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Abstract 
Severe cumulative errors significantly limit the applicability and expansion of IMU-based 
indoor localization. A quantitative analysis is conducted showing the impact that heading 
estimation and step length estimation have on cumulative error. In response, this paper 
proposes a method that utilizes a few numbers of indoor landmarks to assist IMU 
localization. Specifically, a lightweight self-attention model is employed to classify 
behavioral sequences from training data, matching behaviors with landmarks to 
reconstruct indoor paths. By sequentially linking space-discrete landmarks through time-
continuous behaviors, a spatially reconstructed path is formed within the building, assisting 
PDR in correcting heading directions based on the resemblance between newly predicted 
and existing paths. When an activity matches a landmark, the positioning estimate is 
recalibrated to align with the identified landmark, thereby rectifying cumulative errors. 
While doing heading estimation, a deep learning technique is applied to mitigate sensor 
yaw misalignment in the IMU data. The proposed indoor positioning method demonstrates 
exceptional performance. 
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1. Introduction

PDR suffers from serious cumulative errors (CE) which derive from the estimation of three 
parameters: heading, stride, and stride length. A lot of efforts have been made to diminish it. One 
way is to improve algorithms, like Kalman Filter(KF) [1], Particle Filter(PF) [2] , and Deep 
Learning(DP) [3]. Heading estimation and Step length are corrected by these methods. However the 
measuring error is persistent, later corrections are based on positions with bias causing CE constantly. 
It seems necessary to have additional source data to assist, which is another way out. 
Correspondingly, different sources of data, like Wi-Fi [4, 5], Bluetooth [6], vision [7], etc. are applied 
with PDR to improve the accuracy. And better results have been made by them. The problem is that 
there are unequal scale errors, which cost abundant efforts, in additional data. More devices are also 
required which makes PDR lose its conciseness. 

Additional information from other resources is necessary for CE correction of PDR. Auxiliary 
methods relying on wireless communication require data scales in the tens of thousands, while 
visual approaches demand even higher computational power, resulting in substantial human and 
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financial costs. To mitigate these issues and enhance the convenience of PDR localization, we propose 
a method that combines a small number of landmarks with the extraction of behavioral information 
from IMU. Based on this idea, the path inside a building and human activity information are 
excavated from IMU. For the majority of indoor human physical activities, directly determining the 
position determination and navigation of the whole body is not essential because we can quickly 
visually learn and memorize the space layout to find out where we are and how to get to another 
location. Monitoring human movements has many more indirect benefits, e.g., determining the 
quantity of human motion, building occupancy with respect to layout, optimizing human physical 
activities that are distributed, care in the community of less physically able people, etc. Firstly, a deep 
learning method is applied to mine the behavior characteristics in IMU data, such as stairs up and 
down, turning, walking, stopping, etc., and map them with landmarks. Then, the path inside the 
building is reconstructed by matching landmarks and the original PDR result. The reconstructed path 
can help PDR itself to correct the heading. The contributions of our work are as follows: 
1. IMU data is used to extract behavior semantics based on a self-attention model we designed. And 

mapping the relationship between pedestrians’ behaviors and landmarks inside the building is 
built. This mapping relationship can update the position to the specific waypoints in the PDR 
positioning process. 

2. The intrinsic nature of CE lies in the high autocorrelation of step sequences. The segmentation of 
this correlation through truncated approaches in behavior recognition constitutes a pivotal 
strategy for mitigating the CE. Furthermore, we discern that within disparate behavioral intervals, 
the state of motion remains constant, and this equilibrium state exerts a lesser impact on the CE 
compared to the transitional phases of behavior states. 

3. Classification models effectively avoid noise interference in the data, whereas regression models 
are more susceptible to yaw misalignment, making them difficult to fit accurately. Peak and valley 
detection are both applied based on a low-pass filter and cooperate with vertex and interval 
threshold to clean the interference points shown in Figure.6 

4. We designed a landmarks-based calibrating (shifting reference point to a new location related to 
an activity waypoint change) PDR location system based on activity information extracted from 
IMU data, which can alleviate the accumulated PDR error by mining the path information and 
behavior semantics hidden in the data. We compared the other two classic data fusion methods, 
PDR+WiFi and XMU_PDR, resulting in a 26.8% increase in real-time positioning. 

