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Abstract 
The shift from mass production to mass customization in the era of Industry 4.0 requires production and 
warehouse management to be more flexible and controllable. The precise location information of the 
resources (men, machines, materials) is significant to enable the orchestration of processes and operations. 
However, the massive resources and complicated industrial environment could impede the adoption of 
high-cost, shelter-sensitive and hard-to-deploy indoor positioning systems. Therefore, this paper proposes 
a novel solution that amalgamates Bluetooth Low Energy (BLE), featuring low energy consumption, low 
cost, and high scalability, and Ultra-wideband (UWB) technology that attains high location accuracy. A 
deep learning method is designed for angle of arrival (AoA) estimation to address the challenges of multi-
path fading faced by BLE, thus enhancing location accuracy. UWB is innovatively employed to facilitate 
sampling and labeling job to underpin rapid deployment. The AoA training data can be collected on site 
during the operations, avoiding the impact on daily production. The experimental results show that the 
proposed solution achieving a positioning accuracy of 50 cm. 
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1. Introduction 

In Industry 4.0, the development of technologies such as the Internet of Things and edge computing 
has significantly improved the operational efficiency of paradigms like smart manufacturing and 
smart warehousing [1]. Within these paradigms, the acquisition and utilization of location 
information are of critical importance. To illustrate, real-time positioning technology can provide 
location information for both objects and personnel. In a warehouse setting, this information can be 
improve order picking and inventory management [2]. In the shopfloor, the precise location benefits 
the task allocation and vehicle routing planning. Additionally, positioning systems can issue alerts 
to prevent accidents by warning workers and vehicles when they approach hazardous areas [3]. 
Satellite-based systems like GPS and Beidou perform well outdoors but struggle indoors due to 
interference and obstructed lines of sight, making them less effective in complex industrial settings 
like warehouses and shopfloors [4], [5]. Nowadays indoor positioning systems have garnered 
increasing research in Industry 4.0 applications. The system must balance accuracy with a series of 
characteristics including technical cost, power consumption, and real-time performance in large-
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scale-deployment. The Angle of Arrival (AoA) positioning [6] is officially included in Bluetooth Core 
Specification 5.1 by Bluetooth Special Interest Group (SIG), which enhances the positioning accuracy 
of Bluetooth Low Energy (BLE) to the next level. In conjunction with the inherent characteristics of 
low power consumption and cost-effectiveness inherent to BLE, research on AoA technology offers 
a novel solution to meet the large-scale simultaneously positioning for Industry 4.0 applications. 

How to calculate the accurate angle from the in-phase and quadrature (I/Q) data collected by the 
BLE array antenna deserves in-depth study. Traditional AoA algorithms such as multiple signal 
classification (MUSIC) [7], propagator direct data acquisition (PDDA) [8], signal subtraction 
subspace (SSS) [9] have been proven to be successful in laboratory test [10], but ones rely heavily on 
the computation capability. In [11], the application of the MUSIC algorithm on a BLE system is 
examined, but it is limited by its use of a uniform linear array (ULA), restricting the range of angle 
estimation. In [12], a theoretical analysis of the impact of phase noise on traditional subspace-based 
AoA estimation algorithms in BLE systems is presented. To reduce the computational complexity, 
[6] investigated the application of PDDA algorithm on BLE system in an empty indoor hall. The 
results show that the average positioning accuracy is less than one meter, but only a single receiver 
was used for the test, and the interference caused by the multipath effect was not considered. 

Due to the complexity of industrial indoor environments, traditional algorithms suffer from the 
impact of multipath effects, resulting in reduced angle estimation accuracy. In contrast, methods 
based on deep learning (DL) of the characteristics of I/Q values from multi-antenna element arrays 
outperform traditional signal processing methods in dealing with multipath effects [13]. Once trained, 
DL models can derive AoA information from the input data without requiring the complex 
calculations associated with traditional algorithms, thereby reducing computational costs [14]. In 
[15], the authors approach the problem of AoA estimation as a time series problem and employs a 
recurrent neural network (RNN) to learn deep features from the spatial power spectrum of BLE 
signals based on the PDDA algorithm as input features. The test results show that it outperforms the 
original PDDA algorithm. In [16], a DeepAoANet model is proposed which uses the I/Q-based spatial 
covariance matrix as a feature and is trained accordingly. The accuracy error of the training dataset 
is approximately 80% near 2.5 degrees, but only a ULA is used to output a one-dimensional angle. In 
[17], a variety of neural network architectures for AoA estimation using I/Q and RSSI values as 
inputs are proposed. In a series of simulations, the proposed algorithm exhibited superior 
performance compared to the benchmark PDDA algorithm, achieving a positioning accuracy of 70 
cm. Despite their potential, DL models face challenges such as overfitting, where the models perform 
well on trained scenarios but poorly on unseen ones. Collecting more data to train the DL model can 
be one possible solution, but this requires large amount of time for data collection and labelling effort. 
The time-consuming and labor-intensive training work impede the large-scale deployment in 
industrial scenarios. 

