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Abstract
Wi-Fi ranging positioning based on round-trip time (RTT) measurement is influenced by complex environments
and the deployment of access points (AP). This work proposes an enhanced genetic algorithm (EGA)-based
strategy for Wi-Fi AP deployment and analyzes the performance of the EGA-based framework by designing
fitness functions using Cramer-Rao lower bound (CRLB), simulated localization error and measurement errors of
Wi-Fi RTT and received signal strength (RSS). Simulation experiments are conducted to compare RTT ranging
positioning using different Wi-Fi AP layouts generated by the EGA algorithm configured with various fitness
functions. The results show that designing a fitness function based on simulated localization error provides
the optimal Wi-Fi AP deployment strategy, leading to the best positioning accuracy with considerable time
complexity compared to fitness functions based on CRLB and RTT/RSS measurement errors.
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1. Introduction

Since mobile phones support the fine time measurement (FTM) protocol [1], smartphone-based Wi-Fi
RTT localization has been a research spotlight. To achieve accurate localization, various ranging
compensation methods have been investigated, such as nonlinear fitting [2], machine learning methods
[3], etc. However, the popular approach for improving accuracy is to design optimization strategies or
fusion systems. For example, RTT localization is optimized by using a support vector machine-based
non-line-of-sight (NLoS)/LoS identification strategy in [4], which compensates the LoS ranging data and
evaluates NLoS data’s participation in positioning based on the NLoS/LoS identification results. In [5],
a temporal-spatial constraints strategy is presented, which converts sequences of ranging observations
into virtual positioning clients by considering the spatial constraints, significantly improving the
positioning accuracy. Other optimization methods, such as the dynamic model switching algorithm [6],
and conventional neural networks-based positioning model [7], have also reported promising results
regarding accuracy improvement.

Combining Wi-Fi RTT with smartphone-embedded sensors has been proven to achieve high-accuracy
localization. In [8], an integrated platform using Wi-Fi RTT, RSS, and MEMS-IMU is constructed based
on the robustly adaptive Kalman filter and obtains an average precision of 0.572 m in the reported testing
site. In [9], another Wi-Fi RTT/Encoder/INS-based fusion system is implemented through an adaptive
extended Kalman filter and improves the mean accuracy under NLoS and LoS conditions by 54.62% and
58.38%, respectively. Other fusion systems using filter algorithms such as extended Kalman filter [10],
particle filter [11], etc., can obtain meter-level localization accuracy. Besides, map information [12] and
magnetic field data [13] are also utilized for fusion positioning methods. Moreover, the fingerprinting
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approach using Wi-Fi RTT and RSS is investigated in [14], which extracted RTT/RSS characteristics to
perform fingerprinting and obtained a 1-𝜎 mean square error within 0.6 m.

From the above literature review, most state-of-the-art works were conducted with a predefined
Wi-Fi access point layout, but few works concentrate on how AP deployment affects RTT positioning.
Using an optimal AP deployment can not only achieve the required precision with a limited number of
APs but also reduce positioning investment. Motivated by this, we propose to design the optimal Wi-Fi
AP layout using the enhanced genetic algorithm (EGA) [15], and carry out experiments to analyze the
impacts of EGA with different fitness functions on RTT localization accuracy.

2. Methods

2.1. Overview of This Work

As shown in Fig. 1, to evaluate the impact of fitness functions on the performance of the proposed
method, the initial step involves training the RTT ranging error model (Section 2.4), RTT and RSS
variance models (Section 2.4), and deriving the CRLB calculation methods (Section 2.3). Based on the
coordinates of APs and grid points, the plane distance between them is computed. A simulated real-time
ranging process is erformed by introducing ranging errors to the plane distance. Subsequently, the
simulated localization errors (Section 2.5) of the test points are obtained. Therefore, the fitness functions
are designed using CRLB, simulated positioning errors, ranging errors, RTT variance, RSS variance,
and the summation of RTT and RSS variances. Further details regarding the EGA-based framework are
described in Section 2.2.

