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Abstract
In indoor localization, visual-inertial odometry (VIO) is widely used due to its low cost and effective environmental
perception capabilities. However, feature based VIO performs poorly in indoor pedestrian localization challenges.
The feature points are prone to occlusion or tracking loss during complex pedestrian movements, and IMU is
difficult to perform dead reckoning due to irregular or excessively large anomalous measurements. To address
these issues, this paper proposes a VIO approach using the direct method assisted by a neural inertial network.
The proposed method replaces the feature based method in front-end in VIO with the direct method to mitigate
issues related to occlusion and tracking loss of feature points. It utilizes a neural inertial network to supply initial
values for pixel tracking within the direct method and and integrates dead reckoning results as constraints during
position optimization. Experimental results demonstrate that the method proposed in this paper exhibits higher
positioning accuracy and robustness compared to existing methods in indoor pedestrian localization scenarios.
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1. Introduction

As a component of navigation, positioning, and timing technologies, indoor positioning technology is
widely applied in fields such as indoor robot navigation, augmented reality, the Internet of Things, and
indoor rescue. However, unlike outdoor positioning, GNSS signals are unavailable in indoor scenarios,
making it more difficult to obtain accurate and robust positioning results. Most indoor positioning
solutions typically use Bluetooth, UWB, or WiFi [1, 2] to replace satellites for absolute positioning
which require external signals from the carrier. However, the accuracy of these methods depends on the
quality of the signal and the location of the base station. Additionally, some indoor localization methods
utilize LiDAR [3, 4] or cameras [5, 6] for more accurate relative localization, among which VIO is
gaining attention and undergoing rapid development due to its affordability and effective environmental
perception capabilities.

However, VIO does not perform optimally in indoor pedestrian localization. Most VIO systems
currently employ feature points in visual processing to recover the relative position transformation
between image frames. Nevertheless, when pedestrians carry the camera in motion, large changes in
the image field of view or occlusions can lead to feature point loss, resulting in system failure. In the
inertial component, consumer-grade IMUs are plagued by biases, noise, and thermal drift, resulting in
significant measurement errors. Additionally, due to the highly irregular nature of pedestrian movement,
position estimation based on kinematics or gait tracking is also suboptimal.

Therefore, to address the problems in indoor pedestrian localization, we propose a VIO system assisted
by a neural inertial network to enhance the accuracy and robustness. The method employs a direct
method within the VIO framework based on DM-VIO [7], which directly uses sparse pixel gray scale
changes to determine the relative position transformation between frames. Directly processing pixels
can avoid the problem of feature point loss during indoor pedestrian localization, but its initialization
also requires more accurate IMU data. On this basis, we train and deploy a neural inertial network
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[8] to improve the accuracy of IMU-based position estimation in indoor pedestrian localization and
supplements the direct VIO with the prediction results of the network. The main contributions of this
work are as follows:

• The prediction results of the neural inertial network are utilized to assist in the initialization
between frames for the direct method, thereby improving the accuracy of inter-frame tracking.

• The proposed method is the first direct VIO aided by neural inertial navigation. The method
uses graph optimization to tightly couple direct VIO with the neural network navigation, thereby
enhancing the solution accuracy and robustness of the system.

2. Related Work

2.1. Visual-Inertial Odometry

Visual-inertial navigation systems (VINS) are typically derived from visual SLAM methods integrated
with inertial sensors. The incorporation of inertial measurement data introduces stable scale information
to SLAM, thereby effectively enhancing the accuracy of image inter-frame matching. Most current
methods achieve tightly coupled VIO by fusing raw image and IMU data. The most classic approach is
the Multi-State Constraint Kalman Filter (MSCKF) [9], which uses an Extended Kalman Filter (EKF) to
add multiple camera poses to the state vector and employs a sliding window to maintain constraints
between image frames and the IMU for position solving. Some systems achieve data fusion through
optimization methods, with most utilizing feature point matching as constraints. The two most classic
methods are ORB-SLAM [6, 10] and VINS-Mono [5]. ORB-SLAM2 [6] uses FAST corners and BRIEF
descriptors to form ORB features, implementing monocular VO by using feature point reprojection error
as the cost function. In VINS-Mono [5], the algorithm employs Harris corner points as feature points
and utilizes the L-K optical flow method to track the feature points, establishing visual part constraints.
Additionally, the algorithm adopts a marginalization strategy that introduces a priori marginalization
error to improve the computational efficiency and robustness.

