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Abstract
Path planning in narrow environments presents substantial challenges for autonomous driving and robotic
navigation. This paper introduces an innovative adaptive search method tailored for the hybrid A* algorithm,
designed to fully leverage the capabilities of differential drive models. This method enhances the algorithm’s
ability to generate trajectories that are more in tune with the dynamics of differential drive chassis, particularly
in narrow passages. Here, the algorithm adaptively transitions between hybrid A* and traditional A* strategies,
utilizing variable search step lengths to effectively balance precision and computational efficiency. Furthermore,
we introduce a novel reward function for the hybrid A* algorithm, which incorporates considerations for safety
and the costs associated with in-place rotations. This reward function takes into account the number of nearby
obstacles, a safety cost, a rotation cost, and a zero-speed cost, all aimed at minimizing unnecessary rotations
and optimizing the overall path planning process. To implement our approach in real-world scenarios, we
present an Enhanced Dynamic Window Approach (EDWA) that employs multi-scale path sampling to more
effectively navigate complex environments with sharp turns. Simulation results demonstrate the effectiveness and
superiority of our proposed algorithms in managing narrow path navigation. The improved hybrid A* and DWA
algorithms notably enhance safety, efficiency, and trajectory smoothness, showing significant advancements over
traditional methods.
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1. Introduction

In the field of autonomous navigation, efficient trajectory planning in narrow environments remains
one of the most challenging tasks, demanding high levels of precision and adaptability from path
planning algorithms [1]. Traditional path planning methods, such as the basic A* algorithm and
its derivatives, have been extensively utilized due to their effectiveness in grid-based mapping and
clear path determination [2]. However, these conventional techniques often fall short in complex,
narrow environments due to their rigid pathfinding rules and inability to dynamically adapt to varying
constraints and obstacles.

The standard A* algorithm, a cornerstone in path planning, is primarily designed for environments
where the movement between nodes is constrained to fixed steps and predefined directions. This rigidity
can result in suboptimal path generation in constrained spaces where the ability to maneuver freely
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and adjust to obstacles dynamically is crucial. Moreover, the A* algorithm’s heuristic nature does not
inherently account for the kinematic constraints of different robotic platforms, which are essential in
tight spaces. Enhancements such as the Hybrid A* algorithm have attempted to address these issues
by incorporating the ability to plan paths that consider the vehicle’s orientation and kinematics [3].
However, Hybrid A* fails in narrow paths that require in-place rotations, and efficiency issues arise
primarily with multi-scale sampling.

Given the deficiencies of these traditional algorithms in narrow and dynamic environments, there is
a pressing need for more adaptive and dynamically responsive path planning methods. The challenges
in such environments include not only avoiding static and dynamic obstacles but also optimizing the
path for safety, efficiency, and compliance with the vehicle’s dynamic capabilities. This necessitates an
algorithm that can adjust its planning strategy based on real-time environmental data and vehicle state,
transitioning smoothly between different planning modes to accommodate varying spatial constraints.

To address these challenges, our paper introduces an innovative adaptive search method within
the Hybrid A* framework specially designed for differential drive models, which have the capability
for in-place rotations. This method allows for dynamic adjustment of search step lengths, enabling a
balance between computational efficiency and the precision needed in constricted spaces. Additionally,
we propose a novel reward function that integrates multiple cost factors, such as proximity to obstacles,
safety margins, and the costs associated with rotational and zero-speed movements. This function is
designed to minimize unnecessary movements and optimize the path for both safety and efficiency.

To ensure effective alignment between the model’s dynamically generated trajectory and the pre-
planned trajectory during operation, we have implemented an Enhanced Dynamic Window Approach,
which generates control commands based on the trajectory to navigate complex environments more
effectively [4]. This approach allows for better anticipation and handling of sharp turns and narrow
passages, significantly improving the robot’s ability to navigate safely and smoothly.

By integrating these advanced techniques, our approach significantly outperforms traditional path
planning methods in terms of safety, efficiency, and adaptability in narrow environments. The combi-
nation of adaptive Hybrid A* and EDWA represents a substantial step forward in the field of robotic
navigation, offering a robust solution to one of the most pressing challenges in autonomous vehicle and
robotics technology today. Through rigorous simulation and practical application, our methods demon-
strate their superiority, paving the way for more sophisticated and reliable autonomous navigation
systems.

2. Related Work

Path planning in narrow passages presents unique challenges due to the need for precise maneuverability
and obstacle avoidance in constrained environments. Various approaches have been proposed to address
these challenges, focusing on optimizing safety, efficiency, and adaptability of navigation algorithms.
However, several limitations remain in these methods.