Figure 1: Flow graph of this work.

2.2. Enhanced Genetic Algorithm-based Optimal Wi-Fi RTT Access Points
Deployment

In this work, we utilize the enhanced genetic algorithm to search for the optimal strategy by using
operations of selection, adaptive crossover and adaptive mutation. For more details on these operations,
refer to [15]. To find the optimal AP layout using EGA, a population 𝑂 with 𝐷 individuals should be
first defined. The samples contain possible AP layouts and evolve by executing the above three genetic
operators. Every individual carries one chromosome for the evolution process. Since the final search
goal is to find the deployment method for Wi-Fi APs, the chromosome can be coded as:

Ξ𝑖 = {(𝑥1𝑖 , 𝑦1𝑖 ), ..., (𝑥
𝑗
𝑖 , 𝑦

𝑗
𝑖 ), ..., (𝑥

𝑛
𝑖 , 𝑦

𝑛
𝑖 )} (1)

where Ξ𝑖 is the chromosome of the 𝑖 − 𝑡ℎ sample, 𝑖 ∈ {1, 2, ..., 𝐷}, 𝑛 denotes the number of Wi-Fi
APs, (𝑥𝑗𝑖 , 𝑦

𝑗
𝑖 ) is the coordinate of the 𝑗 − 𝑡ℎ AP, 𝑗 ∈ {1, 2, ..., 𝑛}, respectively. All samples are assigned

scores according to a fitness function, which describes their adaptability to the search space. 𝐷 samples



represent 𝐷 kinds of possible Wi-Fi AP layouts, and their scores are described as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑓{𝑂1} = 𝑓{(𝑥11, 𝑦11), ..., (𝑥𝑛1 , 𝑦𝑛1 )} → 𝑐1

𝑓{𝑂2} = 𝑓{(𝑥12, 𝑦12), ..., (𝑥𝑛2 , 𝑦𝑛2 )} → 𝑐2
...

𝑓{𝑂𝐷} = 𝑓{(𝑥1𝐷, 𝑦1𝐷), ..., (𝑥𝑛𝐷, 𝑦𝑛𝐷)} → 𝑐𝐷

(2)

where 𝑓(∙) is the fitness function, 𝑐𝐷 is the score of the 𝐷 − 𝑡ℎ individual, respectively. Based on the
scores, EGA selects the best individuals for evolution. The higher an individual’s score, the greater its
chance of being selected. After selection, adaptive crossover and mutation operations are executed. The
mutated population is then re-evaluated and scored again according to (2). This closed-loop operation
of scoring-selection-crossover-mutation continues until a convergence condition is met.

2.3. Fitness Function Using CRLB

The Cramer-Rao lower bound defines the minimum variance of any unbiased estimator [16]. For a
localization scheme comprising 𝑛 Wi-Fi APs with coordinates 𝑠𝑖 = [𝑥𝑖, 𝑦𝑖]

𝑇 ∈ R2, 𝑖 ∈ {1, 2, ..., 𝑛} and
an undetermined target with ground-truth position 𝑡 = [𝑥, 𝑦]𝑇 ∈ R2, if the measured RTT data is �̂�
and the RTT observation from each AP is independent, the PDF is defined by:

𝑝(�̂�|𝑡) = 𝑝(�̂�1|𝑡)× 𝑝(�̂�2|𝑡)× · · · × 𝑝(�̂�𝑛|𝑡) =
𝑛∏︁

𝑖=1

𝑓(𝑑�̂�|𝑡) (3)