With the improvement in computational performance, VO methods can process more pixel data in real-
time, leading to the emergence of direct VIO methods, which differ from feature point based approaches.
Direct methods operate directly on the image pixels captured by the camera, thus eliminating the
need for stable extraction and matching of feature points in the environment. The Direct Sparse
Odometry (DSO) algorithm [11] integrates pixel association, photometric error optimization, position
estimation, and sparse point cloud generation into a unified nonlinear optimization problem, discarding
the traditional separation between front-end and back-end in VO. Building on this, the VI-DSO [12]
algorithm combines the DSO with IMU data, while DM-VIO [7] incorporates a delayed marginalization
strategy into VI-DSO to enhance the robustness and accuracy of position estimation in direct method
based VIO. However, since these methods track pixels solely through photometric invariance, they
require better initial values of relative position to achieve stable and accurate position estimation.

2.2. Neural Inertial Navigation

The emergence of neural inertial network methods enables deep analysis of IMU measurement data,
extracting underlying motion patterns in complex movements. The RIDI [13] algorithm uses a Support
Vector Machine (SVM) model to classify the motion states of pedestrians and a Support Vector Regression
(SVR) model to regress the IMU data, thereby correcting low-frequency errors in IMU measurements.
IONet [14] treats inertial localization as a time series learning problem, utilizing Long Short Term
Memory (LSTM) to process inertial data within a time window to estimate the carrier’s position and
trajectory in a polar coordinate system. Ronin [8], based on ResNet, LSTM, and Temporal Convolutional
Network (TCN) architectures, directly estimates positions through a neural inertial network. However,
the relative position estimation of these networks lacks precise, necessitating the addition of accurate
constraints.



2.3. Neural Inertial Navigation Aided VIO

In VIO methods, the processing of IMU data still adopts the method of integration using kinematic
models in traditional navigation methods. In order to decrease the computational load and effectively
improve the accuracy of inter-frame relative position estimation, the integration is typically transformed
into an inter-frame pre-integration that remains unaffected by the initial state. However, these kinematic
models perform poorly in complex motion scenarios, as irregular or excessive IMU measurements can
cause the system state to gradually diverge.

Some algorithms have incorporated position prediction results from inertial neural networks into
combined navigation systems, but fewer of them add inertial neural networks to VIO. TLIO [15] uses a
neural network to learn the 3D displacement transformation and covariance directly from a time series
of IMU data, then applies the results obtained from the network predictions to a Kalman filter to correct
state quantities such as direction, velocity, position, and IMU deviation. RNIN-VIO [16] firstly utilizes a
neural inertial navigation to assist feature point based VIO, incorporating network predictions into the
optimization model in the back-end, to enhance the accuracy and robustness of position estimation.

However, it is worth noting that all of the above methods only involve the neural network inference
results as additional constraints added to the feature point based VIO. This structure leads to neural
network inference results with less impact on such systems. In contrast, the direct methods, although
more accurate, require higher IMU data quality. Bad IMU data will cause the direct method to fail to
initialize properly and have poorer results, which has a stronger dependence on IMU data.

Therefore, we implement a neural inertial navigation aided method VIO. The proposed method is
the first method to combine inertial neural networks with direct method VIO, and it combines inertial
neural networks more tightly than the existing methods. The method effectively improves the accuracy
and robustness of the direct VIO initialization and solution.

3. Method

3.1. Overview

The proposed method in this paper is a direct visual-inertial odometry, which improves upon the
DM-VIO framework, as illustrated in Fig. 1. After the visual part completes initialization and the
neural inertial navigation accumulates sufficient IMU measurement data, the network will estimate
the position of carrier. The method utilizes the network’s predicion results to set an initial relative
position between image frames, providing a better initial photometric error for the visual part. In the
joint optimization phase, the prediction results are also integrated into the factor graph as a constraint
for position estimation. Compared to DM-VIO, the improvements of our method are highlighted in red
boxes in Fig. 1.