2. Related Work 

Sensor yaw misalignment inherently contributes to each localization result, propagating through the 
system with subsequent measurement. This necessitates precise interval alignment to accurately 
determine the IMU's relative position with respect to the carrier. Techniques typically involve 
nonlinear and linear Kalman filters or multi-vector solutions, which impose significant 
computational loads [8-10]. Attitude error dynamics are leveraged to analyze this issue. The 
observability of yaw misalignment is assessed using Piecewise Constant Systems (PWCS) and 
Singular Value Decomposition (SVD) theory [11]. Furthermore, the observability of roll 
misalignment in high-speed motion scenarios is improved [12]. In [13], the author proposes a method 
to estimate the bias between the IMU and the carrier coordinate systems, considering IMU bias. The 
estimation problem is treated as a joint state and parameter estimation problem, resolved using an 
adaptive estimator system dependent on IMU measurements. Additionally, the effectiveness of bias 
estimation can be evaluated by identifying the bias between high-precision INS/GNSS and the IMU 
and carrier coordinate systems. 
The localization algorithm follows a Markov process, where errors in previous results propagate and 
accumulate through successive measurements. PDR is chain positioning mode, and each estimation 
depends on the last result. With the chain last, the error will be accumulated [14, 15]. To solve this 
problem, D. Yan et al. [16] proposed a deep belief network (DBN) focusing on the periodicity of 
angular rate while walking, peak–valley angular velocity detection, and zero-cross detection. Based 
on biomechanical models, N. Perukhov. et al. [17] minimized the length estimation error. In [16, 18], 
authors all use peak detection to determine one step, and they made efforts to noise canceling of 
acceleration. Magnetometers and gyroscopes are used for heading estimation. M.Abadi. [19] tried to 
use deep learning to reduce the strong disturbance of Earth’s magnetic field inside buildings. J.Tian 



[20] designed an adaptive adjustment mechanism of filter parameters based on measurement quality 
assessment to improve the applicability of the method to different speeds and groups of people.  

 
Figure 1. IMU fused with a few landmarks indoor positioning pipeline. The blue, orange, and blue 
parts are IMU data, data processing, and path reconstruction, and belong to the offline phase. The 
green part is the system testing which is the online phase. 

 
Figure 2. HAR self-attention network. 

Additional data sources are also added to PDR to reduce the accumulated error. In [21, 22], authors 
use Wi-Fi to help PDR to improve its performance. Wi-Fi RSSI fingerprint provides a blurred area 
which corrects deviation in PDR. The same theory is employed in BLE [23, 24], RFID [25, 26], and 
UWB[27, 28]. The floor plan as another additional data source is also used to decrease error. Through 
the integration of data fusion, environmental data is procured to bolster PDR positioning by Ricardo 
Santos [29]. CE indeed requires additional information for correction, and a specific type of 
supplementary data limits the expansion of PDR across various data environments. Furthermore, 
IMU contains ample information that traditional PDR has not appropriately exploited. Based on these 
two key points, we propose a calibrating system based on the human physical activity information 
system. 

3. Method 

3.1 Framework 

The envisioned system bifurcates into two distinct stages: the offline phase and the online phase. In 
the preliminary offline phase, depicted in the yellow and blue sections of the diagram, IMU data 
serves as the initial input, feeding into the "HAR-Attention Network" to extract pertinent human 



behavior information. This data, once harvested, is synchronized with the traditional PDR outcomes 
in a temporal context. Subsequently, spatial matching of reference point coordinates with behavioral 
semantics ensues. Through a process of coordinate transformation, the original PDR results undergo 
a refined correction, culminating in the reconstitution of the indoor pathway, as illustrated in the 
blue segment of the figure. Progressing to the online phase, considerable rectification of the heading 
is realized, leveraging the meticulously reconstructed path. This stage involves the strategic resetting 
of the original PDR positioning at critical nodes, facilitated by the identification and alignment of 
specific behaviors. This intricate process ultimately yields real-time, high-accurate positioning 
results. 

3.2 Self-attention HAR algorithm 

The self-attention mechanism, a trailblazing concept, has gained considerable acclaim in the domain 
of natural language processing. When applied to serialized datasets, such as IMU data, which is rich 
in human activity insights, it uncovers a multitude of semantic modules. Capitalizing on this 
compatibility, our research harnesses the self-attention mechanism to delve into and elucidate the 
subtle semantic layers embedded within the activities represented in IMU data. 