�̂�𝑖 = 𝑑𝑖 − 𝜁, 𝜁 ∼ 𝒩 (0, 𝜎2) (4)

where �̂� = [𝑑1̂, ..., 𝑑�̂�, ..., 𝑑�̂�], 𝑑�̂� and 𝑑𝑖 represent the measured distance and the ground-truth distance
between the target’s position and the 𝑖− 𝑡ℎ Wi-Fi AP, 𝜁 denotes the ranging error term following a
Gaussian distribution with zero mean and variance 𝜎2, respectively. The estimation 𝑡 is obtained by
maximizing the Log-likelihood function of (3) as follows:

𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙𝑛𝑝(�̂�|𝑡) (5)

where 𝑙𝑛𝑝(�̂�|𝑡) is expressed as:

𝑙𝑛𝑝(�̂�|𝑡) = 𝑙𝑛𝑝(𝑑1̂|𝑡) + ...+ 𝑙𝑛𝑝(𝑑�̂�|𝑡) =
𝑛∑︁

𝑖=1

𝑙𝑛𝑝(𝑑�̂�|𝑡) (6)

According to the Gaussian function, Equation (6) is further given by:

𝑙𝑛𝑝(�̂�|𝑡) = 𝑀 − 1

2
[(�̂�− 𝑑(𝑡))𝑇𝑅−1(�̂�− 𝑑(𝑡))] (7)

where 𝑑(𝑡) is the ground-truth distance between the undetermined target and Wi-Fi APs, 𝑑(𝑡) =
[𝑑1(𝑡), ..., 𝑑𝑖(𝑡), ..., 𝑑𝑛(𝑡)], 𝑑𝑖(𝑡) = ||𝑡 − 𝑠𝑖||2, 𝑅 is the variance matrix, 𝑅 = 𝑑𝑖𝑎𝑔{𝜎2

1, ..., 𝜎
2
𝑛}, 𝑀 is

expressed as:

𝑀 =
𝑛∑︁

𝑖=1

𝑙𝑛
1√
2𝜋𝜎𝑖

(8)

Since the localization problem involves calculating the target’s position estimation �̂� using 𝑠 and 𝑑, �̂�
varies with the dynamic 𝑑 that has a ranging variance 𝜎2 (see Section 2.4.2). The estimation covariance
matrix of �̂� is bounded by the inverse of the Fisher information matrix (FIM) 𝐼 :

𝐸{(𝑡− �̂�)(𝑡− �̂�)𝑇 } ≥ 𝐼−1(𝑡) (9)

where 𝐼 is further given by:

𝐼 =𝐸[∇𝑙𝑛𝑝(�̂�|𝑡)∇𝑙𝑛𝑝(�̂�|𝑡)𝑇 ]

= −𝐸[∇2𝑙𝑛𝑝(�̂�|𝑡)] =
[︂
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑦𝑥 𝐼𝑦𝑦

]︂ (10)

where ∇ and ∇2 denote the operator of first and second-order differentiation, 𝐸(∙) represents the
expectation operator, 𝐼𝑥𝑥, 𝐼𝑦𝑦 , 𝐼𝑥𝑦 and 𝐼𝑦𝑥 are the elements of 𝐼 , respectively.



Taking the first-order differentiation of (7) with respect to 𝑡, we obtain:

∇𝑙𝑛𝑝(�̂�|𝑡) = ∇𝑑𝑇 (𝑡)𝑅−1(�̂�− 𝑑(𝑡)) (11)

Taking differentiation of (11) with respect to 𝑡, we have:

𝐼 = ∇𝑑𝑇 (𝑡)𝑅−1∇𝑑(𝑡) (12)

The CRLB of RTT positioning for a mobile target 𝑡 is defined as the summation of the CRLBs of each
coordinate:

𝜎2
𝐶(𝑡) = 𝜎2

𝐶(𝑥) + 𝜎2
𝐶(𝑦) = 𝑡𝑟(𝐼−1(𝑡)) (13)

𝑡𝑟(𝐼−1(𝑡)) =
𝑡𝑟(𝐼(𝑡))