3.2. DM-VIO

In direct VO [11], the initial relative position is determined by kinematic modeling. Specifically, various
photometric errors are calculated based on assumptions such as stationary, constant velocity, or constant
acceleration motions. The minimum among these errors is selected as the initial value for iterative
photometric error minimization, with the corresponding relative position used as the initial position.

In DM-VIO [7], the introduction of IMU measurements enables the derivation of a coarse relative po-
sition estimate through pre-integration. The relationship serves as the initial value, and the photometric
error calculated from this value is used as the initial error for iteration, as shown in (1).

𝐸𝑝
𝐼𝑀𝑈 =

∑︁
𝑝∈𝑁𝑝

𝜔𝑝||(𝐼𝑗
[︀
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𝐼𝑀𝑈

]︀
− 𝑏𝑗)− (𝐼𝑖 [𝑝]− 𝑏𝑖)𝑡𝑗𝑒

𝑎𝑗/𝑡𝑖𝑒
𝑎𝑖 || (1)

where 𝑁𝑝 represents a small neighborhood around point 𝑝. 𝐼 is the image frame. 𝑖 and 𝑗 are the
sequence numbers of the image frames. 𝑡 represents the exposure time. 𝑎 and 𝑏 are the factors for



Figure 1: Structure of NIN-DSO.

correcting the affine brightness transformation. 𝜔𝑝 is the weight related to the gradient. 𝑝′
𝐼𝑀𝑈 is the

projected point obtained by pre-integration results.
DM-VIO incorporates photometric errors and IMU residuals for optimization process. And its energy

function is
𝐸𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐸𝑝ℎ𝑜𝑡𝑜 + 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 (2)

which consists of the photometric error 𝐸𝑝ℎ𝑜𝑡𝑜, pre-integration residuals 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙. And 𝜆 is the weight
of the photometric error.

3.3. Neural Inertial Network

We utilize the neural inertial network and proposed in [16] to supplement the visual-inertial odometry.
And the data used for network training was also taken from [16]. The network comprises a ResNet18
structure, an LSTM structure, and fully connected layers in a cascade. The ResNet18 structure primarily
facilitates supervised learning of pedestrian motion patterns and estimation of position changes. The
LSTM structure analyzes the hidden states of pedestrian over a period of time, which may implicitly
influence the current state, to avoid the divergence problem in dead reckoning due to abnormal
IMU measurements. During the network operation, the IMU data must be transformed from the
IMU coordinate system to the VIO coordinate system, with gravity and bias effects removed. After
preprocessing the IMU measurements, they serve as the input to the network, enabling the direct
acquisition of relative position estimation of pedestrian and their corresponding covariance, as shown
in (3). (︁
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where 𝑓 (∙) is the function obtained by neural network fitting. 𝑎 and 𝑤 are the raw acceleration and
angular velocity measured by the IMU sensors. 𝑏𝑎 and 𝑏𝑔 are the bias obtained from the VIO system.
𝑔𝑣 is the gravity vector. 𝑣 is the VIO coordinate system while 𝑛 is the IMU coordinate system. 𝑎𝑣

𝑛

and 𝑤𝑣
𝑛 are the acceleration and angular velocity at the 𝑛th IMU time step in VIO coordinate system,

respectively. ℎ is the hidden state produced by LSTM at the last time step. The relative displacement
∆𝑡

′𝑣𝑗
𝑣𝑖 and its covariance 𝜎

′𝑣𝑗
𝑣𝑖 are the outputs of the network.



3.4. NIN-DSO

3.4.1. Time Synchronization

To ensure that the predicion results of network facilitate effective convergence of the VIO position
estimation, we bundle these predictions to the image inputs for approximate temporal synchronization.
Indeed, predictions from the neural inertial network resemble IMU pre-integration, serving as a type of
constraint between images. Therefore, the proposed method adjusts the prediction output frequency
to match the images input frequency. Additionally, in order to minimize the temporal discrepancy
between the images and the predition results, we interpolate the network inference results at the image
input moments. The temporal relationship of IMU data, image data, and network prediction results is
illustrated in Fig. 2.

