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Abstract
The current wireless systems are evolving towards higher frequency, specifically millimeter waves (mmWave).
To leverage the wide bandwidth advantages of mmwaves and overcome the high path loss characteristics,
massive MIMO antenna arrays have emerged, resulting in the wireless channel exhibiting ”high-dimensional”
characteristics. Traditional channel estimation methods do not perform well when extended to mmwave massive
MIMO channel estimation. Meanwhile, the limitations of deep learning-based channel estimation methods lies in
the need for a large labeled dataset, since the high-dimensional characteristics of future communication channels
drastically increase the cost of channel measurement and labeling. This significantly impedes the application of
deep learning(DL) in channel estimation. This paper proposes an unsupervised channel estimation method based
on a mutual information maximization generative adversarial network (InfoGAN). It performs unsupervised
learning and classification of various clustered delay line (CDL) channels and automatically estimates and
reconstructs channels for different CDL channels. Additionally, it integrates the training method of WGAN to
ensure the stability and convergence of the training process. The proposed method outperforms Orthogonal
Matching Pursuit (OMP), EM-GM-AMP (an approximate message passing algorithm), and LOS/NLOS conditional
GAN (CGAN) across all CDL channels.
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1. Introduction

The large-scale deployment and continuous evolution of global 5G networks have led to significant
changes inwireless channels regarding frequency, antenna, and scenario. These changes have introduced
new characteristics, such as non-stationarity in the space-time-frequency domain, posing challenges
to traditional channel modeling and estimation. Compared to traditional microwave communication
technologies, mmWave communication technology offers abundant spectrum resources, higher data
rates, and greater spectral efficiency. Due to its shorter wavelength, mmWave has a high spatial
resolution, enabling precise localization of mobile devices. To compensate for the significant path loss
of mmWave, employing large-scale MIMO technology for high-precision directional beamforming[1]
has become the mainstream approach. The short wavelength of mmWave further reduces the size
of antenna arrays, facilitating the integration and miniaturization of antennas, and allowing for the
construction of larger-scale antenna arrays. Accurate channel state information must be obtained
through channel estimation to leverage the advantages of mmWave massive MIMO for high-precision
localization in complex LOS and NLOS scenarios.

In 6G and future communication systems, the scale of antenna arrays at base stations (BS) and
user equipment (UE) will continue to expand, significantly increasing the dimensions and complexity
of channel estimation. Traditional channel estimation methods for sub-6 GHz bands, such as least
squares (LS) or minimum mean squared error (MMSE) estimators, cannot be directly extended to
mmWave MIMO[2]. Recent methods commonly use the sparsity of mmWave MIMO channels in the
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beamspace[3] to design channel estimation schemes, transforming the problem into a compressed
sensing problem. This involves leveraging signal sparsity and a small number of pilot sequences for
channel reconstruction. Additionally, DL has emerged as a promising approach[4], with methods based
on image reconstruction or deep learning networks being proposed. DL can implicitly learn complex
channel distributions, reconstructing unknown signals or images from observations. However, DL for
channel estimation typically employs supervised learning and relies on large labeled channel datasets.
The increasing diversity of channel types in future mmWave communication scenarios and the need to
measure various channel parameters make labeling data prohibitively expensive, significantly limiting
DL’s application in mmWave MIMO channel estimation. This paper proposes an unsupervised DL
method for mmWave MIMO channel estimation, introducing mutual information for unsupervised
classification of CDL channels and using GAN to generate diverse channel data for estimation.

2. Related Work

Research has demonstrated that wireless channels exhibit sparsity[3] in the delay and angle domains.
Leveraging this sparsity, compressed sensing (CS)-based channel estimation techniques have gained
significant attention. These techniques represent high-dimensional channels using sparse bases, trans-
forming the channel estimation problem into a sparse signal recovery problem[5]. However, CS relies
on the assumption that the channel is sparse under a specific basis (usually DFT), which is challenging
to satisfy in practical scenarios. An inappropriate sparse basis can cause grid mismatch issues, reducing
the accuracy of the channel’s sparse representation[6, 7] . Consequently, achieving accurate signal
reconstruction using effective sparse representations remains a key focus. Algorithms like Orthogonal
Matching Pursuit (OMP)[8] and Approximate Message Passing (AMP) [9] are commonly studied for
this purpose.