𝑑𝑒𝑡(𝐼(𝑡))
=

𝐼𝑥𝑥 + 𝐼𝑦𝑦
𝐼𝑥𝑥 × 𝐼𝑦𝑦 − 𝐼𝑥𝑦 × 𝐼𝑦𝑥

(14)

where 𝑡𝑟(∙) and det(∙) denote taking the trace and determinant of 𝐼 , respectively.
To construct the fitness function, we should first divide the testing area and obtain the coordinates of

testing points. Assuming the positioning problem under an optimal Wi-Fi AP layout, the CRLBs on
these points should achieve minimal values, resulting in the minimal summation of CRLBs. Therefore,
the fitness function can be constructed by taking the mean value of the summation of CRLBs:

𝑓𝑖𝑡1 =

∑︀𝐿
𝑗=1 𝑐𝑟𝑙𝑏𝑗

𝐿
(15)

where 𝐿 is the number of testing points (also denoted as grid points in the paper), 𝑐𝑟𝑙𝑏𝑗 is the CRLB of
the 𝑗 − 𝑡ℎ testing point, respectively.

2.4. Fitness Function Using RTT/RSS Measurement Errors

2.4.1. RTT ranging error-based fitness function

In this work, we utilize the least squares method [10] to simulate RTT ranging errors. If there are 𝐿
testing points in the positioning area, the total ranging error of all the grid points under a particular AP
layout is computed as:

𝑓𝑖𝑡2 =

∑︀𝐿
𝑖=1

∑︀𝑛
𝑗=1𝐸

𝑗
𝑖

𝐿
(16)

where 𝐸𝑗
𝑖 denotes the ranging error with respect to the 𝑖− 𝑡ℎ testing point and the 𝑗 − 𝑡ℎ Wi-Fi AP.

𝐸𝑗
𝑖 is calculated by:

𝐸𝑗
𝑖 = 𝑎0𝑗 + 𝑎1𝑗𝑑

𝑗
𝑖 + 𝑎2𝑗 (𝑑

𝑗
𝑖 )

2 (17)

where 𝑑𝑗𝑖 is the plane distance between the 𝑖− 𝑡ℎ testing point and the 𝑗 − 𝑡ℎ Wi-Fi AP. Equation (16)
represents the fitness function using RTT ranging error.

2.4.2. RTT ranging variance-based fitness function

As Fig. 2 shows, the ranging variance demonstrates that the greater the true distance, the greater the
variance value. We use a linear regression method to describe the changing trend of RTT ranging
variance, which is expressed as:

𝜎𝑑𝑖 = 𝑘𝑑𝑖𝑑𝑖 + 𝑏𝑑𝑖 (18)

where 𝜎𝑑𝑖 is the matrix of simulated ranging variance, 𝜎𝑑𝑖 = (𝜎1
𝑑𝑖
, ..., 𝜎𝑛

𝑑𝑖
)𝑇 , 𝑛 is the number of APs,

𝑘𝑑𝑖 and 𝑏𝑑𝑖 are the matrices of the linear parameters, 𝑘𝑑𝑖 = (𝑘1𝑑𝑖 , ..., 𝑘
𝑛
𝑑𝑖
)𝑇 , 𝑏𝑑𝑖 = (𝑏1𝑑𝑖 , ..., 𝑏

𝑛
𝑑𝑖
)𝑇 , 𝑑𝑖

is the matrix of the plane distances between the 𝑖 − 𝑡ℎ testing point and the 𝑛 Wi-Fi APs, 𝑑𝑖 =
(𝑑1𝑖 , ..., 𝑑

𝑗
𝑖 , ..., 𝑑

𝑛
𝑖 )

𝑇 , respectively.
For a testing site with 𝐿 grid points, the fitness function using ranging variance can be defined as:

𝑓𝑖𝑡3 =

∑︀𝐿
𝑖=1

∑︀𝑛
𝑗=1 𝜎

𝑗
𝑑𝑖

𝐿
(19)

where 𝜎𝑗
𝑑𝑖

represents the ranging variance from the 𝑗 − 𝑡ℎ AP at the 𝑖− 𝑡ℎ testing point, and 𝜎𝑗
𝑑𝑖

is
calculated based on (18).