The Figure 2. illustrates the architecture of the model, with IMU data serving as the input which 
is initially subjected to a linear embedding. Utilizing an attention mechanism, the data undergoes a 
re-weighting process as delineated by the formula. This entails computing the dot-product results of 
the 𝑄 and 𝐾 , which are subsequently multiplied by the matrix 𝑉 , thereby channeling heightened 
focus toward regions with greater weighted significance, shown below: 

𝐴𝑡𝑡𝑒𝑛𝑡 𝑖𝑜𝑛(𝑄,𝐾 , 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√𝑑𝑘
)𝑉                          (1) 

Where 𝑸 ∈ ℝ𝑡𝑞∗𝑑𝑞 , 𝑲 ∈ ℝ𝑡𝑞∗𝑑𝑞 and 𝑽 ∈ ℝ𝑡𝑞∗𝑑𝑞 are three inputs of the self-attention layer: queries, 
keys, and values, where 𝑡𝑞, 𝑡𝑘, and 𝑡𝑣 are the element numbers in different inputs and 𝑑𝑞, 𝑑𝑘, and 
𝑑𝑣 denote the corresponding element dimensions. The scalar 

1

√𝑑𝑘
 prevents the Softmax function 

from falling into regions with tiny gradients. One query’s output is computed as a weighted sum of 
the values, where each weight of the value is computed by a designated function of the query with 
the homologous key. 

𝑂 = 𝐴𝑡𝑡𝑒𝑛𝑡 𝑖𝑜𝑛 ∗  𝑊𝑜 ,𝑊𝑜 ∈ ℝ
𝐶
𝑏
∗𝐶                            (2) 

Where 𝑂 represents the output of 1 ∗ 1 convolution layer weighted by 𝑊𝑜  and the attention 
layer 𝐴𝑡𝑡𝑒𝑛𝑡 𝑖𝑜𝑛. And the final output of this network is: 

𝐻𝐴𝑅𝑟𝑒𝑠𝑢𝑙 𝑡 = 𝑂 ∗ 𝑊𝐿𝑖𝑛𝑒𝑎𝑟
𝐹                              (3) 

Where 𝐻𝐴𝑅𝑟𝑒𝑠𝑢𝑙 𝑡  is the recognition result, 𝑊𝐿𝑖𝑛𝑒𝑎𝑟
𝐹  represents the fully connected layer. 

 
Figure 3: A simple example shows the self-attention HAR results in an indoor track of pedestrians. 

We apply this network to some daily activity recognition, such as sitting down, walking, turning, 
turning back, and standing. Table 1. shows the result which is higher than some other models used 
by different research groups. Regarding certain intricate aspects of the models, as well as their 
analyses, due to their deviation from the main theme of this paper, they will not be elaborated upon 
further. In Figure 3., one example of the HAR result is visualized which reflects the behavior sequence 
in a simple path. 



 
Table 1 
The HAR comparison in different algorithms. 

 Accuracy Precision Recall F1-score 
CNN 90.21% 88.72% 90.56% 89.63% 
LSTM 88.63% 87.45% 85.94% 86.69% 
SVM 93.97% 91.30% 92.00% 91.64% 

Proposed 96.37% 94.07% 96.52% 95.27% 

3.3 Reference path reconstruction 

During the training phase, conventional PDR is used to generate the initial path which has a large 
cumulative error. Then, the timestamps of behavior recognition in section 3.2 are obtained to match 
the path nodes in the time domain. Afterward, coordinates transformations are made to the heading 
estimation of conventional PDR in different time periods based on known reference points. 

Figure 4. (a) shows the path generated by conventional PDR, and the lower part shows the 
timestamps of different behavior results recognized by the ‘self-attention network’ in the time 
sequence. The time nodes of the behaviors are matched with the results of the generated path, 
resulting in the visualization of the matching results shown in (b), where the red markers represent 
the matching results. The indoor reference coordinates are used to correct the coordinate positions 
of the matches. The angle at which each behavior landmark deviates from the reference point is 
defined as the formula (4): 

θ = arccos	 [ (𝑥𝑝𝑟𝑒, 𝑦𝑝𝑟𝑒 )∗(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓  )

||(𝑥𝑝𝑟𝑒, 𝑦𝑝𝑟𝑒 )||∗||(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓  )||
]                            (4) 

Where, the angle θ represents the angle between the original estimated point and the reference 
point. (𝑥𝑝𝑟𝑒, 𝑦𝑝𝑟𝑒 )  represents the estimated coordinates of PDR, and (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓  )  represents the 
coordinates of the reference position. 
The deviation angle can be used to correct the predicted path of PDR. The formula for correcting 
each predicted point is as follows (5): 

{
𝑥𝑝𝑟𝑒′ =  𝑦𝑝𝑟𝑒 ∗ sin 𝜃 +  𝑥𝑝𝑟𝑒 ∗ cos 𝜃  
𝑦𝑝𝑟𝑒′ =  𝑦𝑝𝑟𝑒 ∗ cos 𝜃 −  𝑥𝑝𝑟𝑒 ∗ sin 𝜃                             (5) 

Where (𝑥𝑝𝑟𝑒′ , 𝑦𝑝𝑟𝑒′ ) represents the coordinates after heading correction.  
After performing heading conversion on all coordinates in each time interval, the reconstruction 

of the indoor path is completed, as shown in the result in Figure 4. (c). 

