑎𝑥 and 𝑦𝑗𝑖𝑚𝑖𝑛, y𝑗𝑖𝑚𝑎𝑥 are piecewise linear boundaries’ factors.
If one substitutes (22) into (21) following expression can be written down

f(𝑦1) = k(𝑦1)𝑦1 + y0(𝑦1),

k(𝑦1) =
𝑛⋃︁

𝑖=1

ki, y0(𝑦1) =
𝑛⋃︁

𝑖=1

y0i.
(23)

Intervals in (23) for the considered cubic nonlinearity are shown in table 1. These intervals as well
as parameters of piecewise linear function, which replace pendulum cubic nonlinearity, obtained by
using Nelder-Mead method from routine minimize() that is included in SciPy 1.11.0 library. We also use
routine scipy.integrate() which solves differential equations from the above-mentioned Python library.
All calculated data is stored in csv-files and used to visualize calculation results in package PGFplot
which is a part of TEXLive-2023.

The use of intervals (19) and (22) gives us the possibility to rewrite (18) in the interval piecewise
linear form

ẏ1 = y2; ẏ2 = − (a1 + a3k)y1 − a2y2 − a3y0 + 𝑐1 cos 𝑐2𝑡 (24)

We call (24) as interval piecewise linear model of Duffing pendulum. One can use this model to
define the boundary motions which shows the maximal and minimal possible amplitude of pendulum
oscillations.
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Table 1
Parameters of interval approximation.

No Approximation parameters
ki y0i y1i

1 [0.000003,0.283] [0,0] [0,0.000667]
2 [0.057,0.283] [-0.00167,0] [0.000667,0.439]
3 [1.304,0.283] [-0.573,0] [0.439,0.531]
4 [1.304,1.561] [-0.573, -0.679] [0.531,0.871]
5 [3.329,1.561] [-2.338, -0.679] [0.871,0.896]
6 [3.329,3.342] [-2.338, -2.275] [0.896,1.208]
7 [3.329,5.478] [-2.338, -4.854] [1.208,1.234]
8 [5.872,5.478] [-5.477, -4.854] [1.234,1.490]
9 [5.872,7.902] [-5.477, -8.467] [1.490,1.560]
10 [8.785,7.902] [-10,021, -8.467] [1.560,1.752]
11 [8.785,10.576] [-10.021, -13.15] [1.752,1.859]
12 [12,10.576] [-16,13.15] [1.859,2]

If one applies (6) to (24), he can rewrite interval pendulum motions equations in the discrete-time
domain

y1 = 𝑧−1y1 + 𝑧−1𝑇y2;

y2 = 𝑧−1y2 (1− a2𝑇 )− 𝑧−1𝑇 (a1 + a3k)y1 − 𝑧−1𝑇a3y0 + 𝑧−1𝑇𝑐1 cos 𝑐2𝑡.
(25)

In the extended form (25) can be given as follows

𝑦1min =𝑧−1𝑦1min + 𝑧−1𝑇𝑦2min;

𝑦2min =𝑧−1𝑦2min (1− 𝑇𝑎2max)− 𝑧−1𝑇𝑎3max𝑦0max−
−𝑧−1𝑇 (𝑎1max + 𝑎3max𝑘max) 𝑦1min + 𝑧−1𝑇𝑐1min cos 𝑐2max𝑡.

𝑦1max =𝑧−1𝑦1max + 𝑧−1𝑇𝑦2max;

𝑦2max =𝑧−1𝑦2max (1− 𝑇𝑎2min)− 𝑧−1𝑇𝑎3min𝑦0min−
−𝑧−1𝑇 (𝑎1min + 𝑎3min𝑘min) 𝑦1max + 𝑧−1𝑇𝑐1max cos 𝑐2min𝑡.

(26)

Let us rewrite (26) into matrix form (4)

Y = 𝑧−1A1Y + 𝑧−1A10 + 𝑧−1U,

Y =

(︂
[𝑦1min, 𝑦1max]
[𝑦2min, 𝑦2max]

)︂
; A10 =

(︂
0

[−𝑎3max𝑦0max,−𝑎3min𝑦0min]

)︂
;

A1 =

⎛⎝ 1 𝑇[︂
−𝑇 (𝑎1max + 𝑎3max𝑘max) ,
−𝑇 (𝑎1min + 𝑎3min𝑘min)

]︂ [︂
1− 𝑇𝑎2max,
1− 𝑇𝑎2min

]︂ ⎞⎠ ;

U =

(︂
0

[𝑐1min cos 𝑐2max𝑡, 𝑐1max cos 𝑐2min𝑡]

)︂
.

(27)

Piecewise constant elements of matrix A1 can be found by known interval system output y1 which
can be defined by (12)

y1 = − 𝑧−1𝑇a3y0 + 𝑧−1𝑇𝑐1𝑐𝑜𝑠(𝑐2𝑡)

1 + 𝑧−1 (𝑇a2 − 2) + 𝑧−2 (𝑇 2 (a3k+ a1)− 𝑇a2 + 1)
. (28)

Simulation results which are obtained for interval system (26) are shown in figures 2, 3.
Analysis of given in figures 2 and 3 results shows that Duffing pendulum has the chaotic dynamic for

all parameters combinations from the intervals (19) and (22). Chaotic nature of the considered interval
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Figure 2: Chaotic oscillations in the studied dynamical system.