To tackle the issue of overfitting in DL models for AoA estimation, this paper proposes an 
improved method for calibrating ground truth labels in BLE data acquisition. UWB technology, 
known for its high accuracy in indoor positioning, faces limitations in large-scale industrial 
deployments due to its cost and power consumption. However, UWB can be leveraged to simplify 
the tagging process for extensive BLE data. During offline data collection, the X, Y, and Z coordinates 
from UWB are converted into angle information to serve as ground truth for model training. This 
data, combined with noisy BLE I/Q data, is used to train a supervised learning model for AoA 
estimation. It is crucial to smooth UWB positional information to minimize its inherent errors and 
their influence on the model. Furthermore, we introduce a DL model architecture for AoA estimation, 
which combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
networks, referred to as CL-AoA. This model effectively mitigates the impact of multipath effects on 
angle estimation, enhancing the robustness and accuracy of the positioning system. Our results show 
that the model has an error of approximately 2 degrees in the angle estimation. 

The main contribution of this paper are as follows: first, we present the CL-AoA model which 
effectively mitigates multipath interference in angle estimation, thereby achieving high accuracy 
while maintaining low latency. Second, we introduce an automatic dataset ground truth labeling 



method that uses UWB technology for effortless labeling in BLE angle estimation. Workers carry a 
tag that combines UWB and BLE while moving around the factory. This setup allows the training 
data, including I/Q values and angle ground truth, to be labeled automatically. The remainder of this 
paper is structured as follows: Section 2 outlines the proposed architecture. Section 3 details the 
research methodology, including underlying principles, formulas, and the design of the CL-AoA 
model. Section 4 presents and discusses experimental results to validate the performance of the 
proposed methods. Finally, Section 5 provides the conclusions. 

2. Overview Architecture 

 
Figure 1: Training setup in Industry 4.0 scenario 

2.1. Challenges 

As shown in Figure 1, Industry 4.0 scenarios, such as workshops or warehouses, are complex due to 
the presence of numerous pieces of equipment, walls, and metal objects, which introduce significant 
signal noise and cause multipath effects. Multipath effects make it difficult for traditional techniques 
to compute azimuth ( ) and elevation ( ) angles properly, which lowers positioning accuracy. 

Consequently, the use of DL for angle estimation has been proposed [13], [15]. However, deploying 
DL methods in such scenarios faces several challenges. Firstly, DL requires the collection of 
substantial data during the offline stage. Traditional methods of data collection typically entail 
manual partitioning of regions for the purpose of collecting fixed-point data, which is a time-
consuming and labor-intensive process in industrial settings. Secondly, while deploying the system 
and gathering data, it is essential to guarantee that the existing operational workflows remain 
uninterrupted. 

2.2. Proposed methods 

To address the challenges outlined above, this paper proposes a method that combines UWB and 
BLE for automatic dataset labeling and collection during the offline phase. The workflow of the 
proposed method, depicted in Figure 2, can be divided into three distinct phases: data collection and 
preprocessing, model training, and position estimation. 

The BLE system comprises locators and tags, where the BLE tags transmit radio data packets with 
a Continuous Tone Extension (CTE) at a fixed frequency. Upon receiving the signal, the antenna 
array of the locator switches to collect I/Q data. This data undergoes quality analysis to filter out 
invalid samples, ensuring that only valid I/Q data is extracted as input features. UWB performs 
ranging using double-sided two-way ranging (DS-TWR) and outputs position data as X, Y, Z 
coordinates, which are subsequently converted into angle serving as ground truth labels for the CL-
AoA model. To enhance robustness against multipath interference, BLE I/Q data is treated as time 
series data, leveraging the temporal correlations inherent in the signal, allowing the model to capture 
subtle variations in the data that are indicative of angle information. A combined CNN and LSTM 
model architecture is employed to learn and extract the angle information. The Least Squares (LS) 
algorithm is employed to estimate the positional information (X, Y, Z). 



 
Figure 2: Workflow of the proposed method 

3. Methodology 

3.1. I/Q Sampling 

The BLE tag is responsible for periodically transmitting BLE broadcast signals, which include CTE 
data. These data consist of a series of unwhitened, continuously modulated RF sinusoidal signals that 
define the time slots for antenna switching and sampling. 