 
Figure 4. Indoor approximative path reconstruction process. In (a), the original path is constructed 
and at {𝑇1~𝑇5}, five behavior is detected. Matching with the landmark in (b) and based on formulas 
(4) and (5), the approximative path is reconstructed. 

3.4 Real-time landmarks-assist PDR indoor positioning system 

3.4.1 Heading estimate 
The main reason for the serious CE in conventional PDR is the deviation in heading estimation 

explained later. To avoid errors in heading estimation, the reconstructed path in the indoor 
environment is used as an effective basis for heading determination. The path between the behavior 
recognition points is classified as the same heading, and the reconstructed path data is sliced and 



used as training samples. An MLP is used to fit the estimated heading with the training data, 
completing an accurate estimate of the heading. To reduce time complexity, we used lightweight 
weight parameters, with the number of nodes in each hidden layer being (40, 120, 30, 1). The structure 
of the MLP model is shown in Figure 5. The results show that the CE caused by heading estimation 
in this case is very small, which is explained correspondingly. 

 

Figure 5. Heading Estimation Multilayer Perceptron 

3.4.2 Step Detection 
Step detection uses the regular dynamic changes of the accelerometer in the equipment on the 

three axes. This change is mainly reflected in that when one step is completed, the three-axis 
resultant force direction of the accelerometer will show a wave change pattern. It indicates that when 
one step is started, the accelerometer reading rises sharply, and at the end, the reading drops sharply.  
The sum values of the three-axis accelerometer measurement calculations are expressed as: 

𝐴𝑐𝑐𝑘 =  √𝐴𝑐𝑐𝑋𝑘
2 + 𝐴𝑐𝑐𝑌𝑘2 + 𝐴𝑐𝑐𝑍𝑘22                          (6) 

where 𝐴𝑐𝑐𝑋𝑘  , 𝐴𝑐𝑐𝑌𝑘  , and 𝐴𝑐𝑐𝑍𝑘  are the measurements from the three-axis accelerometers, and 
𝐴𝑐𝑐𝑘  denotes the sum values of these three-axis accelerometer measurements. 

For this part, the main problem is to find out the peak value and valley accurately, and the peak 
value or valley value is exactly a complete gait. Due to the influence of noise, the traditional method 
can detect the peak value, but the peak value needs to be filtered twice, because the detected peak 
value always contains some interference, and these interference points are random. A low path filter 
is applied to straining high-frequency noise and the setting is: 

𝑊𝑛 = 𝐹𝑐
𝐹𝑛𝑦𝑞

= 2 ∗ 𝐹𝑐
𝐹𝑠

                                (7) 

Where 𝐹𝑐  is the cut-off frequency, 𝐹𝑛𝑦𝑞 is Nyquist frequency, 𝐹𝑠  represents sampling rate and 𝑊𝑛 
is the Normalized cut-off frequency.  

 

Figure 6. Peak and valley detection results in which the noises are filtered. 
Peak and valley detection is then applied to the filtered accelerated data. There is also low-

frequency noise caused by the physical shaking which will be also detected in peaks or valleys as 
shown in the red circle in Figure 6. To avoid this detection error, vertex, and interval threshold is 
used. 
3.4.3 Step length estimation 

Generally, a linear frequency model or empirical model is used to calculate the step length. The 
linear frequency model mainly uses height and step frequency to establish a linear relationship with 



the step length. This method generally has low calculation cost, but a high error rate. At present, 
most of the step estimation methods using PDR for positioning generally use parametric models. The 
parametric model is proposed in this paper [30], using an empirical model. 

