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Abstract
Recent advancements in transformers have revolutionized machine learning, forming the core of Large language

models (LLMs). However, integrating these systems into everyday applications raises privacy concerns as client

queries are exposed to model owners. Secure multiparty computation (MPC) allows parties to evaluate machine

learning applications while keeping sensitive user inputs and proprietary models private. Due to inherent MPC

costs, recent works introduce model-specific optimizations that hinder widespread adoption by machine learning

researchers. CrypTen (NeurIPS’21) aimed to solve this problem by exposing MPC primitives via common machine

learning abstractions such as tensors and modular neural networks. Unfortunately, CrypTen and many other

MPC frameworks rely on polynomial approximations of the non-linear functions, resulting in high errors and

communication complexity.

This paper introduces Curl, an easy-to-use MPC framework that evaluates non-linear functions as lookup

tables, resulting in better approximations and significant round and communication reduction. Curl exposes a

similar programming model as CrypTen and is highly parallelizable through tensors. At its core, Curl relies on

discrete wavelet transformations to reduce the lookup table size without sacrificing accuracy, which results in up

to 19× round and communication reduction compared to CrypTen for non-linear functions such as logarithms

and reciprocals. We evaluate Curl on a diverse set of LLMs, including BERT, GPT-2, and GPT Neo, and compare

against state-of-the-art related works such as Iron (NeurIPS’22) and Bolt (S&P’24) achieving at least 1.9× less

communication and latency.

Finally, we resolve a long-standing debate regarding the security of widely used probabilistic truncation

protocols by proving their security in the stand-alone model. This is of independent interest as many related

works rely on this truncation style.
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1. Introduction

Large language models (LLMs) like GPT-2, GPT-4 [1], BERT [2], and LLaMA [3] have emerged as prime

examples showcasing the capabilities of artificial intelligence. LLMs assist individuals and businesses

in everyday tasks; from machine translation [4], to text generation [5], and question answering [6],

among others. To generate human-like responses, LLMs have been trained in vast amounts of data and

continue learning through their interactions with users.

However, as LLMs become increasingly integrated into human lives, privacy becomes a critical

concern as individuals frequently share sensitive information, including names, addresses, and credit

card numbers, or even financial and healthcare information [7]. On top of that, there is a shift towards

personalized AI, with OpenAI enabling a memory feature to ChatGPT [8]. For an LLM-powered assistant

to be able to understand individual preferences, habits, and workflows and provide tailored assistance,

it would require access to an immense amount of personal data. As this personalized data is retained
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and used to continuously improve the LLMs, the possibility of a data breach or unauthorized access

poses huge risks to individuals’ privacy.

Privacy-enhancing technologies (PETs) such as multiparty computation (MPC) [9, 10] enable a

plethora of privacy-preserving machine learning (PPML) use-cases. In the most prominent setting,

a server possesses a proprietary model and aims to provide it as a service to clients for use with

their private data [11, 12, 13, 14, 15]. The objective is for clients to receive only the inference results

without gaining any knowledge about the model, while the model provider does not learn anything

about clients’ input. Another popular PPML use case involves multiple distrusting parties to securely

train a model over their joint sensitive data without revealing anything about their data to each other

[16, 17, 18, 19, 20].

Several MPC systems leverage linear secret sharing schemes as they allow linear operations to

be performed with minimal communication overhead [21, 22]. However, non-linear operations (e.g.,

square roots, logarithms) often present greater challenges and require specialized techniques such as

polynomial approximations [12], look-up table evaluations [23], or other protocol-specific approaches

[24, 25]. Furthermore, incorporating domain knowledge can significantly enhance the efficiency and

effectiveness of these protocols by tailoring the parameters to better fit specific use cases [26, 27, 28].

1.1. Related Work

1.1.1. Focusing on Function Secret Sharing

Recently, several secure computation works have emerged leveraging function secret sharing (FSS)

[29, 23, 30, 31, 32]. Pika [23] extends the prior work of [29] by showcasing a novel approach to securely

evaluate look-up tables (LUTs) through FSS. While it demonstrates efficacy in benchmarking against

popular datasets like MNIST and CIFAR-10, its scalability poses challenges. As noted by Grotto [30], for

large LUTs, the computational cost may render the protocol infeasible due to the extensive number of

distributed point functions (DPF) evaluations required. In contrast, Curl circumvents this challenge by

eliminating the need for DPF evaluations, thanks to the integration of the discrete wavelet transform

(DWT) technique. On top of that, our technique can also benefit FSS-based frameworks by reducing the

size of the LUTs, resulting in less computation and communication. On the other hand, Grotto [30]

introduces innovative protocols leveraging custom splines and DPFs to handle a subset of functions

efficiently. Yet, it faces challenges in terms of computational and communication overhead compared to

alternatives like Sigma [15]. Orca [20] showcases the potential of GPU acceleration in FSS protocols,

particularly tailored for convolutional neural networks (CNNs). However, its suitability for other

architectures like transformers is questioned due to its reliance on heavy non-linearities [20].

Sigma [15] builds on top of Orca and distinguishes itself by relying on minimal-sized LUTs through

protocols tailored for small ranges. Despite its efficiency from custom protocols with small-sized LUTs,

it demands significant computing and communication resources (e.g., 1 TB RAM and around 9Gbps

communication link). Furthermore, its use of deterministic truncation, although claiming improved

security, falls short in speed compared to probabilistic truncation methods. Unfortunately, all FSS-based

works focus on the two-party setting as FSS becomes impractical with more than two parties.

1.1.2. Focusing on Preprocessing

The line of work initiated by Pika [23] focuses on the two-party setting with an additional dealer party.

In this scenario, the preprocessing phase necessitates the dealer to prepare and distribute an𝒪(𝑛)-sized

element. Given the assumption that the dealer will not collude with any party, reducing dependency on

such assumptions is desirable. This has led to the development of protocols that eliminate the need for

a dealer. Notably, some previous works have aimed to achieve this in the two-party setting, enabling

both parties to independently generate the required preprocessing material [33, 34, 35].