Figure 2: The distribution of RTT ranging variances for different APs at various distances: (a) No.1 AP; (b) No.2
AP; (c) No.3 AP.

2.4.3. RSS variance-based fitness function

As Fig. 3 shows, the RSS variance also gradually increases as the ground-truth distance increases.
Comparing Fig. 3 with Fig. 2, it can be observed that the fluctuation range of the RSS variance is smaller
than that of the RTT ranging variance. We also employ the linear regression method to describe the
changing trend of RSS variance as follows:

𝜎𝑟𝑖 = 𝑘𝑟𝑖𝑑𝑖 + 𝑏𝑟𝑖 (20)

where 𝜎𝑟𝑖 is the matrix of simulated ranging variance, 𝜎𝑟𝑖 = (𝜎1
𝑟𝑖 , ..., 𝜎

𝑛
𝑟𝑖)

𝑇 , 𝑛 is the number of APs,
𝑘𝑟𝑖 and 𝑏𝑟𝑖 are the matrices of the linear parameters, 𝑘𝑟𝑖 = (𝑘1𝑟𝑖 , ..., 𝑘

𝑛
𝑟𝑖)

𝑇 , 𝑏𝑟𝑖 = (𝑏1𝑟𝑖 , ..., 𝑏
𝑛
𝑟𝑖)

𝑇 , 𝑑𝑖

is the matrix of the plane distances between the 𝑖 − 𝑡ℎ testing point and the 𝑛 Wi-Fi APs, 𝑑𝑖 =
(𝑑1𝑖 , ..., 𝑑

𝑗
𝑖 , ..., 𝑑

𝑛
𝑖 )

𝑇 , respectively.
Similar to the RTT ranging variance-based fitness function, the fitness function using RSS variance is

defined as follows:

𝑓𝑖𝑡4 =

∑︀𝐿
𝑖=1

∑︀𝑛
𝑗=1 𝜎

𝑗
𝑟𝑖

𝐿
(21)

where 𝜎𝑗
𝑟𝑖 represents the ranging variance from the 𝑗 − 𝑡ℎ AP at the 𝑖 − 𝑡ℎ testing point, and 𝜎𝑗

𝑟𝑖 is
calculated based on (20).

Figure 3: The distribution of RSS variances for different APs at various distances: (a) No.1 AP; (b) No.2 AP; (c)
No.3 AP.

2.4.4. RSS/RTT variance summation-based fitness function

Because the measurements of RTT and RSS data are simultaneously executed, using the summation of
RSS/RTT can also define a fitness function as follows:

𝑓𝑖𝑡5 =

∑︀𝐿
𝑖=1

∑︀𝑛
𝑗=1(𝜎

𝑗
𝑑𝑖
+ 𝜎𝑗

𝑟𝑖)

𝐿
(22)

where 𝜎𝑗
𝑑𝑖

and 𝜎𝑗
𝑟𝑖 are the variances of RTT ranging and RSS measurement from the 𝑗 − 𝑡ℎ AP at the

𝑖− 𝑡ℎ testing point, respectively. It should be noted that 𝜎𝑗
𝑑𝑖

and 𝜎𝑗
𝑟𝑖 are normalized before summation.