Table 2.  
The algorithm of CE calibrating with a Few landmarks system. 
Algorithm 1: CE calibrating with a few landmarks system 

Input: 𝑷𝒍𝒂𝒔𝒕  (𝑝𝑜𝑠𝑖 𝑡 𝑖𝑜𝑛 𝑎𝑡 𝑙𝑎𝑠𝑡  𝑚𝑜𝑚𝑒𝑛𝑡), 𝒗𝒊𝒎𝒖 (𝐼𝑀𝑈  𝑑𝑎𝑡𝑎 𝑣𝑒𝑐𝑡𝑜𝑟) 

Output: 𝑷𝒕𝒉𝒊𝒔(𝑝𝑜𝑠𝑖 𝑡 𝑖𝑜𝑛 𝑎𝑡 𝑡ℎ𝑖𝑠 𝑚𝑜𝑚𝑒𝑛𝑡) 
      While 𝑇𝑛𝑜𝑤 ≠  𝑇𝑒𝑛𝑑 : 
           do Step Detection: 
           If True, then: 
                 1: Load the Heading estimation model 𝑀ℎ 
                 2: Load the Step length estimation model 𝑀𝑠_𝑙  
                 3: Get 𝒗𝒊𝒎𝒖 in real-time, the time slot is 0.5s 
                 4: Calculate the Heading and Step length: 

                       𝐻𝑒
𝑘 = 𝑀ℎ(𝒗𝒊𝒎𝒖), where 𝐻𝑒

𝑘  is the 𝑘𝑡ℎ estimated Heading. 
                       𝐿𝑒𝑘 = 𝑀ℎ(𝒗𝒊𝒎𝒖), where 𝐿𝑒𝑘  is the 𝑘𝑡ℎ estimated Step length. 
                 5: Update 𝐻𝑒  based on Kalman Filter: 
                       𝐻𝑒

𝑘 =  𝐾 ∗ 𝐻𝑒
𝑘 + (1 − 𝐾) ∗ ∑ 𝐻𝑒

𝑘−𝑖𝑛
𝑖 ,  

Where 𝐾  is the coefficient which can reduce the impact of mutation values. 
                 6: Update the position at this moment: 

                        𝑃𝑡ℎ𝑖𝑠 = 𝐺𝑒𝑜(𝑃𝑙𝑎𝑠𝑡 ,𝐻𝑒
𝑘 , 𝐿𝑒𝑘),  

Where 𝐺𝑒𝑜() represents the Earth coordinate calculation algorithm. 
              End if 
          End while 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ = 𝑐 ∗  √𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛4                            (8) 
Where 𝐴𝑚𝑎𝑥 , 𝐴𝑚𝑖𝑛 represent the maximum and minimum of accelerate, 𝑐 is the rate index and it 
represents the influence of the high, step direction and step rate to step length. 

Indeed, the precision of this method for estimating step length is notably inconsistent. This 
variability largely stems from the substantial oscillation in the differential between peak and trough 
values. As discernible from the equation, this fluctuation diminishes somewhat when raised to the 
fourth power. Nonetheless, even minor discrepancies, once magnified by the coefficient 𝑐, can result 
in significant deviations in step sizes. Conversely, employing the reconstructed path as a corrective 
measure for step estimation markedly enhances the stability, effectively mitigating the cumulative 
error in PDR attributable to inaccuracies in step calculations. 

3.5 Real-time CE calibrating PDR system 

The algorithm outline is shown in Table 2. If there is a new movement, the first step is to use low 
pass filtering and peak detection methods to process the accelerometer data, then update the peak 
point list and record the peak point time. Second, obtain the maximum and minimum values of the 
accelerometer within 0.2s before and after the peak point, and then calculate the step size. The third 
step is to estimate the heading using the data from the gyroscope, accelerometer, and magnetometer. 
Finally, return the location result and update the location. 

4. Experiment and Result 

The preceding chapter delineated the entire algorithmic workflow along with the intricacies of its 



implementation. This section is dedicated to applying the algorithm across diverse datasets, collected 
from within various architectural structures, thereby substantiating the algorithm's efficacy. 

4.1 Data analysis 

The data is officially provided by IPIN 2021 and IPIN 2022 Conference. A variety of sensor data 
collected in mobile phones, such as Wi-Fi, BLE, light, sound, barometric pressure, acceleration, 
gyroscope, and magnetometer, are used to complete indoor positioning tasks in the IPIN 2022 Track 
3 competition. The data used in this stage are mainly from barometers, accelerometers, gyroscopes, 
and magnetometers. Their data format is shown in the following Table 3. The sampling frequency of 
different sensors is different. The sampling frequency of the barometer is below 10Hz, and that of the 
accelerometer, gyroscope, and magnetometer is about 50Hz. 