 

Figure 3: CTE timing rules 

The CTE timing rules are presented in Figure 3, with a duration range of 16 to 160 s , where the 

first 4 s  are a guard period followed by an 8 s  reference period. During this period, a single I/Q 

sample is collected at the reference antenna with a temporal resolution of 1 s , resulting in a total of 

8 reference samples. After this is the switching sampling period, during which alternate switching 
time slots and sampling time slots are defined. The time slots may be specified as either 1 s  or 2 s . 

In this work, a total of 74 pairs of I/Q samples can be acquired during the switching sampling cycle. 
The collected I/Q data is presented in Eq. (1), where the first 8 groups are the reference period 
samples, and the rest are the sampling period. The discrete I/Q sample data can be utilized to calculate 
the signal Phase ( ) and Amplitude ( A ) at the current sampling moment using Eq. (2). By calculating 

the phase differences between the signals received by each antenna and considering the known 
geometry of the antenna array, the AoA information of the tag can be determined. 

 1 1 8 8 1 1 74 74, ,..., , , , ,..., ,Data ref ref ref refIQ I Q I Q I Q I Q     (1) 

 2 2 , arctan 2( , )A I Q Q I    (2) 

3.2. Data Preprocessing 

3.2.1. I/Q data cleaning 

Due to environmental noise and inherent device defects, invalid data may be present in the collected 
I/Q samples. This paper chooses to perform quality analysis based on the phase difference, amplitude, 
amplitude difference, and Signal-to-noise Ratio (SNR) during the reference period. The SNR is an 
important metric for assessing the quality of the received signal. According to Eq. (2), A  and  can 

be calculate. Then, the power of the signal ( signalP ) and the power of the noise ( noiseP ) can be computed 

as Eq. (3), where iA  is the amplitude at the i-th sampling time, and N  is the total number of samples 



during the reference period. The SNR is then calculated as Eq. (4), and data with an SNR less than 20 
dB is considered invalid and is filtered out to ensure the high quality of the I/Q data used for angle 
estimation.  
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By analyzing the Z-scores of various parameters in the dataset, data filtering is conducted to 
ensure the integrity and reliability of the I/Q data used for angle estimation. The Z-scores for a given 
parameter x  is calculated as Eq. (5), where   is the mean and   is the standard deviation of the 

parameter values in the dataset. | | 3Z   are considered as outliers and filtered out. 

 ( )Z x     (5) 

3.2.2. UWB-based labeling 

Due consideration of factors such as cost and power consumption, this study only uses UWB in the 
offline stage, capitalizing on its high precision to facilitate the automatic labelling of BLE data 
samples. The UWB system comprises UWB tags and anchors. The positioning principle is to use 
ultra-short pulse signals and the DS-TWR [18] algorithm to determine the position and speed of the 
target by measuring the time delay of the signal and calculate the distance between the UWB tag and 
the anchor point. Then, trilateration can be employed to get the position information. 

Each locator’s position and orientation information is required, to transform the angles from the 
global coordinate system to the array’s local coordinate system. Let the locator’s position 
information be denoted as ( , , )loc loc locX Y Z  and its orientation information as ( , , )   , where  ,   

and   representing the rotation angles around the X, Y, and Z axes, respectively. The tag’s positional 

information is denoted as ( , , )tag tag tagX Y Z .Calculate the relative position vector ( , , )X Y Z    between 

the tag and the locator, and then use the rotation matrix R  to transform the relative position vector 
from the global coordinate system to the locator’s local coordinate system, denoted as ( , , )rel rel relX Y Z , 

as shown in Eq. (6). 
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 (6) 

Then we can calculate  and   using the following formulas, where   is the angle in the XY-

plane from the X-axis, and   is the angle from the XY-plane towards the Z-axis: 

 2 2arctan 2( , ), arctan 2( , )rel rel rel rel relY X Z X Y     (7) 

3.3. CL-AoA Architecture 

Given the potential impact of various noise and interference sources on the collected I/Q data, this 
study employs a neural network architecture, CL-AoA, to learn deep features from the I/Q data for 
predicting 2D angle information. The proposed architecture, as illustrated in Figure 4, employs the 
spatial feature extraction capabilities of CNNs and the temporal modeling strengths of LSTMs. In 
this architecture, the noisy I/Q data from multiple antennas is treated as a 2D image. The CNN 
component is employed to extract spatial features from the I/Q data. Due to the temporal variation 
of the data from each antenna, the LSTM component is utilized to capture temporal dependencies, 
thereby enhancing the accuracy of the AoA estimation. 