The one-time truth table (OTTT) protocol [33] employs a boolean circuit to represent the table

for every possible input, resulting in an exponential complexity relative to the bit size. The OP-LUT

protocol [34] attempts to enhance the OTTT preprocessing phase but only achieves improvements



for small bit sizes, with the communication cost remaining exponential. The SP-LUT protocol [34]

significantly enhances the preprocessing phase but modifies the online phase, leading to an exponential

communication cost in the bit size during the online phase. FLUTE [35] offers advancements over

previous works but still requires 𝒪(2𝑛) communication in the setup phase. Therefore, finding a

preprocessing phase with sub-exponential communication complexity while maintaining the efficiency

of the online phase remains an open challenge.

1.1.3. Focusing on Fully-Homomorphic Encryption

Fully homomorphic encryption (FHE) schemes have benefited significantly from the use of LUTs to

enhance performance and enable new applications. This concept was initially proposed by Ducas and

Micciancio [36], who devised a method to evaluate arbitrary binary gates in FHE using LUTs. Building

on this foundation, Chillotti et al. [37] implemented the evaluation of arbitrary functions through a tree

of leveled multiplexers, leading to the development of the Torus FHE (TFHE) scheme. Despite their

development of a fast bootstrapping mechanism, capable of execution in approximately 10 milliseconds

on a CPU, its adoption has been limited. This is primarily because the control inputs for the multiplexers

required fresh ciphertexts – meaning prior computation on them was not possible – and the approach

necessitated expressing programs as deterministic automata. A further improvement over TFHE was

presented in [38] with the introduction of the programmable bootstrapping (PBS) technique, allowing

for efficient and general-purpose LUT evaluation. To enhance adaptability, HELM [39] expanded on the

PBS technique and introduced a framework for automatically converting Verilog hardware description

language (HDL) into encrypted circuits. HELM employs three modes of operation. The first mode

exclusively processes binary gates. The second mode operates on integers using secure LUT evaluations.

The third, mixed mode, works with binary circuits and "bridges" over to integers for secure LUT

evaluations before returning to the binary domain. However, HELM is limited to very low-precision

LUTs. This limitation arises because converting an integer to multiple bits requires multiple n-to-1 LUTs.

Recently, Ripple [40] proposed using compression techniques based on discrete wavelet transform

(DWT) theory to decrease the size of LUT, thereby accelerating the PBS technique for smooth functions.

1.1.4. Focusing on Secure LLM Inference

Secure frameworks for LLM inference have only recently gained traction due to the inherent complexity

of transformers compared to traditional neural networks. Techniques to ensure secure inference include

notable implementations like THE-X [41] and Iron [26], which were among the first to use homomorphic

encryption for matrix multiplication and non-linear functions.

Subsequently, several studies have explored MPC techniques for private transformer inference

system [27, 42]. MPCFormer [27] leverages the CrypTen [12] MPC engine, while Puma [42] utilizes the

SecretFlow-SPU [43] MPC engine to assess MPC’s suitability for LLM inference. MPCFormer introduces

a distillation process where stronger models train weaker models to improve accuracy, compensating

for the limitations of using small (2-degree) approximations of non-linear functions. Nevertheless,

MPCFormer faces challenges due to the loss of approximation accuracy, necessitating fine-tuning the

models. On the other hand, Puma uses a piece-wise approximation of the GeLU activation function,

requiring comparisons and polynomials up to degree 6.

Recent research has increasingly focused on hybrid solutions, combining the best techniques for

specific operations [28, 20]. Bolt [28] developed a solution integrating both fully homomorphic encryp-

tion and MPC. Like Puma [42], Bolt uses a piece-wise approximation that requires comparison, which

increases round complexity and communication. To boost efficiency, Bolt employs word elimination

while maintaining accuracy. Additionally, it enhances MPCFormer’s polynomial approximations by

increasing the polynomial degree and mitigates the corresponding efficiency loss through Motzkin’s

polynomial pre-processing procedure. In contrast, Curl avoids both comparisons and polynomial

approximations by using an optimized lookup table protocol that reduces the round and communication

complexity typically added by polynomial approximations while maintaining accuracy.



1.1.5. Focusing on Secure Truncation

Machine learning tasks employ floating-point numbers to construct precise models [44]. However,

it is widely recognized that the use of floating-point numbers renders MPC impractical from an effi-

ciency standpoint. For this reason, most works on machine learning under MPC employ fixed-point

representation instead, requiring a truncation protocol to maintain constant precision.

Among the available truncation methodologies – deterministic, nearest integer, and probabilistic –

the deterministic and probabilistic approaches (see Section 3) are the most widely used in the secure

computation setting [24, 45]. Moreover, a substantial body of research favors probabilistic truncation due

to its lower communication costs and resultant enhanced performance, e.g., [46, 16, 47, 11, 48, 13, 18, 49].

Despite these advantages, some recent works express concerns about probabilistic truncation, and opt

for more resource-intensive protocols to achieve deterministic truncation [45, 50, 15]. The concerns

raised with regard to probabilistic truncation include security and rounding errors.

Correctness error. Before we address the above two concerns we recall that a widely used and inexpen-

sive probabilistic truncation protocol over fields, due to Catrina and Hoogh [24], has a correctness errors

with probability 2−(𝑛−|𝑥|)
where |𝑥| is the maximum bitsize of truncation input 𝑥. This necessitated

using significantly larger rings, setting 𝑛 ≥ |𝑥|+𝜅 where 𝜅 is a statistical security parameter. Damgård

et al. [51] presented a probabilistic protocol with zero probability of correctness error, but it required

a non-constant-round bit-decomposition protocol. Subsequent works [11, 52] optimized [24, 51] and

showed a constant-round probabilistic truncation protocol with communication and computation costs

matching Catrina and Hoogh [24], but with no correctness error and allowing 𝑛 ≥ |𝑥|+1. CrypTen [12]

proposed a protocol inspired by [53] for division by public value, which can be reduced to a probabilistic

truncation with non-zero correctness error.