Table 3.  
The format of the dataset [31]. 

MAGN: the local magnetic field, as measured by the 3-axis magnetometer in the phone 

Format MAGE; AppTimestamps(s); SensorTimestamp(s); Mag_X(uT); Mag_Y(uT); Mag_Z(uT); 
Accuracy(integer) Example MAGE; 0.0035;8902.708;-20.700;-34.02000;-19.20000;3 

ACCE: the phone’s acceleration, as measured by the 3-axis accelerometers in the phone 

Format ACCE; AppTimestamps(s); SensorTimestamp(s); Acc_X(uT); Acc_Y(uT); Acc_Z(uT); 
Accuracy(integer) Example ACCE; 0.0035;8902.708;-1.8004;6.41464;-7.17303;3 

GYRO: measure the phone’s rotation, as measured by the 3-axis magnetometer in the phone 

Format GYRO; AppTimestamps(s); SensorTimestamp(s); Gyr_X(uT); Gyr_Y(uT); Gyr_Z(uT); 
Accuracy(integer) Example GYRO;0.0035;8902.708;-0.22846;-0.22930;-19.20000;3 

PRES: the atmospheric pressure 

Format PRES; AppTimestamps(s); SensorTimestamp(s); Pres(bar); Accuracy(integer) 

Example PRES;0.0035;8902.708; 2.20000;3 

In the process of data analysis, data over a long period is used to verify the effectiveness of the 
algorithm. For example, in gait detection algorithm, acceleration data up to ten minutes is used to 
test the effects of low-pass filtering and peak detection. The proposed algorithm is a real-time 
positioning algorithm, so it is necessary to specify how much of the positioning frequency is in real-
time. Although, under different requirements, the requirements for "real-time" are different, and in 
human indoor activities, the positioning frequency of 2Hz and above can be considered as a real-
time state. 
Figure 7. shows the data collection process and the way to hold the device. The user may have done 
other realistic movements such as stopping, sitting, attending a phone call, taking an elevator, among 
others. The focus is more on office buildings as they cater to a larger audience, and moreover, the 
behavior of individuals in office spaces is more purposeful, meaning that the pathways are more 
organized. 

4.2 Off-line stage 

During the training phase, data collection is imperative for the test area. The self-attention 
mechanism is then applied to this training data, facilitating the extraction of behavioral 
information from the sequential data. Concurrently, PDR is employed to garner initial path 
information. Following this, a correlation is established between the behavioral data and key nodes, 
leading to further rectification of the path information. The corrected data, endowed with 
enhanced directional accuracy, significantly mitigates the cumulative error issue inherent in PDR. 
This process culminates in the creation of foundational data for the real-time positioning system, 
thereby enabling the provision of highly precise, real-time location services. 



 
Figure 7. The way the user holds the device[31]. 

4.2.1 HAR in map 
The training set for the self-attention model mentioned in the previous chapter was self-collected, 

with a sampling frequency identical to that of the current experiment. The crux lies in the fact that 
the input length of the training dataset is 200*3, encompassing only a single activity type. To augment 
the model's adaptability, the positioning of the activity within the sample is randomized. However, 
in real indoor settings, data is temporally continuous, necessitating a more precise demarcation of 
the boundaries between behavioral nodes to avert significant recognition errors. We have employed 
a sliding window technique to delineate these boundaries. The window's width is set to 30, with 
padding of zeros at both ends to fulfill the model's input requirements. It is pivotal to note that the 
width of the sliding window is contingent upon the sampling rate, and the specific range for this 
setting can be referenced from the following formula: 

𝑊𝑤𝑖𝑛 ≈  𝐹𝑠/max	(𝐹𝑚)                                      (9) 
Where 𝑊𝑤𝑖𝑛 denotes the width of the sliding window,  𝐹𝑠represents the sampling frequency, and 
𝐹𝑚 is the frequency of the movement, typically ranging from 0.6Hz to 1.5Hz. Utilizing the maximum 
value of the frequency ensures that the data within the sliding window is minimized, as an influx of 
additional data into the window could precipitate severe recognition inaccuracies. 

 
Figure 8. The results of 1 case of behavior recognition by the self-attention mechanism model. 

Figure 8. showcases the results of behavior recognition by the self-attention mechanism model 
over a certain period with windows sizes 30 and 50. The blue curve in the diagram represents the 
variations in the accelerometer's modulus value throughout this process. Each pair of red lines 
demarcates the boundary of a window, within which data is sequentially fed into the model, resulting 
in the identification of behavioral categories. These categories are visually distinguished using text 
in various colors, with red font indicating samples that have been erroneously recognized. For these 
incorrectly identified instances, a heading consistency check is implemented. 