Figure 2: Temporal relationship of tree types of data.

3.4.2. Coarse Tracking

In this paper, we use the relative position transformation predicted by neural inertial networks as an
alternative for initializing the photometric error, providing greater robustness than IMU pre-integration,
as shown in (4).
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where 𝑝′
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 is the projected point obtained by prediction results of network. And the remaining

items are consistent with (1).

3.4.3. Visual-Inertial Optimization

The VIO proposed in this paper achieves position estimation by minimizing the energy function ,
which comprises photometric error, pre-integration residuals, and network prediction position residuals.
Unlike the feature point based method, our approach simultaneously optimizes the position, sensor
error, scale and 3D structure, resulting in higher accuracy. The factor graph for the proposed method is
shown in Fig. 3.

Based on DM-VIO, the method further incorporates the position predictions from the neural inertial
network as additional constraints. And its energy function is

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝜆𝐸𝑝ℎ𝑜𝑡𝑜 + 𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 + 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (5)

which consists network prediction position residuals 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘 . The photometric error is the sum of the
individual pixel photometric erros, and can be determined by (6).

𝐸𝑝ℎ𝑜𝑡𝑜 =
∑︁
𝑖∈𝐹

∑︁
𝑝∈𝑃𝑖
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𝑝𝑘∈𝑘𝑒𝑦(𝑝)

𝐸𝑝𝑘
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 (6)

where 𝐹 is the set of keyframes 𝑖. 𝑃𝑖 is the set of points in keyframes. And 𝑘𝑒𝑦(𝑝) is the set of points
that are jointly observed in keyframes.



Figure 3: Factor graph of NIN-DSO.

The pre-integration residuals are

𝐸𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 =
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where 𝑠𝑗𝐼𝑀𝑈 is the state obtained from pre-integration. �̂�𝑗 is the estimated state of VIO.
∑︀

𝑠𝐼𝑀𝑈 ,𝑗 is the
corresponding covariance of the state. And ⊙ is the subtraction operation in Lie algebra.

The IMU measurements are preprocessed before being input into the network in our method. As a
result, the relative position transformation predicted by the network remains consistent with the VIO
coordinate system. Based on this characteristic, in the part of neural inertial navigation, we use the
predictions as direct constraints between image frames rather than the constraints in [16], as shown in
(8).

𝐸𝑁𝑒𝑡𝑤𝑜𝑟𝑘 =
(︁
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)︁
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where 𝑠𝑗𝑁𝑒𝑡𝑤𝑜𝑟𝑘 is the state obtained from Neural inertial network prediction results.
∑︀

𝑠𝑁𝑒𝑡𝑤𝑜𝑟𝑘,𝑗
is the

corresponding covariance of the state.

4. Experiments and Results

This section presents the test results on various datasets to demonstrate the effectiveness of our method.
All the experiments were conducted on an Intel Core I5-10510U CPU@1.80GHz×8 computer equipped
with Ubuntu 20.04 and NVIDIA GeForce RTX3060 12GB graphics card.

4.1. TUM-VI Dataset Experiments

In this subsection, we evaluate the performance of the proposed method using the TUM-VI dataset
[17]. The dataset is a widely used public dataset collected by a pedestrian. However, since only the
room scenario offers full ground truth, we present only the experimental results for this data sequence.
The absolute trajectory error (ATE) in this paper were obtained from the EVO toolbox [18], but the
APE values are larger than ATE reported in [17] because we did not use EVO to fix the scale of the
algorithm’s results. The comparison of ATE between VINS-Mono, NIN-VINS [19], DM-VIO, and our
proposed method NIN-DSO is shown in TABLE 1 below.

From the data in TABLE 1, it is evident that the position estimation of direct method based VIO
outperform feature point based method, regardless of whether an neural inertial network is added. This
indicates that direct method VIO is more suitable for indoor pedestrian positioning scenarios. Our
method achieved the best results across all data in the room sequence, reducing the average ATE by 60.2%
compared to DM-VIO. Notably, in the fourth data set, the ATE was reduced by 84.2%, demonstrating
that the addition of neural network predictions effectively addresses the issue of DM-VIO’s inability to
track and converge effectively when IMU data quality is poor.