Security. Recently, Li et al. [45] identified a security flaw in the security proof of the probabilistic

truncation of [24], revealing a discrepancy between the information leaked by that protocol and by

the ideal probabilistic truncation functionality. Note that the same issue pertains to the 𝑛-optimal

probabilistic truncation of [52]. This led several recent papers, e.g., [15, 15], to move away from the

inexpensive probabilistic truncation protocols because of concerns regarding their security. In this

paper, we show that the 𝑛-optimal probabilistic truncation protocol of [52] (as well as the original

probabilistic truncation of [24]) securely realizes a natural ideal probabilistic truncation functionality

which we define. This enables us to capitalize on the efficiency benefits of probabilistic truncation

without compromising security (Section 3).

Rounding Errors. The LLAMA paper [50] recently suggested the use of deterministic truncation,

claiming it improves inference accuracy. However, this assertion has not been backed by experimental

evidence, and earlier studies indicating a possible decrease in accuracy with probabilistic truncation

have not been confirmed through empirical testing [49, 11]. Intriguingly, Gupta et al. [44] demonstrated

that computation using 16-bit fixed-point with 12-bit precision and probabilistic truncation achieves

nearly equivalent accuracy to that of a 32-bit floating-point. Conversely, truncation to the nearest

integer fails to train under such conditions adequately. Additionally, although not the primary focus of

the work, Keller and Sun [54] provided experimental evidence indicating that in neural networks, there

is minimal disparity between probabilistic truncation and truncation to the nearest integer. Indeed,

out of 28 distinct experiments, 13 exhibited superior accuracy with probabilistic truncation, 13 with

truncation to the nearest integer, and 2 yielded identical accuracy.

1.2. Our Contributions

In this paper, we introduce Curl, a user-friendly MPC framework designed for efficiently evaluating

non-linear functions using lookup tables. Curl addresses three critical aspects essential to secure

protocols: efficiency, accuracy, and security.

Curl employs a novel LUT compression technique using discrete wavelet transformation (DWT)

achieving efficient approximations with minimal errors. This effectively reduces the size of original

LUTs while preserving the accuracy of non-linear functions, thus surpassing traditional polynomial



piece-wise approximation methods. By minimizing communication costs, Curl significantly enhances

end-to-end runtime performance and supports a wide range of activation functions including GeLU,

SiLU, Gaussian error function, Sigmoid, and Hyperbolic tangent. Additionally, Curl generalizes the

piece-wise approximation used within the GeLU protocol from [28, 15] to encompass any bounded odd

or even function that converges to a piecewise polynomial.

Curl’s core technique extends to complex non-linear functions used by LLMs, ensuring both client

input data privacy and safeguarding the intellectual property of service providers, such as their models.

We evaluate Curl across a spectrum of LLMs including BERT (tiny, base, large), GPT-2, and GPT-Neo,

including both CPU and GPU backends. Our evaluation demonstrates advancements over state-of-the-

art frameworks, achieving at least 6.5 times fewer rounds and 1.9 times less communication overhead.

Finally, Curl addresses the security concerns surrounding efficient probabilistic truncation by in-

troducing a natural ideal functionality, a corresponding protocol, and providing a simulation security

proof. Many works that rely on this truncation style were proven to have a security flaw by [45] as

they cannot be simulated in the real-ideal paradigm. Our result is of independent interest since our

proof settles this debate and restores confidence in secure probabilistic truncation protocols.

We summarize our contributions as follows:

• A novel framework based on DWT compression that achieves high accuracy with low round and

communication complexities. When applied to LLM inference, Curl demonstrates at least a 6.5×
reduction in round complexity and a 1.9× reduction in communication when compared against

existing methods.

• Curl builds on top of the user-friendly CrypTen [12] framework, offering high flexibility and

low adoption friction for developers and researchers, thereby democratizing access to secure

computation techniques. As a proof-of-concept, we implement a variety of LLM models and

numerous non-linear functions, all operable on both CPU and GPU.

• We introduce a novel natural ideal functionality for efficient probabilistic truncation and prove

Escudero et al. [52] to be secure. This result is of independent interest.

2. Preliminaries

2.1. Arithmetic & Binary Secret Sharing

We consider two main algebraic structures: the ring Z𝑄 where 𝑄 = 2𝑛 for some bit width 𝑛, and the

binary field Z2. We consider additive secret sharing between a set of parties 𝒫 in both Z𝑄 and Z2.

Arithmetic secret sharing. J𝑥K denotes additive shares in the ring Z𝑄 for parties 𝒫0, . . . ,𝒫N−1. This

means each party 𝒫𝑖 owns a share J𝑥K𝑖, where the sum of all shares is equal to 𝑥. Private addition

of secret shared values is executed by local share addition and private multiplication is implemented

through Beaver triples [55]. Fixed-point representation of a floating-point number 𝑥𝑅 is considered

using the standard integer encoding with nearest-integer approximation: 𝑥 =
⌊︀
𝑥𝑅 · 2𝑓

⌉︀
, for precision

𝑓 [24]. To decode, we simply divide by 2𝑓 .

Binary secret sharing. Some secure operations profit from a secret sharing representation in the

binary domain. For this reason, we consider a binary secret sharing scheme for 𝑥 ∈ Z2𝑛 , denoted as

⟨⟨𝑥⟩⟩. A binary secret share ⟨⟨𝑥⟩⟩ is formed by secret sharing all the bits of 𝑥 in Z2 and each party 𝒫𝑖
owns a share ⟨⟨𝑥⟩⟩𝑖. To reconstruct the secret, the parties 𝒫0, . . . ,𝒫N−1 add their shares in Z2𝑛 (i.e.,

equivalent to bitwise XOR).

Conversions. Arithmetic shares suit best arithmetic operations (+, ×) and binary shares perform best

in evaluating logical expressions (XOR, AND, right-shift and left-shift operations). For this reason,

following the line of research of mixed-mode secure computation [52, 12, 56], we make use of known

conversions between the arithmetic and the binary domain. We follow the approach provided by

Damgård et al. ([25], S3) to convert from arithmetic shares to binary shares (A2B) and the procedure



using algorithm 2 in [12] to convert binary shares into arithmetic shares (B2A). We denote these

protocols by ΠA2B
𝑛,𝑙 and ΠB2A

𝑛,𝑙 , respectively, where 𝑛 represents the input bitwidth and 𝑙 the output

bitwidth.