Table 4. delineates the behavioral detection outcomes for three distinct paths, each collated from 
entirely separate buildings and varying in length. When the sliding window is set to 30 (𝑊30)the 
accuracy rates for the three paths are 95.05%, 93.80%, and 95.18%, averaging at 94.85%. This is a mere 
0.42% deviation from the training model's performance, indicating robust model resilience. However, 



when the window length is increased to 50 (𝑊50) the accuracy rates plummet to 6.66%, 7.30%, and 
9.24%, with an average of 7.69%. The rationale behind this steep decline is fairly evident: a longer 
window encompasses a more extensive range of movements, leading the model to misinterpret 
simple actions as complex ones. 

Table 4: 
The performance of behavioral detection with the windows size of 30 and 50. 

Routs 
Motion 
count 

Errors (𝑾𝟑𝟎) Accuracy Errors (𝑾𝟓𝟎) 
Accurac

y 
1 646 32 95.05% 603 6.66% 
2 274 17 93.80% 254 7.30% 
3 498 24 95.18% 452 9.24% 

Average 1418 73 94.85% 1309 7.69% 

4.2.2 Path in map 
Utilizing conventional PDR, we initially generate a path, within which substantial cumulative 

errors are inherent. To rectify these errors to the greatest extent possible, we adopt the approach of 
aligning the serialized behavioral information, unearthed using the method mentioned in the 
previous subsection, with the original path on a time series basis. The ensuing Figure 9. serves as a 
case illustration. The top-left corner of the image represents a path generated by traditional PDR, 
with the top-right legend depicting an enlarged view of a turning point, which is the landmark, 
within the path. The lower sequence illustrates the behavioral detection results based on 
accelerometer data. We designate these specific points in the temporal domain as breakpoints and 
then effectively correct the heading direction from the previous breakpoint or origin to the current 
one. This strategy aims to minimize the CE caused by sudden directional changes during sustained 
activities. Moreover, the post-correction data provide a high-quality foundational basis for the 
heading estimation model. 

 

Figure 9. The way HAR results to correct the CE of PDR. 

Figure 10. illustrates the efficacy of three reconstructed paths. The left side of the image presents 
a remote-sensing view of the building, highlighting the data collection path and the distribution of 
key points. These landmarks are sequenced to match the results of behavior recognition, followed 
by spatial corrections at the moments of these behaviors. Such adjustments are instrumental for both 
rectifying heading deviations and amending step length data during the process, which is crucial for 
reducing CE. The central green path diagram, generated by traditional PDR, shows a significant 
divergence from the actual path. This deviation tends to increase with each landmark encountered, 
thereby escalating the CE. The rightmost blue path diagram, after correction, contrasts with the 
green path by achieving substantial alignment adjustments, demonstrating a high degree of 
congruence with the original path. 

The rectification of the indoor path map constitutes a pivotal step in generating more accurate 
sample data. This adjustment is not solely for the purpose of crafting a more precise map but also to 
cater to the demands of subsequent machine learning workflows. The resultant heading sample data 



will serve as inputs for training the Multilayer Perceptron (MLP) model. These samples encapsulate 
the dynamics of movement within indoor environments, encompassing various positions and 
directions. The sample data is bifurcated into training and testing sets, utilized both for the training 
and the evaluation of the model's performance. 

4.3 On-line stage 

In the validation phase, the test paths involve data collection over extended durations, with the 
experimental setting situated within the intricate confines of an office building. This environment 
encompasses offices, corridors, conference rooms, and stairwells. The methodology for collecting 
validation data is consistent with the approach detailed in Section 4.1. For ground truth, we rely on 
GPS and laser rangefinders to obtain high-precision indoor location information, which is crucial for 
subsequent error assessments. 

 
Figure 10. Three reconstructed paths and three columns are baselines, PDR result, and 

reconstructed path. *Note: All floor plans are showing the effect and were not used in the 
experiment. 

Initially, we conducted an error analysis of the results, as depicted in the Cumulative Distribution 
Function (CDF) graph in Figure 11. which reveals that the method proposed here has improved the 
maximum error by approximately 8 meters, equating to a nearly 26.8% enhancement. Notably, in the 
initial phase, the steeper slope of the green line indicates that the overall errors are more densely 
clustered around smaller magnitudes. In contrast, the steeper sections of the orange and blue lines 
are observed in the latter half, suggesting that their errors are more prevalent in larger ranges. Within 
the CDF graph, the most significant discrepancy is at the median position, where the error 
corresponding to the green line is around 7 meters, compared to approximately 17 meters for the 
other two lines. 