DL-based methods for channel estimation have also gained popularity. With the rapid development
of deep learning, techniques such as Generative Adversarial Networks (GAN) offer new possibilities
for mmWave MIMO channel estimation. GAN’s adversarial learning mechanism can learn complex
distributions and generate diverse data samples, which is highly suitable for channel estimation given the
high cost and difficulty of mmWave MIMO channel measurements. Many researchers have developed
supervised learning frameworks for channel estimation, using pilot signals as inputs or conditions to
train neural networks that output channel matrices[10, 11, 12]. For instance, in [10], pilot signals are
used as conditional information, and received signals as inputs, to train a Conditional GAN (CGAN)
to output the channel matrix. However, this approach does not use random noise vectors as input,
limiting the GAN’s ability to generate diverse models, merely learning the mapping between pilots and
channels. In [12], the sparsity of mmWave MIMO channels in the beamspace domain is utilized by first
classifying channels into LOS/NLOS, then using the classifier’s output to train a CGAN for estimating
five types of CDL channels. However, relying solely on LOS/NLOS conditions may lead to performance
losses due to variations in LOS components across different CDL channels.

Based on the above discussion, to avoid the high cost and difficulty of mmWave MIMO channel
data measurement and labeling, we propose an unsupervised channel classification and estimation
framework that uses GAN to achieve high-dimensional channel estimation from a small number of
pilot signals, obtain sparse representations of the channel, and reconstruct the original channel. The
main contributions are as follows:

• Transform the channel estimation problem into a sparse signal reconstruction problem in the
beamspace domain, training GAN to directly generate beamspace domain channel matrices
without assuming a channel model and LOS/NLOS condition.

• Use the differences in the sparsity of different channel models in the beamspace domain as a
feature to classify the channels.

• Apply InfoGAN to channel estimation. By incorporating interpretable latent variables into the
random input vector of GAN and introducing mutual information between the latent variables
and the generated channel types, achieve controllable generation of different channel models



through maximizing their mutual information, enabling unsupervised classification of channel
models.

• Combine the unsupervised learning capability of InfoGAN with the stable training advantages
of WGAN to form the InfoWGAN model, ensuring training stability and accelerating model
convergence. To the best of our knowledge, this is the first time that InfoGAN and WGAN have
been integrated for channel estimation.

3. Proposed Approach

3.1. System Model

We consider a downlink single-user narrowband mmWave MIMO communication scenario, where the
transmitter is equipped with 𝑁𝑇 antennas and the receiver with 𝑁𝑅 antennas, using a fully connected
phase shifting network. The hybrid precoder and combiner at the transmitter and receiver are denoted
by F ∈ ℂ𝑁𝑡×𝑁𝑠 and W ∈ ℂ𝑁𝑟×𝑁𝑠 respectively, where 𝑁𝑠 is the number of data streams transmitted. The
MIMO channel between BS and UE is represented by H ∈ ℂ𝑁𝑟×𝑁𝑡 , and the pilot signal sent by the
transmitter is denoted by S ∈ ℂ𝑁𝑠×𝑁𝑝 . The received signal can be expressed as:

Y = W𝐻HFS +W𝐻N, (1)

where N ∈ C𝑁𝑟×𝑁𝑝 is an independent and identically distributed (i.i.d.) complex Gaussian random
variable with mean 0 and variance 𝜎2. It is assumed that the channel follows a block fading model,
whereH remains constant over𝑁𝑝 time slots. Using the Kronecker product identityABC = (C𝑇 ⊗ A)B,
we can obtain

y = (S𝑇F𝑇 ⊗W𝐻)H + (I𝑁𝑝 ⊗W𝐻)n, (2)