2.5. Fitness Function Using Simulated Positioning Error

The optimal Wi-Fi AP deployment method should minimize the estimation error of the target in the
testing site. Therefore, using positioning error for fitness function is possible. Given 𝐿 grid points and
𝑛 Wi-Fi APs, the plane distance between grid points and APs is calculated as:

𝑑𝑗𝑖 =
√︁

(𝑥𝑖 − �̂�𝑗)2 + (𝑦𝑖 − 𝑦𝑗)
2 (23)

where (𝑥𝑖, 𝑦𝑖) and (�̂�𝑗 , 𝑦𝑗) are the coordinates of the 𝑖 − 𝑡ℎ grid point and the 𝑗 − 𝑡ℎ Wi-Fi AP,
𝑖 ∈ {1, 2, ..., 𝐿}, 𝑗 ∈ {1, 2, ..., 𝑛}. The simulated real-time measured distance is expressed as:

�̂�
𝑗

𝑖 = 𝑑𝑗𝑖 + 𝐸𝑗
𝑖 (24)

where 𝐸𝑗
𝑖 is the simulated ranging error using (17). With the simulated ranging data, the positioning

error 𝑝𝑒𝑖 at the 𝑖− 𝑡ℎ grid point can be estimated using a least-squares method [10]. Therefore, the
fitness function is defined as:

𝑓𝑖𝑡6 =

∑︀𝐿
𝑖=1 𝑝𝑒𝑖
𝐿

(25)

where 𝐿 is the number of testing points.

3. Experiments

3.1. Experimental Setup

As shown in Fig. 4, the testing area represents a typical working scenario and 375 grid points are
obtained by gridding this area. We measured RTT and RSS data using a Pixel 3 phone at 166 reference
points and obtained the parameters of the ranging error model and RTT/RSS data variance models. The
used Wi-Fi APs have the hardware part of Intel Dual Band Wireless-AC8260, and we assume that a
maximum of 7 Wi-Fi APs are available and they can be installed at all locations within the testing area.
The population size of EGA is set to 500. The convergence condition is to reach the maximum number
of iterations, which is set to 50. All data analyses are made on a laptop with 16 GB RAM and a 2.3
GHz CPU. The positioning error bound (PEB) is defined for discussion (Section 3.4), and the calculation
method of PEB is:

√︀
𝑡𝑟(𝐼−1(𝑡)).

Figure 4: Experimental area.

3.2. Positioning Results With the AP Layouts Indicated by EGA Using Different
Fitness Functions

Table I shows that localization with the AP layout indicated by the simulated positioning error-based
fitness function achieves a mean accuracy of 0.947 m, which is 0.115 m, 0.189 m, 0.472 m, 0.507 m,



and 0.529 m higher than those achieved by fitness functions using CRLB, ranging errors, ranging
variance, and the summation of RTT/RSS variances, respectively. Regarding the comparison of the
measurement error-based fitness functions, the ranking from high to low is ranging error, RSS variance,
RTT variance, and the summation of RTT/RSS variances, respectively. Moreover, all algorithms with
measurement error-based fitness functions can be executed within 0.14 s, showing a time advantage
over the CRLB-based and simulated positioning error-based fitness functions. For cases where the
required accuracy falls within an acceptable range (e.g., 1.5 m), using the ranging error-based fitness
function is also a viable solution, which offers a mean accuracy of about 1.136 m and an AET of 0.133
s. These results demonstrate the significant impact of using different fitness functions on finding the
optimal AP layout.

Table 1
Errors Comparisons of Different Fitness Functions

Functions Mean/(m) RMSE/(m) 75th/(m) 90th/(m) AET/s

CRLB 1.062 1.157 1.377 1.681 35.4
Simulated

localization error
0.947 1.039 1.277 1.570 2.204

Ranging error 1.136 1.208 1.414 1.668 0.133
RTT variance 1.467 1.532 1.786 2.089 0.136
RSS variance 1.429 1.520 1.784 2.189 0.135