2.1. Model Predictive Control and Hybrid Algorithms

Several studies have explored the integration of Model Predictive Control (MPC) with traditional path
planning algorithms to enhance navigation in cluttered environments. For instance, Chen and Li [5]
developed an MPC-based trajectory planning method to navigate obstacle-cluttered environments,
demonstrating significant improvements in safety. However, it often requires extensive computational
resources and may struggle with real-time adaptability in highly dynamic environments. Similarly,
Borrello et al. [6] introduced a real-time trajectory planner with dynamic obstacle avoidance, but
its reliance on accurate environmental modeling limits its effectiveness. Xing et al. [7] combined
state-based decision-making with an inertial dynamic window approach, yet it remains computationally
intensive.

In contrast, our adaptive search method within the Hybrid A* framework dynamically adjusts search
step lengths based on environmental constraints, balancing precision and computational efficiency.



Our novel reward function integrates multiple cost factors, optimizing the path for both safety and
efficiency, thus addressing the computational and real-time adaptability limitations of traditional MPC
and hybrid algorithms.

2.2. Dynamic Window Approach Enhancements

The Dynamic Window Approach (DWA) has been widely utilized for local trajectory optimization. Cao
and Nor [4] improved DWA by integrating multi-scale path sampling, navigating complex environments
more effectively. However, their method may suffer from suboptimal path smoothness due to discrete
path sampling. Works like Banday et al. [8] and Abtahi et al. [9] optimized DWA for specific applications,
highlighting its adaptability but also its limitations in general applicability.

Our approach enhances DWA with multi-scale path sampling, significantly improving navigation in
sharp turns and narrow passages. This ensures better path smoothness and adaptability, addressing the
limitations of previous DWA-based methods.

2.3. Sampling-based Methods and Reinforcement Learning

The combination of sampling-based methods and reinforcement learning has shown promise for narrow
passage problems. Huang et al. [10] presented Agile-RRT*, enhancing initial solution quality and
convergence rate in complex environments but requiring extensive parameter tuning. Weerakoon et
al. [11] developed a context-aware planner using offline reinforcement learning, showing superior
performance in cluttered outdoor environments but heavily relying on pre-trained models. Other works,
such as Levit et al. [12], integrated reinforcement learning for path planning, emphasizing the potential
but also the reliance on extensive training data.

Our approach combines Hybrid A* and EDWA, improving initial solution quality and convergence
rate while reducing computational costs. Our reward function enhances adaptability and efficiency
without relying heavily on pre-trained models, addressing the limitations of traditional sampling-based
methods.

3. Method

In this section, we introduce our methodology for the development and implementation of the Adaptive
Hybrid A* Algorithm combined with the Enhanced Dynamic Window Approach for optimal trajectory
planning in narrow environments. This approach utilizes the differential drive model’s capabilities to
ensure efficient and safe navigation through complex spaces.

As illustrated in Figure 1, our approach integrates both the Adaptive Hybrid A* and EDWA into a
cohesive framework, enabling dynamic and efficient path planning.

3.1. Adaptive Hybrid A* Algorithm

The Adaptive Hybrid A* Algorithm enhances trajectory planning by dynamically alternating between
traditional A* and Hybrid A* methods. This flexibility allows for adjusting search step lengths to
optimize precision and computational efficiency in constrained environments, a feature crucial for
differential drive models that may require in-place rotations.

The node expansion strategy is designed to extend search nodes with a mix of curve and straight
movements, adhering to the kinematic constraints and employing in-place rotations. This multi-scale
trajectory generation is crucial for effective navigation in tight spaces.

Node evaluation is conducted using an enhanced cost function, which considers additional factors
beyond the traditional A* evaluation. The cost function is defined as:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) + 𝑠(𝑛) + 𝑟(𝑛) + 𝑧(𝑛)

where:
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Figure 1: Framework of the Self-Adapting A* Algorithm

• 𝑔(𝑛) represents the distance traveled,
• ℎ(𝑛) is the predicted distance to the goal using A*,
• 𝑠(𝑛) denotes the number of nearby obstacles,
• 𝑟(𝑛) accounts for the in-place rotation cost,
• 𝑧(𝑛) represents the zero-speed cost.

Figure 2: Step-by-step trajectory planning using the Adaptive Hybrid A* Algorithm

Figure 2 demonstrates the trajectory planning process at each step, showcasing how our algorithm
adapts to the immediate environment.