where y ∈ ℂ𝑁s𝑁p×1,H ∈ ℂ𝑁r𝑁t×1 and n ∈ ℂ𝑁r𝑁p×1. Denote A = (S𝑇F𝑇 ⊗W𝐻) ,A has dimensions
𝑁𝑠𝑁𝑝 × 𝑁𝑡𝑁𝑟 .Assuming that both the transmitter and receiver use uniform spaced linear arrays, under
the virtual model, the array response matrices can be represented by unitary DFT matrices AT ∈ ℂ𝑁t×𝑁t

and AR ∈ ℂ𝑁r×𝑁r respectively. Thus, we can express H as

H = ARHvA𝐻
T

H = ((A𝐻
T)

𝑇
⊗ AR)Hv

(3)

Unlike traditional DL-based channel estimation models, we directly train GAN to output samples
of the sparse representation Hv in the beamspace domain rather than the original channel H. That
is, we train the generator G to learn the distribution of Hv. Moreover, we do not impose any sparsity
constraints on Hv. This approach is more flexible than CS-based channel estimation methods, which
require the sparse representation of the signal being recovered to have only a few non-zero values to
successfully reconstruct the signal.

After the GAN training is completed, we extract the trained generator G, and use the received pilot
signal y (2) and the corresponding channel type latent variable c to search for the optimal input variable
𝕫∗ in the latent space of the input noise variable z for G

z∗ = argmin
z∈ℝ𝑑

‖y − AspG(z, 𝑐)‖
2
2 + 𝜆reg‖z‖22, (4)

where Asp = (A𝐻
TFS)

𝑇
⊗W𝐻AR and 𝜆reg is the regularization coefficient used to impose L2 norm

constraint on the noise variable z. After optimizing the noise variable, we can obtain the estimated
beam domain channel Hv, est = G (z∗). We use the normalized mean square error (NMSE) as the metric
to evaluate the quality of Hv, est , defined as

NMSE = 𝔼[
‖Hv −Hv, est ‖

2
2

‖Hv‖
2
2

] , (5)



3.2. GAN Architectures

In this section, we first introduce the principles and structure of WGAN-GP, followed by the InfoWGAN
model proposed in this paper. We will detail how WGAN and InfoGAN are integrated into InfoWGAN
and describe its training process.

Figure 1: InfonWGAN Network Architecture

3.2.1. Wasserstein GANWith Gradient Penalty

AWasserstein Generative Adversarial Network (WGAN) is a variant of the classic GAN. Its optimization
goal is to solve the min-max problem:

min
𝐺

max
𝐷∈𝒟

𝔼𝑥∼𝑃𝑟[𝐷(𝑥)] − 𝔼𝑧∼𝑃𝑔[𝐷(𝐺(𝑧))] (6)

where 𝒟 is the set of 1-Lipschitz functions and 𝑃𝑟 is the real data distribution. As pointed out in [13],
the original GAN suffers from mode collapse and instability during training due to the use of KL or JS
divergence, which is one of its major drawbacks. In contrast, WGAN uses the Wasserstein-1 distance
instead of KL divergence to measure the distance between two distributions, making WGAN’s training
more robust and stable. Theoretically, WGAN requires 1-Lipschitz continuity. Traditional WGAN
enforces 1-Lipschitz continuity through weight clipping, but this can lead to insufficient capacity in
the discriminator network, reducing the model’s performance. Gradient penalty ensures 1-Lipschitz
continuity by directly penalizing the norm of the gradients in the loss function. The classic gradient
penalty term is defined as:

𝜆𝔼�̂�∼ℙ�̂� [(‖∇�̂�𝐷(�̂�)‖2 − 1)2] (7)

where �̂� is a sample drawn from the straight line between the data distribution and the generator
distribution, and 𝐷(�̂�) is the output of the discriminator on �̂�.