Summation of
RTT/RSS variances

1.508 1.576 1.840 2.098 0.136

3.3. Positioning Performance Comparison of EGAs with Different Fitness Functions
and Different Numbers of Samples

As Table II shows, when using the AP layout indicated by the simulated localization error-based fitness
function, the mean localization accuracy exhibits an upward trend as the number of samples increases,
ranging from 1.157 m to 0.916 m. The mean accuracy of using the CRLB-based fitness function also
shows an upward trend, but it stabilizes around 1.08 m after the number of samples exceeds 200. The
ranging error-based fitness function follows a similar trend to the CRLB-based fitness function. However,
the mean positioning accuracy of the variance-based fitness functions does not increase as the number
of samples increases. Instead, the best mean positioning results are obtained when the number of
samples is 100. Moreover, using the summation of RTT and RSS variances as the fitness function does
not lead to better positioning results. These results show that increasing the number of samples is not
an effective strategy for improving the performance of the EGA using variance-based fitness functions.

Table 2
Mean Localization Errors Comparison of EGAs With Different Numbers of Samples

Functions
Different numbers of samples

100 200 300 400 500 600 700 800 900 1000

CRLB 1.124 1.082 1.063 1.093 1.062 1.060 1.093 1.104 1.069 1.078
Simulated localization error 1.157 0.937 0.937 0.947 0.947 0.936 0.931 0.930 0.928 0.916

Ranging error 1.289 1.167 1.124 1.103 1.136 1.123 1.109 1.116 1.129 1.126
RTT variance 1.246 1.470 1.464 1.483 1.467 1.533 1.478 1.504 1.477 1.664
RSS variance 1.254 1.374 1.454 1.404 1.429 1.471 1.413 1.400 1.440 1.489

Summation of RTT/RSS variances 1.282 1.447 1.426 1.459 1.508 1.509 1.498 1.509 1.591 1.539

3.4. Discussion

Using different strategies for fitness function design yields different outcomes and demonstrates their
respective advantages. For example, employing a variance-based fitness function provides an advantage



in terms of time complexity. However, performing LS positioning under the AP layout generated by a
variance-based fitness function does not necessarily result in better positioning accuracy. Improving the
performance of genetic algorithms by increasing the population size often does not lead to significant
improvements. Under such conditions, using a large population size for optimal AP layout searching
only leads to a rapid increase in the algorithm’s time complexity. Therefore, adopting an appropriate
population size is crucial for the execution efficiency of the EGA algorithm.

Figure 5: Visual localization results of the six fitness functions. (a) CRLB; (b) Simulated positioning error; (c)
Ranging error; (d) RTT variance; (e) RSS variance; (f) Summation of RTT and RSS variances.

Fig. 5 illustrates the visual localization results and the deployments of Wi-Fi APs using the six
fitness functions. It can be observed that the positions of Wi-Fi APs generated by the CRLB-based or
simulated positioning error-based fitness function effectively cover the testing area well. However,
performing localization using the AP layout indicated by the ranging error-based fitness function,
despite achieving a mean accuracy of 1.1 m, results in a slightly concentrated distribution of APs (as
seen in Fig. 5(c)), leading to more areas with large positioning errors compared to Fig. 5(a) and 5(b).
Regarding the distributions of Wi-Fi APs generated by the variance-based fitness functions, a more
pronounced phenomenon of concentrated distribution is observed, with the Wi-Fi APs in Fig. 5(e) even
appearing in a linear arrangement. The areas with large errors (dark colors) in Fig. 5(d), 5(e), and 5(g)
are also more than those in Fig. 5(a) and 5(b). Based on the above discussion, it can be concluded that
designing fitness functions should consider the specific application requirements (e.g., accuracy, time
complexity, actual distribution of AP locations, etc.).

4. Conclusion

In this work, we designed six fitness functions for the EGA-based optimal Wi-Fi AP deployment strategy.
The simulation results prove that using CRLB and simulated positioning error for fitness function
design can lead to a reasonable Wi-Fi AP layout. However, the time complexity associated with using a
CRLB-based fitness function should be considered. Our future work will investigate the comprehensive
impact of the number and deployment methods of APs on RTT localization in real-life scenarios, as
well as high-accuracy RTT/RSS variance simulation methods.
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