Table 1
ATE in TUM-VI.(Unit:m)

Datasets VINS-Mono NIN-VINS DM-VIO NIN-DSO

Room1 1.52 1.56 0.57 0.26
Room2 1.53 1.52 0.44 0.32
Room3 1.83 1.80 0.48 0.15
Room4 1.61 1.62 1.27 0.20
Room5 1.80 1.83 0.14 0.12
Room6 1.48 1.51 0.22 0.19
Average 1.63 1.64 0.52 0.21

4.2. Real Experiment

Compared to the room sequence of the TUM-VI dataset, indoor pedestrian positioning typically involves
faster movement speeds, more complex lighting environments, and larger movement scales. Additionally,
VIO tends to accumulate significant errors over long periods of operation. Therefore, we collected a
custom dataset to supplement the experiments. This dataset was collected using a Flir camera and
a Livox Avia LiDAR as the acquisition sensors, with IMU measurements provided by the Avia. The
frequency of image data is 10Hz and the resolution is 1440×1080. The frequency of IMU data is 200Hz.
And the two sensors are synchronized by hardware trigger. The pseudo ground truth was obtained
from a higher precision Lidar-Visual-Inertial Navigation System to evaluate the performance of the
method. In this dataset, we carried the device around the interior of the New Main Building at Beihang
University. The total distance covered is 513.56 meters, and the duration of the data collection lasts
368.41 seconds. The data contains typical pedestrian positioning characteristics, and an example of
large attitude change and complex lighting environment from the data is shown in Fig. 4.

Figure 4: The same example scene under different exposures.

As with the experiments in the first subsection, the performance of the algorithms is still evaluated
using ATE. The comparison of the results among VINS-Mono, NIN-VINS, DM-VIO, and NIN-DSO are
shown in TABLE 2.

Table 2
ATE in custom data.(Unit:m)

Datasets VINS-Mono NIN-VINS DM-VIO NIN-DSO

Custom 6.22 6.98 3.58 1.77

From the TABLE 2, it can be seen that our method still performs well on this custom data, achieving a
50.7% reduction in ATE relative to the best method among the other three. The same conclusion can be
drawn from experiments on the public dataset. Direct methods are more suitable for indoor pedestrian



localization than feature point based methods. Additionally, incorporating prediction of neural inertial
network can effectively address issues where the system fails to track and converge properly, mitigate
cumulative errors during long term positioning, and consequently improve the accuracy and robustness
of VIO.

The estimated trajectories and ATE curves for different method on this dataset are shown in Fig. 5,
wiht the starting points of these trajectories marked with triangles. As can be seen in Fig. 5, the accuracy
using the direct method is higher than the feature point method. In the case of starting positions with
similar errors, our method has better scaling in the middle of the trajectory compared to DM-VIO.

(a) The trajectories of different method.
(b) The ATE curve of different method.

Figure 5: The result of different methods in real experiment.

5. Conclusion

This paper proposes a direct visual-inertial odometry with the assistance of a neural inertial network.
The neural network is implemented and trained using PyTorch, and deployed within the VIO framework
utilizing ONNX and TensorRT. The inclusion of neural inertial navigation provides better initial values
for the image inter-frame tracking in direct method based VIO, leading to a more stable visual initializa-
tion process than DSO and DM-VIO. Furthermore, by incorporating the network’s position prediction
results into the energy function of the optimization model, in addition to photometric error and IMU
residuals, the system reduces its reliance on the visual component in complex motion environments
and mitigates errors and divergence of IMU data. Experimental results demonstrate that the proposed
neural inertial navigation aided direct VIO achieves more accurate and robust position estimation in
indoor pedestrian movement scenarios.

Although the proposed method does not require stable feature point extraction and matching as
feature based methods, it relies on visual component as the foundation for system calculations, rendering
it unable to estimate positions when the visual component fails. The current supplementation using
the neural inertial network does not fundamentally solve the problem. We plan to further leverage
the powerful data processing capabilities of neural networks to evaluate visual inter-frame position
estimation results using IMU data. By using this approach, we aim to reduce the reliance of the direct
VIO on the visual component, enabling the system to continue functioning normally even when the
visual component fails.
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