3.2.2. InfoWGAN

The input of the original GAN is an unconstrained random vector z, resulting in outputs fromG that lack
semantic features and cannot correspond to specific dimensions of z, leading to poor interpretability.
InfoGAN[14] introduces a latent variable c into the input vector z and incorporates mutual information
I(X;Y) between c and the output ofG to control the generated data. The definition of mutual information
is as follows:

𝐼 (𝑋 ; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋 |𝑌 ) (8)

To encourage the categorical latent variable c to be associated with meaningful semantic features and
to better align with the WGAN loss function, we introduce an auxiliary network Q that maximizes



Algorithm 1 InfoWGAN Training Process
1: for number of training iterations do
2: for 𝑛𝑑 iterations do
3: Sample minibatch of 𝑚 beamspace channel realizations {H(𝑖)}𝑚𝑖=1 ∼ ℙH𝑣 ,
4: latent variables {z(𝑖)}𝑚𝑖=1 ∼ ℙz, and random numbers {𝜖(𝑖)}𝑚𝑖=1 ∼ 𝑈 [0, 1]
5: Sample categorical latent codes {c(𝑖)}𝑚𝑖=1 ∼ Cat(𝐾 = 5, 𝑝 = 0.1)
6: Ĥ𝑣 = G(z, c; 𝜃𝑔)
7: H̃𝑣 = 𝜖H𝑣 + (1 − 𝜖)Ĥ𝑣
8: 𝜃𝑑 = Update_D(Ĥ𝑣,H𝑣, H̃𝑣, 𝑚, 𝛾 , 𝛽; 𝜃𝑑)
9: end for

10: Sample minibatch of 𝑚 latent variables {z(𝑖)}𝑚𝑖=1 ∼ ℙz
11: Sample categorical latent codes {c(𝑖)}𝑚𝑖=1 ∼ Cat(𝐾 = 5, 𝑝 = 0.1)
12: 𝜃𝑔 = Update_G(G(z; 𝜃𝑔), 𝑚, 𝛾 ; 𝜃𝑔)
13: 𝜃𝑞 = Update_Q(𝜃𝑞)
14: end for

Subroutine 1: 𝜃𝑑 = Update_D(xG,x𝑟,xrG, 𝑚, 𝛾 , 𝛽; 𝜃𝑑)

1: L(𝜃𝑑) =
1
𝑚 ∑𝑚

𝑖=1 [𝐷(x
(𝑖)
G ; 𝜃𝑑) − 𝐷(x(𝑖)𝑟 ; 𝜃𝑑)]

2: L(𝜃𝑑) = L(𝜃𝑑) + 𝛽 (‖∇x(𝑖)G
𝐷(x(𝑖)rG; 𝜃𝑑)‖2 − 1)

2

3: 𝜃𝑑 = 𝜃𝑑 − 𝛾Adam(∇𝜃𝑑L(𝜃𝑑))

Subroutine 2: 𝜃𝑔 = Update_G(xG, 𝑚, 𝛾 ; 𝜃𝑔)
1: Input: xG will be a function of 𝜃𝑔

2: L(𝜃𝑔) =
1
𝑚 ∑𝑚

𝑖=1 −𝐷(x
(𝑖)
G )

3: 𝜃𝑔 = 𝜃𝑔 − 𝛾Adam(∇𝜃𝑔L(𝜃𝑔))

Subroutine 3: 𝜃𝑞 = Update_Q(c,xG, 𝑚, 𝛾 ; 𝜃𝑞)

1: L(𝜃𝑞) = − 1
𝑚 ∑𝑚

𝑖=1 log𝑄(c(𝑖)|x
(𝑖)
G )

2: 𝜃𝑞 = 𝜃𝑞 − 𝛾Adam(∇𝜃𝑞L(𝜃𝑞))

the mutual information between the latent variable c and the generated samples G(z, c). The loss of
the auxiliary network Q is approximated by minimizing the negative log-likelihood between c and the
predictions of the auxiliary network Q(c|G(c, z)). Combined with the previously mentioned WGAN-GP,
the objective function of the proposed InfoWGAN is defined as follows:

min
𝐺,𝑄

max
𝐷∈𝒟

𝔼𝑥∼𝑃𝑟[𝐷(𝑥)] − 𝔼𝑧∼𝑃𝑔,𝑐∼𝑃𝑐[𝐷(𝐺(𝑧, 𝑐))]