3.2. Enhanced Dynamic Window Approach

The EDWA refines local trajectory planning through multi-scale path sampling and adaptive evaluation.
Initially, trajectory sampling is performed for different angular velocities, generating multiple sampled
trajectories. Considering the in-place rotation capability, sampling is conducted in multiple directions
to ensure comprehensive coverageas shown in Figure 3.

(a) Use the DWA algorithm to generate a di-
rectional control command.

(b) Perform in-place rotations in multiple di-
rections to ensure comprehensive trajec-
tory coverage.

Figure 3: Illustrations of the EDWA in action. The first image demonstrates the generation of a directional
control command, while the second image showcases the algorithm’s capability to perform in-place rotations in
multiple directions, ensuring comprehensive trajectory coverage.

The EDWA includes an adaptive sampling strategy specifically designed for narrow environments.
Reference points are selected based on the global trajectory, and the lengths of sampled trajectories are
adjusted accordingly. This adaptive sampling ensures that the vehicle can navigate tight spaces while
maintaining a smooth and efficient path. The sampling trajectory length 𝐿 is defined as:

𝐿 = 𝑓(𝑑ref, 𝜃ref)

where 𝑑ref is the distance to the reference point and 𝜃ref is the angle to the reference point.
Adaptive sampling scale estimation is based on the global trajectory shape, allowing DWA to generate

local trajectories that conform to the global path. The trajectory evaluation function in EDWA is designed
to consider the global trajectory shape, ensuring that the vehicle’s movements are smooth and closely
follow the planned path. This integration of global and local planning improves the vehicle’s ability to
navigate complex environments effectively.

By combining the Adaptive Hybrid A* Algorithm with the EDWA, our method significantly improves
trajectory planning in narrow environments, enhancing safety, efficiency, and path smoothness.

4. Experiment

To validate the effectiveness of our proposed adaptive Hybrid A* algorithm with the Enhanced Dynamic
Window Approach (DWA), we conducted a series of experiments. These experiments were designed
to measure both the computational efficiency and the path planning performance of our algorithm
compared to traditional approaches.



4.1. Pruning Efficiency

We first evaluated the efficiency of our pruning strategy by measuring the planning time before and after
pruning. Efficient pruning is crucial for reducing computational overhead and ensuring the algorithm
can operate in real-time scenarios. The results are shown in Table 1.

Before Pruning (s) After Pruning (s)
Planning Time 13.231000 6.854000

Table 1
Comparison of Planning Time Before and After Pruning

The results indicate that our pruning strategy significantly reduces the planning time, almost halving
it. This improvement in computational efficiency ensures that the algorithm can quickly adapt to
changes in the environment, which is essential for real-time autonomous navigation.

4.2. Path Planning Performance

To comprehensively assess the path planning capabilities of our algorithm, we conducted experiments
under different scenarios and compared the results with various existing algorithms. The algorithms
tested include:

• 𝐴* algorithm with an inscribed circle radius expansion map
• 𝐴* algorithm with a circumscribed circle radius expansion map
• Hybrid 𝐴* algorithm
• Our proposed adaptive Hybrid A* algorithm

We evaluated these algorithms in two specific scenarios:

• Route 1: A path that is actually impassable, containing obstacles that make it non-traversable.
• Route 2: A path that is actually passable, designed to test the algorithm’s ability to find a viable

route through a complex but navigable environment.

The results of these experiments are summarized in Table 2.

Algorithm Route 1 (Impassable) Route 2 (Passable)
𝐴* (Inscribed Circle Expansion) Path Found Path Found
𝐴* (Circumscribed Circle Expansion) No Path Found No Path Found
Hybrid 𝐴* No Path Found No Path Found
Ours No Path Found Path Found

Table 2
Summary of Path Planning Results for Different Scenarios and Algorithms. The table shows whether each
algorithm was able to find a path in the two test routes: an impassable route (Route 1) and a passable route
(Route 2).

4.2.1. Route 1: Impassable Path

In Route 1, the path contains obstacles that make it non-traversable. The 𝐴* algorithm with the inscribed
circle radius expansion was able to find a path, which indicates that it may not be accurately assessing
the impassability of the route. The 𝐴* algorithm with the circumscribed circle radius expansion and the
Hybrid 𝐴* algorithm both correctly identified that no path could be planned. Our proposed algorithm
also correctly identified that no path could be planned, demonstrating its capability to accurately assess
impassable routes and avoid proposing infeasible paths.



(a) Path planned by 𝐴* (Inscribed Circle Ex-
pansion) for Route 1, which is actually im-
passable.

(b) Path planning by 𝐴* (Inscribed Circle Ex-
pansion) for Route 2, which is actually
passable.

(c) No path found by 𝐴* (Circumscribed Cir-
cle Expansion) for Route 1, correctly iden-
tifying it.