We note that the preprocessing procedure used for B2A conversion can be optimized using the

techniques proposed by Escudero et. al [52]. In particular, CrypTen’s approach requires 𝑛 tuples of

shares (J𝑟K, ⟨⟨𝑟⟩⟩) for a bit 𝑟, whereas [52] employs just 1 tuple of share (J𝑠K, ⟨⟨𝑠⟩⟩) for a ring element 𝑠,

with the former being comparatively more costly than the latter.

2.2. Large Language Models (LLMs)

In 2017, Vaswani et al. [57] introduced the Transformer architecture, a type of neural network that

utilizes attention mechanisms, enabling AI models to prioritize different segments of the input sequence

when generating an output. A transformer comprises an encoder-only architecture (like in BERT [2, 58]),

a decoder-only (e.g., GPT), or both encoder and decoder [57]. The encoder takes the input sequence and

maps it to a lower-dimensional representation to generate a sequence of hidden states. The decoder

generates an output sequence by iteratively generating tokens from the previously generated hidden

states. In practice, multiple encoder and decoder blocks are used together to achieve higher accuracy.

Attention. A core component of transformers is self-attention, a mechanism that weighs the importance

of different parts of an input sequence when making predictions. Self-attention takes a query matrix

𝑄 and a set of key-value matrix pairs 𝐾,𝑉 , which are all produced by linear layers, and produces an

output as follows, where 𝑑 is the dimension of the keys:

Attention(𝑄,𝐾, 𝑉 ) = softmax

(︂
𝑄 ·𝐾𝑇

√
𝑑

)︂
· 𝑉.

Usually, the inputs to the softmax are masked so that each token is only influenced by previous tokens,

thereby creating a causal relationship.

Layers. In the context of secure LLM inference, all the components of transformers can be seen as

linear and non-linear layers. A linear layer consists of matrix multiplications and feed-forward neural

networks (FNN) which can be evaluated using fixed-point arithmetic. A crucial part of evaluating

the linear layers is to maintain the fixed-point precision using truncation.
1

For instance, the matrix

multiplication 𝑄 ·𝐾𝑇
in self-attention can be computed as multiple inner products, each of which

needs to be followed by a truncation. Next comes the FNN which relies on an inner product followed

by an activation function or a non-linear layer.

A non-linear layer, like the rectified linear unit (ReLU) [59], Gaussian error linear unit (GeLU) [60],

sigmoid linear unit (SiLU), softmax, etc., is not straightforward to evaluate securely. ReLU can be

implemented with a secure comparison (i.e., ReLU(𝑥) = max(0, 𝑥)), while GeLU and other activation

functions are not as trivial. Several works like CrypTen [12] resort to polynomial approximations

which has a significant impact on accuracy. More recent works like Sigma [15] approximate GeLU
using ReLU and then using lookup table methods to evaluate the difference. Lastly, layer normalization

(LayerNorm) and root mean squared normalization (RMSNorm) require non-linear functions such as

reciprocals or reciprocal square roots.

Transformer Block. A transformer block comprises several linear and non-linear layers. This usually

includes attention, linear layers, non-linear activation functions, and layer normalization.

Embedding Layers. Like any language model, LLMs start off with a word embedding layer and a

positional embedding layer. These layers are LUT protocols based on the token value and position of

the token respectively. As LUT protocols, they can also be thought of as multiplications with a one-hot

vector. To implement these under MPC, we have several options.

Firstly, even though the token value is a hidden input, its position is public. While we keep the

weights hidden under MPC, with the public input we can do a plaintext lookup. With the hidden token

1

The precision on fixed-point values doubles after multiplication so truncation is used to bring it back down.



value, however, the lookup is not so straightforward. The client either has to secret share the token

as a one-hot vector, which can be quite large or we can use a random one-hot vector generated by

the provider. The alternative, which is to run equality with every possible value is also quite costly.

To relieve the client from sharing a one-hot vector for every token and to avoid running the costly

equality multiple times, we use the provider to generate the one-hot vector. This protocol then works

just like the LUT protocols, with the exception that the LUT is not public. Since the LUT, which is the

embedding weights matrix, is also private, we need to rely on Beaver triple multiplication.

2.3. The Discrete Wavelet Transform (DWT)

A discrete wavelet transformation (DWT) is a transformation that decomposes a discretely sampled

signal into approximation and detail coefficients [61]. The detail coefficients contain the information

about the error incurred by the approximation coefficients. Given the approximation and detail coef-

ficients, one can invert the application of a DWT to obtain the original signal. We convey this idea

in Fig. 1. Starting with the whole signal we can apply a DWT to obtain a first level of approximation

and detail coefficients. This first-level approximation and detail coefficients are enough to recover

the original signal. We can repeat this process on the approximation coefficient to obtain a second

level of approximation and detail coefficients. The second-level approximation and detail coefficients

together with the first-level detail coefficients allow us to recover the original signal. This process can

be repeated as necessary to reduce the size of the approximation coefficients.

Whole signal

Approximation

Details

Level 0

Level 1

Level 2

Figure 1: Overview of two DWT iterations. The signal is represented by the approximation (blue) and the details
(gray).

There are many different wavelet families and each uses linear transformations (e.g., matrix multipli-

cation): Daubechy (Db) wavelets, Biorthogonal wavelets, and others. Let us explore in more detail two

types of wavelets: the Haar and the (5, 3) Biorthogonal transformations.

2.3.1. Haar DWT

A special case of the Db family is the Haar wavelet, also called Db1. In Haar, the approximation

coefficients are obtained by averaging every two consecutive samples of the original signal. One of the

properties of the Db wavelet of degree 𝑚 (Dbm) is that if a signal encodes data of polynomials of degree

strictly below 𝑚, then the corresponding detail coefficients for those polynomial parts will be zero.