Subsequently, we visualized the results, as shown in Figure 12. The red path represents the data 
collection route, while the top-right orange path signifies the positioning results of the PDR 
algorithm. The bottom-left blue path indicates the PDR positioning outcomes augmented by the 
Kalman filter. The top-left green path represents the positioning results obtained using the proposed 
algorithm. From a visual standpoint, it is evident that both the traditional PDR and the Kalman filter-
enhanced PDR algorithm exhibit significant deviations in heading calculations. 



 
Figure 11. The CDF comparison between PDR + Wi-Fi, XMU_PDR, and the CE calibrating PDR. 

To pinpoint the sources of error more accurately, we conducted separate assessments for heading 
and step length errors. As presented in Table 5., the total path length in the experimental data was 
214.43 meters. The lengths computed by the three methods were 221.18m, 221.18m, and 215.01m, 
respectively. Both the PDR + Wi-Fi and XMU_PDR methods employed the same step length detection 
technique, resulting in identical total lengths for these two approaches. Their respective errors were 
6.75m, 6.75m, and 0.68m, averaging out to an error of 0.01m, 0.01m, and 0.001m per step. 
Concurrently, we quantified the errors in heading estimation with each position update. The Table 
5. displays the total errors in heading determination across 677 position updates in this experiment, 
tallying to 30901.67, 17859.26, and 12693.75, respectively. The average error per update was 45.65, 
25.38, and 18.75. The positional deviations caused by heading judgment errors with each position 
update were 0.26m, 0.15m, and 0.10m, respectively. Compared to the errors induced by step length 
estimation, the impact of heading determination errors on the results was more than 100 times 
greater. These statistics indicate that the primary source of CE is the misjudgment in the heading. 
Addressing this issue has been a focal point of our work. 

 
Figure 12. The visualization of layering the results on maps between PDR + Wi-Fi, XMU_PDR, and 

the Proposed. *Note: All floor plans are showing the effect and were not used in the experiment. 
 
 
 



Table 5: 
The quantitative error is caused by step length and heading estimation between different methods. 

Method 
Total 

length(m) 
Error(m) 

Error in 
step(m) 

Sum 
heading 

error 

Error 
for 

each 
step 

Error by 
heading(m) 

Initial path 
length 

214.43 -- -- 
   

PDR + Wi-Fi 221.18 6.75 0.01 30901.67 45.65 0.26 
XMU_PDR 221.18 6.75 0.01 17859.26 25.38 0.15 
Proposed 215.01 0.68 0.001 12693.75 18.75 0.10 

5. Conclusion 

In this study, we leverage the nuanced pedestrian behavior data and intrinsic path information 
within buildings to augment PDR positioning. This initiative heralds the advent of a few landmarks 
assisted, real-time PDR positioning system, adept at surmounting the traditional PDR's dependency 
on extraneous data for CE correcting. Former methodologies, which sought to rectify PDR's 
cumulative inaccuracies by amalgamating additional data sources, have significantly impeded PDR's 
evolution, predominantly due to the prohibitive costs and logistical complexities involved in data 
acquisition. Conversely, our approach of exploiting IMU data to substantially attenuate these 
cumulative errors represents a minimal investment with maximal yield, poised to catalyze the 
broader implementation of PDR. The proposed self-assisted PDR system is instrumental in enabling 
devices to ascertain real-time locations, thereby facilitating location-based services for users, given 
that IMU data invariably mirrors the motion state of its carriers. To enhance the precision of indoor 
path reconstruction, we employ multiple reference coordinate points as aids. While this method 
markedly elevates accuracy, it concurrently diminishes the system's autonomy. The rich tapestry of 
motion-related information encapsulated within IMU data is a boon to PDR's real-time positioning 
capabilities, necessitating advanced processing and extraction techniques. Moreover, the exploration 
of latent information within IMU data remains a paramount focus of our future endeavors. 
Our application scenario, predominantly within office buildings, presents unique challenges. The 
diverse architectural layouts of different building types necessitate a broader spectrum of behaviors 
to adapt to varying contexts. Thus, validating and enhancing the algorithm's adaptability in such 
multifaceted environments is a primary objective we aim to pursue moving forward. 
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