+ 𝜆1𝔼�̂�∼ℙ�̂� [(‖∇�̂�𝐷(�̂�)‖2 − 1)2]

− 𝜆2𝔼𝑐∼𝑃𝑐,𝑧∼𝑃𝑔[− log𝑄(𝑐|𝐺(𝑧, 𝑐))] (9)

This objective function consists of three parts: the adversarial game term, the gradient penalty term,
and themutual informationmaximization term, with 𝜆1 and 𝜆2 being the regularization hyperparameters
for the latter two terms, respectively.

To reduce the number of network parameters, the auxiliary network Q shares all network parameters
with the discriminator D of the WGAN, except for the last layer. Specifically, since the output of D is a



binary value indicating real or fake, the final layer of D is a linear layer. On the other hand, the output
of Q aims to classify the input channel matrix, therefore, the last two layers of Q are a softmax layer
and a linear layer, respectively.The complete model network architecture is shown in Figure 1.

3.2.3. Training Process

In Algorithm 1, we detail the training process of the proposed InfoGAN model. First, we sample real
beamspace channel matricesH, noise vectors z, and categorical latent variables c, and call Subroutine 1
to update the discriminator’s parameters 𝜃𝑑 continuously for 𝑛𝑑 times. Subsequently, we sample another
batch of (z, c) and sequentially call Subroutine 2 and 3 to update the parameters of the generator G
and the auxiliary network Q. The detailed training parameters can be found in Table1.

Table 1

Training Parameters

Parameter Value

Dataset Size Train - 6000 × 5

Test - 50 × 5

Optimizer Adam

Learning Rate 0.0005

Batch size 64

Epochs 200

Table 2

Channel Parameters

Parameter Value

Delay Profile CDL - A,B,C,D,E

Subcarrier Spacing 15 kHz

𝑁𝑇 × 𝑁𝑅 64 × 16

Antenna Array Type ULA

Antenna Spacing 𝜆𝑐/2

Carrier Frequency 40 GHz

Delay Spread 30 ns

Doppler Shift 5 Hz

4. Simulation Details

4.1. Data Generation

According to 3GPP TR 38.901 [15], we used MATLAB to generate five types of CDL channel data for
model training and testing. CDL-A, B, and C are NLOS channels, while CDL-D and E are LOS channels.
The channels are sorted by LOS component proportion: B < C < A < E < D. The detailed channel
generation parameters are shown in Table2.

We compare the proposed InfoGAN model with two mainstream algorithms in the current field of
channel estimation: CS-based methods, such as OMP and Approximate Message Passing (AMP), as well
as DL-based methods.

4.2. BASELINE

We compare the proposed InfoGAN model with two mainstream algorithms in the current field of
channel estimation: CS-based methods, such as Orthogonal Matching Pursuit (OMP) and Approximate
Message Passing (AMP), as well as DL-based methods.

• Orthogonal Matching Pursuit (OMP): A greedy algorithm for sparse signal reconstruction.
We use the OMP algorithm for channel estimation as described in [16], where OMP minimizes
‖𝐻𝑣‖0 subject to ‖𝑦 − 𝐴sp𝐻𝑣‖2 ≤ 𝜎. The stopping criterion of the algorithm is based on the power
of the residual error.



• EM-GM-AMP: Combining Expectation-Maximization (EM) and Approximate Message Passing
(AMP) techniques, EM-GM-AMP is used for sparse signal reconstruction and effectively handles
noise. The algorithm takes the received pilot signal 𝑦 and the measurement matrix 𝐴sp as inputs,
and the channel matrix 𝐻 is solved through AMP iterations. The specific number of iterations
depends on the SNR level.