More specifically, the Haar DWT is a linear transformation represented by a matrix 𝑊 . When applied

to a one-dimensional signal 𝑣 of length 2𝑛 (where 𝑛 ∈ Z), this linear transformation is defined as:

𝑊 · 𝑣 = 𝑊 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣0
.
.
.

𝑣𝑛−1

𝑣𝑛
.
.
.

𝑣2𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎0
.
.
.

𝑎𝑛−1

𝑑0
.
.
.

𝑑𝑛−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[︂
𝑎
𝑑

]︂
,



where 𝑎 and 𝑑 correspond to the approximation and detail coefficients and are computed as:

𝑎𝑘 =
𝑣2𝑘 + 𝑣2𝑘+1

2
, 𝑑𝑘 =

𝑣2𝑘 − 𝑣2𝑘+1

2
,

for 𝑘 = 0, 1, . . . , 𝑛− 1. We note that the Haar DWT operation 𝑊 can be applied multiple 𝑗 times. For

a vector 𝑣 with size 𝑛 divisible by 2𝑗 ,

𝑊 𝑗 · 𝑣 =

⎡⎣↶𝑗
𝑎
↶𝑗

𝑑

⎤⎦ ,

where the approximation vector

↶𝑗
𝑎 has size 𝑛/2𝑗 and the detail vector

↶𝑗

𝑑 amounts to the rest (i.e.,

𝑛− 𝑛/2𝑗 ). Note that, since 𝑊 is an orthogonal matrix, its inverse is obtained by its transpose. One can

see that, for 𝑘 = 0, 1, . . . , 𝑛− 1, the inverse is given by 𝑣2𝑘+1 = 𝑎𝑘 + 𝑑𝑘 and 𝑣2𝑘 = 𝑎𝑘 − 𝑑𝑘.

2.3.2. Biorthogonal DWT

While the Dbm wavelets use an orthogonal matrix, the Biorthogonal wavelets require two different

matrices where the transpose of one matrix is the inverse of the other. One matrix, 𝐵, is used for the

decomposition of the signal and the other,
̃︀𝐵, is used for the reconstruction.

In this work, we consider the (5, 3) Biorthogonal DWT defined by 𝐵 where the corresponding

approximation and detail coefficients are given by:

𝑎𝑘 =
1

8
(−𝑣2𝑘−2 + 2 · 𝑣2𝑘−1 + 6 · 𝑣2𝑘 + 2 · 𝑣2𝑘+1 − 𝑣2𝑘+2)

𝑑𝑘 =
1

4
(𝑣2𝑘 − 2 · 𝑣2𝑘+1 + 𝑣2𝑘+2) ,

for 𝑘 = 0, . . . , 𝑛− 1. Note that the (5, 3) Biorthogonal DWT computes the approximation and detail

coefficients with a weighted average of 5 and 3 points, respectively. The inverse transformation 𝐵−1
is

given by
̃︀𝐵 where 𝐵−1 = ̃︀𝐵⊤

.

2.4. Threat & Computation Model

Curl allows two or more computing parties (𝒫0,𝒫1, . . . ) to perform private inference and training of

machine-learning models. In the most prominent use case, one party (e.g., 𝒫0) owns a trained model,

while another party (e.g., 𝒫1) aims to utilize the model for inference on their private data. Both parties

wish to keep both the data and the model’s architecture private. For instance, imagine a scenario where

𝒫0 is a cybersecurity firm developing a malware detection machine learning model that they offer as a

service (MLaaS) to client organizations. The clients (𝒫1) would like to use the model in their internal

codebase while keeping sensitive implementation details private. In MLaaS, both the model owner

and the clients could benefit from outsourcing the model and their inputs respectively to an MPC

infrastructure and not participate in the computation.

Curl is flexible and can facilitate multiple other use cases such as: (a) having different parties that

possess distinct sets of features jointly train a model without exchanging raw data, (b) unveiling

correlations where one party retains feature data and another party holds corresponding labels without

revealing anything else, among others. For the sake of presentation, we assume a two-party protocol

and we focus on the inference setting (i.e., 𝒫0 holds the private model and 𝒫1 holds the sensitive inputs),

as demonstrated in Fig. 2.

We assume the parties are semi-honest (i.e., follow the protocol specification) in the pre-processing

model. This threat model enables a wide range of realistic use cases of secure machine learning

[62, 12, 63, 46, 64], while pre-processing is used to generate correlated randomness which the parties

consume in the online phase. There is a plethora of ways to generate this randomness; one can use

general-purpose MPC [65, 66, 67], specialized protocols [68, 34, 35], or more commonly a trusted dealer

[29, 69, 50, 20, 12, 49, 30]. In Curl, we resort to the latter. Lastly, as long as not all the parties collude, no

information is leaked about the private inputs (or private models depending on the use case).



Secret share inputs

Secret share model

Final inference

𝒫0 𝒫1

Private model Private inputs

Figure 2: Overview of Curl for privacy-preserving inference.

3. Secure Truncation

In this work, we use truncation over the ring Z𝑄 and we define it as follows. For input J𝑥K, it outputs

J𝑥′K where 𝑥′ = ⌊𝑥/2𝑓⌋ and 𝑓 is the precision of the fixed-point representation.

The truncation operation is required whenever we work with fixed-point numbers. Multiplication of

two fixed-point rationals with precision 𝑓 obtains a fixed-point rational with precision 2𝑓 . Therefore,

we require truncation to go back to a fixed-point rational with precision 𝑓 . As we analyze in Section 3.3,

the number of truncations required in a GPT-2 model is at least 220. Hence, it is paramount to use

an efficient truncation protocol. As mentioned in Section 1.1.5, works on secure computation over

fixed-point rationals use two types of truncation protocols: a deterministic truncation, where output

𝑥′ is set exactly to ⌊𝑥/2𝑓⌋; or a probabilistic truncation, where 𝑥′ = ⌊𝑥/2𝑓⌋ + 𝑢 where 𝑢 = 1 with

probability (𝑥 mod 2𝑓 )/2𝑓 and 𝑢 = 0 otherwise. Although implementing probabilistic truncations

incurs minimal costs, two concerns have been raised about it: security and the impact of rounding

errors in ML applications. In this section, we summarize the security issue raised by Li et al. [45] and

present a solution in the stand-alone secure computation framework [70, 71].