Figure 3: Chaotic attractors of (25).

system is proved by the fact that the motion of pendulum with exactly-known above-given parameters
starts as motion which is bounded by motions in the upper and lower boundaries but after a quite short
time which is near 10s it leaves the interval of pendulum boundary motions. If one analyzes these
boundary motions, he finds that quite small variation of pendulum parameters dramatically changes its
dynamic.
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3.2. Duffing pendulum modeling and simulating in the moved coordinate system

Let us assume that origin of coordinate system, where the pendulum dynamic is defined, moves and this
motion can be defined by using (18) with parameters 𝑎2=0.01, 𝑎1=-1, 𝑎3=3, 𝑑1=3, 𝑑2=1 and the same
relative interval. This assumption allows us to write down equation similar to (27)

Y1 = 𝑧−1B1Y1+ 𝑧−1B10 + 𝑧−1U1. (29)

Matrices B1, B10 and U1 are similar to A1, A10 and U but their elements are defined with replacing
ai to bi and 𝑐𝑖 to 𝑑𝑖.

Equations (29) and (27) allows us to define system dynamic in the stationary coordinates by rewriting
(15) as follows

y1 = −q1𝑧
−1y1 − q2𝑧

−2y1 − q3𝑧
−3y1 − q4𝑧

−4y1 +
(︀
w4𝑧

−4 +w3𝑧
−3 +w2𝑧

−2
)︀
y0+

+
(︀
v14𝑧

−4 + v13𝑧
−3 + v12𝑧

−2
)︀
𝑐1 cos 𝑐2𝑡+

(︀
v24𝑧

−4 + v23𝑧
−3 + v22𝑧

−2
)︀
𝑑1 cos 𝑑2𝑡,

q1 = 𝑇 (a2 + b2)−4; q2 = 𝑇 2 (a2b2 + (a3 + b3)k+ a1 + b1)− 3𝑇 (a2 − b2) + 6;

q3 = (a2b3k+ a3b2k+ a1b2 + a2b1)𝑇
3 − 2(a2b2 + (a3 + b3)k+ a1 + b1)𝑇

2+

+ 3(a2 + b2)𝑇 − 4; q4 = 1 + (a3b3k
2 + (a1b3 + a3b1)k+ a1b1)𝑇

4−
− (k (a2b3 − a3b2)− a1b2 − a2b1)𝑇

3 − (a2 + b2)𝑇 + (a2b2 + (a3 + b3)k+ a1 + b1)𝑇
2;

w4 = −(2a3b3k− a1b3 − a3b1)𝑇
3 + (a2b3 + a3b2)𝑇

2 − 𝑇 (a3 + b3);

w3 = −(a2b3 + a3b2)𝑇
2 + 2(a3 + b3)𝑇 ; w2 = −𝑇 (a3 + b3); v12 = 𝑇𝑐1; v22 = 𝑇𝑐1;

v23 = 𝑇 2a2𝑐1−2𝑇𝑐1; v14 = 𝑇 3 (b3𝑐1k− b1𝑐1) + 𝑇 2b2𝑐1 − 𝑇𝑐1; v13 = 𝑇 2b2𝑐1−2𝑇𝑐1;

v24 = 𝑇 3 (a3𝑐1k− a1𝑐1) + 𝑇 2a2𝑐1 − 𝑇𝑐1;

(30)

Comparison of (30) and (27) shows that taking into account motion of coordinate system increases
order of the studied dynamical system and it is necessary to have information about four previous
system positions instead of two ones. Iteration of (30) gives results which are shown in figures 4, 5.

Figure 4: Chaotic oscillations in the moved dynamical system.
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Figure 5: Chaotic attractors of (30).

Analysis of curves in figures 4 and 5 and comparison them with figures 2 and 3 allows us to claim
that system motion in the moved coordinate system is more complex than stationary one. One can see
three stationary points (-2.0), (0,0), and (2,0) in the system (30) instead of two (-1,0) and (1,0) for system
(25). This fact makes backgrounds to improving system secured features.

4. Conclusion

The considering of chaotic system as dynamical system in moving coordinates gives us the possibility
to produce novel chaotic oscillations by using well-known chaotic systems. This fact allows us to claim
that novel chaotic system can be designed by changing one or both core system and system, which
define motion of coordinate system’s origin. In both cases system dynamic differs the core dynamic very
much. The order of designed in such a way system equals to core system order and order of dynamical
system which describe motion of coordinate system. The increasing system order requires to use more
information about previous system states in case of discrete-time system implementation. Analysis of
the obtained discrete-time models shows that chaotic system can be defined in class of discrete-time
dynamical systems with piecewise constant parameters. It becomes possible due to the use of interval
methods to describe system motions. Defining these parameters in some arrays, lists, tables and so on
gives us the possibility to implement the considered systems by using wide range MCU and FPGA.

Declaration on Generative AI: We declare the no use of any Generative AI tools while preparing data and the paper’s

writing.
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