 

Figure 4: CL-AoA network architecture 

Specifically, the CNN layers consist of two 2D convolutional layers, each with kernel sizes of 3 2  
and utilizing the Rectified Linear Unit (ReLU) activation function. Each convolutional layer is 
followed by a 2 2  max pooling layer for down-sampling the data, reducing spatial dimensions and 
computation time. The output from the CNN layers is then fed into an LSTM layer with 64 hidden 
neurons to extract sequential features from the I/Q data. The subsequent fully connected layers, also 
using ReLU activation, process these features. To prevent overfitting, a dropout rate of 0.2 is applied. 
The output layer employs linear regression to predict the azimuth and elevation angles, with the 
mean squared error (MSE) used as the loss function to optimize the network. This hybrid architecture 
effectively captures both the spatial and temporal dynamics of the I/Q data, thereby improving the 
accuracy of AOA estimation. 

3.4. Localization 

In this study, the LS method is employed for position estimation [19]. Assume there are N  base 
stations, each with a known position ( , , )i i i iloc x y z , where 1,2,...,i N . Initialize target tag position 

as ( , , )tagloc x y z . Each base station measures the azimuth i  and elevation i  angles to the target, 

and then using the rotation matrix R  convert to the global coordinate system. The direction vector 

id  can be expressed as follow: 

  (cos cos ),(cos sin ),sini i i i i id       (8) 

Compute the vector iv  from base station i  to the target position tagloc , then normalize iv  to 

obtain the unit vector norm
i i iv v v .Sum the squared residuals from all base stations to obtain the 

residual function 
2

1
|| ||

N norm
i ii

R v d


  , and then minimize the residual function R to obtain the 

estimated target position tagloc . The LS method ensures that the solution minimizes the sum of the 

squared errors between the predicted and observed angles, providing an accurate estimate of the 
tag’s position. 

4. Experiment evaluation 

4.1. Experimental Setup 

The experimental were conducted in the Cyber-Physical Internet Laboratory of the Department of 
Industrial & Systems Engineering at The Hong Kong Polytechnic University. As illustrated in Figure 
5 (a), the laboratory spans an area of approximately 80 square meters (8 10m m ). The laboratory 
contains various equipment, including computers, BLE sensors, and furniture, ensuring that the BLE 
AoA tags are subjected to multipath interference similar to that in a warehouse scenario. 



 

    (a)    (b) 
Figure 5: Layout scene of the laboratory 

The UWB anchors and tags use Qorvo’s DWM1001-DEV module development board to obtain 
positional information. The BLE tags utilize the BRD4184 and operate in a non-connected 
communication mode, transmitting data packets with CTE on data channels excluding 37, 38, and 39, 
as specified by the Silicon protocol. The BLE locator employs Silicon EFR32BG22 development board 
and the BRD4185A antenna array to collect raw I/Q sample data. In this experiment, as depicted in 
Figure 5 (b), BLE and UWB tags were combined and mounted on a trolley’s stand. An operator pushed 
the trolley along the red trajectory shown in Figure 5 (a), simulating the movement of a forklift in 
the factory. Throughout the process, a total of 140,000 IQ data samples were collected. The proposed 
method was employed to automatically label the ground truth angles using the positional 
information from the UWB system. 

 

Figure 6: Angle estimation error comparison 

4.2. Results and Analysis 

The experimental results, which include error distribution for both azimuth and elevation angles, are 
illustrated in Figure 6. Overall, the DL-based methods outperform the traditional methods. The CL-
AOA network demonstrates superior performance in the experiments, achieving 98% of angle errors 
within 2 degrees. This indicates its robustness in significantly mitigating the impact of multipath 
effects on AoA estimation. 

 

    (a)    (b) 
Figure 7: Position estimation scenario and results 



In the position estimation comparison experiment, an 2 1m m  area within the laboratory was 
selected as the test site, as shown in Figure 7 (a). To increase the complexity of the environment, 
three partitions were added. An operator carried the tags and moved around the perimeter of a table 
to collect data. The UWB positioning results were used as the benchmark for comparison. Using the 
CL-AoA model trained from angle estimation, angles were derived from the received I/Q data. The 
LS method was then employed to estimate positions based on these angles. The results are shown in 
the right-hand side of Figure 7 (b), where the red line represents the ideal position trajectory. The 
proposed method achieves a positioning accuracy within approximately 0.5 meters. This level of 
accuracy demonstrates the feasibility of deploying the proposed method in Industry 4.0 
environments. 

5. Conclusion 

In this study, an automatic dataset labeling method for BLE data samples based on UWB in Industrial 
4.0 environments is proposed. This method significantly reduces the workload in the data collection 
stage and ensure the normal operation of the factory business processes. We then introduced a CL-
AoA model architecture, which effectively reduce the impact of multipath effects on angle estimation. 
Experimental results show the proposed method demonstrated that 98% of the angle errors in the 
test set were within 2 degrees. Additionally, the position estimation accuracy was within 0.5 meters. 
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