3.1. Revisiting Li et al. [45]

Li et al. [45] pointed out that some efficient probabilistic truncation protocols fail to meet the criteria

for standard simulation-based security [71], rendering them insecure in this framework. This includes

Catrina and Hoogh’s [24], CrypTen’s [12], and other proposals including [51, 11, 52].

Li et al. use a variant of the protocol of [24] to exemplify that the above protocols are not simulatable

as realizations of a standard ideal probabilistic truncation functionality, because in these protocols

the rounding error 𝑢 is a deterministic function of input 𝑥 and an information which the protocol

reveals. Specifically, given the protocol execution, the rounding error 𝑢 is a deterministic function

of 𝑥(𝑓) = (𝑥 mod 2𝑓 ), i.e., the last 𝑓 bits of 𝑥. This violates an ideal functionality for probabilistic

truncation, where 𝑢 = 1 with probability 𝑥(𝑓)/2
𝑓

(and 𝑢 = 0 with probability 1−𝑥(𝑓)/2
𝑓

), but whether

or not 𝑢 becomes 1 or 0 is not revealed.

We show that the probabilistic rounding protocols cited above realize a modified probabilistic trun-

cation functionality, which we define in Fig. 3. The modification is natural: The functionality picks

and reveals a “cutoff” point 𝑠(𝑓) chosen at random in Z2𝑓 = [0, ..., 2𝑓 − 1], and sets the rounding error

as 𝑢 = 1 if 𝑥(𝑓) ≥ 𝑠(𝑓), and as 𝑢 = 0 otherwise. In Appendix A we prove that the 𝑛-optimal proba-

bilistic truncation protocol of Escudero et al. [52], included in Fig. 9, realizes this modified truncation

functionality. We note that several other probabilistic truncation protocols, e.g., [24], also realize this

functionality, after adjustments related to correctness error.

Technically, we show an efficient simulator Sim s.t. for every input 𝑥 and every set C of corrupted

parties, (︀
J𝑥̃′K, 𝑠̃(𝑓),ViewC(J𝑥K)

)︀
≈𝜖

(︀
J𝑥K′, 𝑠(𝑓), Sim(J𝑥KC, J𝑥′KC, 𝑠(𝑓))

)︀
where J𝑥̃′K and 𝑠̃(𝑓) are the output and the cutoff point set by a protocol execution, ViewC(J𝑥K) is the

adversarial view of that protocol execution, J𝑥′K and 𝑠(𝑓) are the output and the cutoff point set by the

ideal functionality, and J𝑥KC and J𝑥′KC are the shares of resp. J𝑥K and J𝑥′K held by parties C.



3.2. Modified Probabilistic Truncation Functionality

If 𝑥 is an integer in Z2𝑛 , we define 𝑥(𝑓) = (𝑥 mod 2𝑓 ) as the 𝑓 least significant bits of 𝑥, and 𝑥(𝑓) =

⌊𝑥/2𝑓⌋ as the truncation of the last 𝑓 bits of 𝑥. In particular it holds that 𝑥 = 𝑥(𝑓) · 2𝑓 + 𝑥(𝑓).

We present the modified probabilistic truncation functionality ℱTruncPr
𝑛,𝑓 (J𝑥K) in Fig. 3. Note that the

proposed functionality reveals the cutoff point 𝑠(𝑓) whereas the functionality considered by Li et al. ([45,

Functionality 2]) can be stated as following the same procedure except that it hides 𝑠(𝑓). (In particular,

if 𝑢 is based on the random cutoff 𝑠(𝑓) as in Fig. 3 then 𝑢 = 1 with probability 𝑥(𝑓)/2
𝑓
, as expected.)

Note that this extra element conveys as much information as the correctness definition of the

probabilistic truncation itself, which has seen wide acceptance and use in the literature. By definition,

probabilistic truncation incurs a rounding error with probability 𝑝𝑥 = 𝑥(𝑓)/2
𝑓
. Therefore, for a fixed

input value 𝑥, one can estimate probability 𝑝𝑥 given outputs 𝑥′ from multiple runs of this functionality,

and then approximate the 𝑓 least significant bits of 𝑥 as 𝑥(𝑓) ≈ 𝑝𝑥 · 2𝑓 . Each run of functionality

ℱTruncPr
𝑛,𝑓 (J𝑥K) reveals in addition the cutoff points 𝑠(𝑓), which can also be used to approximate 𝑥(𝑓)

because each 𝑠(𝑓) partitions range [0, ..., 2𝑓 − 1], and bit 𝑢 = 𝑥′ − 𝑥(𝑓) reveals to which side of this

partition 𝑥(𝑓) belongs.

Input: Assume parties hold J𝑥K ∈ Z2𝑛 for 𝑥 < 2𝑛−1.

1. Reconstruct 𝑥 from sharing J𝑥K.

2. Set 𝑥(𝑓) = ⌊𝑥/2𝑓⌋ and 𝑥(𝑓) = (𝑥 mod 2𝑓 ).

3. Pick cutoff point 𝑠(𝑓) at random in Z2𝑓 .

4. Set 𝑥′ = 𝑥(𝑓) + 𝑢 where

𝑢 =

{︂
0 if 𝑥(𝑓) ≤ 𝑠(𝑓),
1 otherwise.

5. Generate a random sharing J𝑥′K of 𝑥′.

6. Output J𝑥′K and leak 𝑠(𝑓) to the adversary.

ℱTruncPr
𝑛,𝑓 (J𝑥K)

Figure 3: Ideal modified probabilistic truncation functionality

We prove the following theorem in Appendix A:

Theorem 3.1. Protocol ΠTruncPr
𝑛,𝑓 (J𝑥K) of Escudero et al. [52], shown in Fig. 9 in Appendix A, securely

realizes functionality ℱTruncPr
𝑛,𝑓 (J𝑥K) shown in Fig. 3 with semi-honest security in the stand-alone security

framework [71].