• Conditional Wasserstein Generative Adversarial Network with Gradient Penalty
(CWGAN-GP): We adopt the CGAN model proposed in [2]. First, a LOS predictor is trained
to perform binary classification (LOS/NLOS) on the input signal. The classification result is
used as conditional information and input to both G and D to control the type of channel model
generated by G. By classifying the channels, the range of channels generated by G is narrowed,
effectively speeding up the estimation process and improving the accuracy of channel estimation.
The model’s training data and conditions are the same as those used for the proposed InfoWGAN.

4.3. Simulation Results & Analysis

Figure 2: The trend of changes in channel images generated by InfoWGAN at epoch=1, 80, 160

During the iterative training process of InfoWGAN, we use fixed input variables to sample models
at different stages to evaluate the training performance of InfoWGAN. Taking the CDL_B channel
model as an example, we visualized the fake samples generated by G at epochs 1, 80, and 160, as
shown in Figure 2. It can be clearly observed that as the number of training iterations increases, G
successfully captures the sparse characteristics of the CDL_B channel, and the generated fake channel
model samples increasingly resemble the real channel samples. We compared our proposed InfoWGAN
with the aforementioned baselines on five different CDL channels. We plotted the NMSE vs. SNR graphs
for the five channel models, as shown in Figure 3. By observing Figure 3, the following conclusions
can be drawn:

CS-based methods demonstrate good robustness under both LOS and NLOS conditions. The NMSE
range for EM-GM-AMP remains within the interval [−2, 2] under both conditions, consistently outper-
forming OMP. In contrast, LOS conditions significantly impact the performance of DL-based models,
with an average difference of 6 dB. Additionally, the performance order of DL-based models across the
five CDL channel models is B < C < A < D < E, corresponding to the increasing of LOS components in
the channel. Thus, DL-based channel estimation methods clearly outperform CS-based methods under
LOS conditions.

Under NLOS channel conditions, the practical performance of CWGAN, proposed in [2], is slightly
inferior to EM-GM-AMP. This is because CWGAN uses LOS/NLOS as conditional information without
further distinguishing the three NLOS channel models with different levels of sparsity. Our proposed
InfoWGAN model, on the other hand, perfectly captures the differences in sparsity among CDL_A, B, C



Figure 3: Comparison of NMSE for InfoWGAN, OMP, EM-GM-AMP, and CWGAN-GP on Five CDL Channels

channels, allowing for specific channel estimation for each channel. As a result, it performs better than
EM-GM-AMP. Additionally, it is observed that since CDL_B and CDL_C are fully NLOS channels, and
CDL_A is a mixed LOS/NLOS channel, CDL_A exhibits more significant sparsity. Therefore, among
these three channels, InfoWGAN performs best on CDL_A , with an average performance improvement
of approximately 1.6 dB over EM-GM-AMP.

For LOS channels CDL_D, E, compared to CWGAN, our proposed InfoWGAN is more robust to
noise variations, especially under low SNR conditions. Under high SNR conditions, the performance
improvement of InfoWGAN is not significant due to the high sparsity of CDL_D and CDL_E channels,
with only a few non-zero values and lacking distinct sparse features, making them highly similar.
Additionally, since there are only two LOS channel types in the CDL model, this can lead to a loss
in classification performance. Under low SNR conditions, the enhanced noise power reduces the
similarity between CDL_D, E channels, thus improving the model’s performance. Overall, our proposed
InfoWGAN model is more suitable for channel estimation under low SNR conditions.

5. CONCLUSIONS

In mmWave MIMO communication scenarios, the diversity of channel types and the high cost of
channel measurement pose challenges to channel estimation. Moreover, traditional channel estimation
algorithms do not scale well. To address this, this paper proposes a model integrating InfoGAN and
WGAN, called InfoWGAN. By transforming the mmWave channel matrix into the beamspace and
leveraging the sparsity of mmWave in the beamspace, InfoWGAN is trained for unsupervised channel
classification and subsequently performs channel estimation and reconstruction. Simulation results
show that, compared to traditional CS-based channel estimation methods and CGAN, the proposed
InfoWGAN demonstrates better performance in both LOS and NLOS scenarios and exhibits greater
robustness under low SNR conditions.
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