(d) Failed planned by 𝐴* (Circumscribed Cir-
cle Expansion) for Route 2, which is actu-
ally passable.

(e) No path found by our algorithm for Route
1, accurately assessing it as impassable.

(f) Successful path planning by our algorithm
for Route2 demonstrating its effectiveness.

Figure 4: Path planning results for different algorithms based on various experimental routes, showcasing their
effectiveness and limitations.

4.2.2. Route 2: Passable Path

In Route 2, the path is designed to be navigable but complex, with narrow passages and sharp turns.
The 𝐴* algorithm with the inscribed circle radius expansion and the Hybrid 𝐴* algorithm both failed
to find a path, which shows their limitations in dealing with narrow and complex environments. Our
proposed algorithm successfully planned a path, indicating its superior ability to navigate through
complex but passable environments.



4.2.3. Result analysis

As show in figure 4, Experimental results clearly demonstrate the strengths and weaknesses of the differ-
ent path planning algorithms. Our proposed algorithm consistently shows its ability to accurately assess
impassable routes and effectively navigate passable ones, which is crucial for real-world applications
requiring reliable and efficient autonomous navigation in narrow and complex environments.

4.3. Discussion

The experimental results validate the enhancements achieved by our adaptive Hybrid A* algorithm
with the Enhanced Dynamic Window Approach. The substantial reduction in planning time showcases
the efficiency of our pruning strategy. Moreover, the improved path planning accuracy highlights
the algorithm’s ability to effectively navigate complex and narrow environments, which is critical for
autonomous navigation in real-world scenarios.

The significant reduction in planning time, as shown in Table 1, is a direct result of our pruning
strategy, which efficiently eliminates less promising paths early in the search process. This improvement
ensures that the algorithm remains computationally feasible even in highly dynamic and constrained
environments.

In terms of path planning performance, our algorithm’s success in the passable route scenario (Route
2) while accurately identifying the impassable route scenario (Route 1) underscores its robustness
and reliability. Traditional algorithms either found infeasible paths or failed to find paths in complex
environments, whereas our algorithm demonstrated the ability to make precise and feasible path
planning decisions. This capability is particularly advantageous for autonomous vehicles and robots
operating in tight and cluttered spaces, where accuracy and adaptability are paramount.

Overall, these experiments confirm that our proposed approach not only enhances computational
efficiency but also significantly improves the accuracy and feasibility of path planning in narrow and
complex environments. This makes it a valuable tool for advancing autonomous navigation technologies.

5. Conclusion

In this paper, we presented a novel adaptive Hybrid A* algorithm combined with an Enhanced Dynamic
Window Approach for optimal trajectory planning in narrow and complex environments. By dynam-
ically adjusting search step lengths and integrating a comprehensive reward function, our method
enhances the algorithm’s ability to generate trajectories that are more in tune with the dynamics of dif-
ferential drive chassis, particularly in narrow passages. This significantly improves both computational
efficiency and path planning accuracy.

The proposed pruning strategy effectively reduces planning time by nearly half, ensuring that
our algorithm can operate in real-time scenarios. This improvement is crucial for applications that
require quick and reliable decision-making, such as autonomous driving and robotic navigation. Our
experimental results demonstrate the superiority of our method in both impassable and passable route
scenarios. Unlike conventional algorithms, our adaptive Hybrid A* algorithm consistently and accurately
identifies impassable routes while successfully navigating complex, passable paths.

The Enhanced Dynamic Window Approach (EDWA) further complements our approach by refining
local trajectory planning through multi-scale path sampling and adaptive evaluation. This ensures
smooth and efficient navigation, even in environments with sharp turns and narrow passages. The
integration of global and local planning allows our algorithm to maintain trajectory alignment and
optimize path smoothness, enhancing the overall safety and efficiency of the navigation process.

Our approach offers a robust solution to one of the most pressing challenges in autonomous vehicle
and robotics technology today. By combining adaptive search strategies with advanced dynamic window
techniques, we pave the way for more sophisticated and reliable autonomous navigation systems. Future
work will focus on extending our framework to accommodate a wider range of environmental conditions
and further enhancing the adaptability of our algorithm to real-world scenarios.



In summary, the adaptive Hybrid A* algorithm with Enhanced Dynamic Window Approach represents
a significant advancement in the field of path planning. It not only enhances computational efficiency
but also significantly improves the accuracy and feasibility of trajectory planning in narrow and complex
environments. This makes it a valuable tool for advancing autonomous navigation technologies, with
the potential to impact various applications requiring precise and reliable navigation in constrained
spaces.
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