3.3. Comparison to CryptTen’s Truncation

We chose to implement truncation using the protocol of Escudero et al. [52] instead of CrypTen’s

truncation [12] because of correctness and rounding errors in the latter protocol. First, as in the case of

the probabilistic truncation of [24] discussed in Section 1.1.5, CrypTen’s truncation incurs a correctness

error with probability 2−(𝑛−|𝑥|)
where |𝑥| is the maximum bit size of the truncation input 𝑥.

Consider the implications of the above for LLM inference. Assuming the maximum bit size of fixed-

point elements is 24 (8-bit integer part and 16-bit precision), after multiplication, the input bit size

doubles. Since 𝑛 is fixed at 64 bits, the correctness error occurs with a probability of 2−(64−48) = 2−16
.

For instance, the GPT-2 model requires at least 220 inner products.
2

Assuming a truncation is executed

2

For GPT-2, 𝑑model = 768, 𝑑𝑓𝑓 = 3072, 𝑛heads = 12, and 𝑑k = 64. Considering an input of size 𝐿 = 64, the token embedding

requires 𝑑model ×𝐿 inner products, each attention mechanism requires (𝑑k +𝑑model)×𝐿, and each feed-forward layer requires

at least (𝑑ff + 𝑑model)× 𝐿 inner products. This amounts to at least 3, 637, 248 > 220 inner products.



after each inner product, we expect 16 random errors, undermining inference correctness.

We verified this experimentally by running 220 CrypTen truncations of 48-bit elements 30 times,

resulting in an average error of 15.83, which aligns with the expected value of 24. By contrast, the

probabilistic truncation protocol of Escudero et al. [52] is always correct.

Furthermore, CrypTen’s truncation mechanism exhibits worse rounding errors compared to function-

ality in Fig. 3 realized by the protocol of [52], even for 𝑁 = 2 parties, increasing further if the number

of parties increases. CrypTen’s rounding error is linear in N because each party truncates their share of

the input value 𝑥 locally, i.e., [𝑥′]𝑖 =
⌊︀
[𝑥]𝑖/2

𝑓
⌋︀
. Since each [𝑥′]𝑖 can be 1 away from the rational value,

summing N of them results in the output 𝑥′ which can be up to N away from 𝑥(𝑓). In contrast, value 𝑥′

output by the truncation protocol of [52] is at most 1 away from 𝑥(𝑓). For these reasons we opt for the

truncation protocol from Escudero et al. [52] instead of CrypTen’s truncation mechanism after each

multiplication.

4. Curl Overview

As we mentioned in Section 2.3, DWT is used to decompose signals into approximation and detail

coefficients. DWT is particularly effective for signals that represent smooth functions (e.g., logarithm,

square root) since the detail coefficients are relatively small compared to the approximation coefficients.

This unique observation allows us to set the detail coefficients to zero and invert the application of the

DWT to obtain an approximation of the original signal. The main benefit of this process is that for

smooth functions we acquire detailed approximations while requiring significantly fewer samples than

the original signals. We leverage this to develop a secure protocol with compressed LUTs achieving

high accuracy with low round and communication complexities.

We begin by analyzing several DWT techniques, specifically Haar and Biorthogonal DWT, for

plaintext evaluation of LUTs and we translate the plaintext procedures into the secure setting. Next,

we apply our DWT LUT techniques and create Curl, an easy-to-use framework for privacy-preserving

machine learning that exposes a tensor-based programming model for both CPU and GPU backends.

Finally, we evaluate Curl on non-linear functions and LLMs securely, improving accuracy and reducing

communication compared to related works.

4.1. Improving Approximations with DWT-Encoded LUTs

Our key contribution lies in utilizing discrete wavelet transform (DWT) to securely evaluate a table.

We start by explaining the secure evaluation of a look-up table (LUT) and demonstrate the application

of both Haar and Biorthogonal DWT compression techniques for function evaluation using plaintext

values. Next, we extend those two techniques to the secure setting. Our protocols use some techniques

introduced in [72, 33, 23] but contrary to previous works, Curl can be easily extended to any number of

parties. For simplicity, we present our protocols in the two-party setting.

4.1.1. Secure LUT Evaluation

Let F : R→ R be a function and consider its fixed-point encoded counterpart tF : Z2𝑛 → Z2𝑛 , with

precision 𝑓 . The function tF can be represented as a LUT in (Z2𝑛)
2𝑛

, where tF(𝑥) corresponds the

value at the 𝑥-th index. We briefly explain the method for securely computing tF(J𝑥K) = J𝑦K, which is

depicted in Fig. 4.

Before initiating the protocol, both parties 𝒫0 and 𝒫1 can locally produce a LUT tF representation of

the function F. This evaluation needs to be performed only once and can be reused indefinitely. The

secure evaluation of the LUT begins with the dealer generating a random element 𝑟 ∈ Z2𝑛 . Then, it

generates a 1-hot vector 𝑣 with elements equal to 0 everywhere except in the 𝑟-th entry. Then, the

dealer secret-shares to both 𝒫0 and 𝒫1 the random value 𝑟 along with the 1-hot vector 𝑣. These steps

make up the preprocessing phase as they do not depend on the function input 𝑥. During the online

phase, the parties locally compute the offset value 𝛿 given by 𝛿 = 𝑥− 𝑟. This offset value is revealed to
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Figure 4: Secure evaluation tF(𝑥) = 𝑦 of a public LUT (tF) on secret-shared 𝑥 (𝒫𝑖 holds J𝑥K𝑖) with the help of
dealer 𝒟.

both parties 𝒫0 and 𝒫1 as it is used to locally rotate the secret-shared vector 𝑣. Note that 𝛿 cannot be

revealed to the dealer, otherwise 𝒟 would be able to recover the underlying value of the input 𝑥. After

the parties rotate their shares of 𝑣 by 𝛿, the underlying value 1 is placed at 𝑟 + (𝑥− 𝑟) = 𝑥-th index.

Finally, the parties compute the inner product between the shares of the rotated vector and the public

LUT tF. Indeed, this yields the share of tF at index 𝑥. All operations are executed in the ring Z2𝑛 .

4.2. Look-Up Table Approximation

As previously discussed, DWT provides a way to approximate signals. We observe that it is specifically

well-suited for smooth functions, such as exponential, sigmoid, logarithm, and square root, to name

a few. Additionally, it provides a compression mechanism that allows us to reduce bandwidth usage.

Next, we delve into two approaches for evaluating a DWT-approximated LUT in the plaintext setting.

This exploration will help inform the secure protocols for both Haar and (5, 3) Biorthogonal DWTs.

Approach 1. Recall from Section 2.3 that when DWT is applied to a vector 𝑣 𝑗 times, we end up

with two vectors

↶𝑗
𝑎 and

↶𝑗

𝑑 , where

↶𝑗
𝑎 is 2𝑗 times smaller than the original vector. By setting the

detail coefficients to zero, we define the approximation of 𝑣 to be the approximation coefficients. This

effectively reduces the size of the original vector by 2𝑗 .
Similar to how we apply the DWT to a general vector 𝑣 ∈ (Z2𝑛)

2𝑛
, we apply it to the LUT repre-

sentation tF. We define

↶𝑗
tF ∈ (Z2𝑛)

2𝑛−𝑗

to be the LUT containing only the approximation coefficients

of the original LUT after 𝑗 DWT operations, 𝑊 𝑗 · tF. Note that, in this process, the original LUT is

compressed by a factor of 2𝑗 , while the original input value 𝑥 remains within Z2𝑛 . This leads to a

natural question: how do we find the original input 𝑥 in the 𝑗-times compressed table

↶𝑗
tF? To locate 𝑥 in

↶𝑗
tF , we truncate 𝑥 by 𝑗 bits and find the corresponding index in

↶𝑗
tF . This process yields the following

approximation:

tF(𝑥) ≈
↶𝑗
tF(𝑥≫ 𝑗),

which is depicted in Fig. 5. Observe that the output bitwidth of the compressed LUT

↶𝑗
tF is the same as

the output bitwidth of the original table tF.

Approach 2. From DWT theory, we can retrieve the original signal from the approximation and

detail coefficients by evaluating the inverse transform over them. Moreover, it is known that the

inverse transform provides a method to amplify a signal, by considering the original signal as the
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Figure 5: Execution of the original and Haar-compressed LUT (tF and
↶1
tF ) on inputs 𝑥 and 𝑥≫ 1, respectively.

approximation coefficients [61]. We can use this method to amplify the approximated LUT

↶𝑗
tF and get a

better approximation than approach 1. We execute the following chain of operations:

tF 𝑊 𝑗 · tF =

⎡⎣↶𝑗
tF
↶𝑗

𝑑

⎤⎦ [︃
↶𝑗
tF

0

]︃
=:

↶𝑗
eF 𝑊−𝑗 ·

↶𝑗
eF =: ̃︀tF,𝑊 𝑗 𝑊−𝑗

(1)

and we obtain tF(𝑥) ≈ ̃︀tF(𝑥) for any DWT type.

Next, we explain both approaches for the Haar and (5, 3) Biorthogonal transformations. We discuss

how the structure of the DWT matrices affects the approximation, as this provides insight into translating

a plaintext approximation to a secure protocol. Finally, we extend these approaches to the secure setting

and present the corresponding protocols.

4.2.1. Haar-LUT Evaluation

The two aforementioned approaches presented in Section 4.2 can be applied to the Haar DWT. Consid-

ering vectors of size 2𝑛, recall from Section 2.3.1 that the Haar DWT compresses data by computing

the average of two elements: 𝑎𝑘 = (𝑣2𝑘 + 𝑣2𝑘+1)/2, for 𝑘 = 0, 1, . . . , 2𝑛−1 − 1. In other words, as 𝑘
represents the 𝑛− 1 most significant bits (MSB) of the original index, the index elements with the same

𝑛− 1 MSBs are averaged. Applying consecutively DWT 𝑗 times, the DWT averages the index elements

with the same 𝑛− 𝑗 MSBs.

We observe that for the Haar DWT, both approaches 1 and 2 yield the same approximation. As

described in Section 4.2, the inverse Haar transformation is given by 𝑣2𝑘+1 = 𝑎𝑘+𝑑𝑘 and 𝑣2𝑘 = 𝑎𝑘−𝑑𝑘 .

Since the detail coefficients are set to 0, we observe that 𝑣2𝑘 = 𝑣2𝑘+1 = 𝑎𝑘, i.e., the elements from

indexes with the same 𝑛− 1 MSBs are reconstructed to the same value. In other words, the inverse

transformation duplicates the entries of the indexes having the same 𝑛 − 1 MSBs. This yields the

same result as taking the 𝑛− 1 MSB of 𝑥 and looking up the compressed table

↶1
tF , i.e., more generally

↶𝑗
tF(𝑥≫ 𝑗) = ̃︀tF(𝑥).
Secure Haar LUT Evaluation. The techniques described above can be used together to securely

compute an approximated function F through a LUT. The full protocol is formally described in Fig. 6.

The secure LUT procedure of Fig. 4 can be adapted to be compatible with the DWT compression

technique. Assume input bitwidth 𝑛, output bitwidth 𝑙, and the number of DWT transformations to be

𝑗. The secure Haar LUT protocol, ΠHaar-LUT
𝑛,𝑙,𝑗,F (Fig. 6) is given as follows. During the preprocessing phase,

similar to the secure LUT evaluation, the dealer produces a secret-shared random 1-hot vector. However,

to profit from DWT compression, the 1-hot vector has reduced size, i.e., 2𝑛−𝑗
, and 𝑟 ∈ Z2𝑛−𝑗 . Following

approach 1, we have that the look-up index is given by the 𝑛− 𝑗 MSBs of the input 𝑥. Therefore, the

shift 𝛿 to be applied to the compressed LUT

↶𝑗
tF is computed using the 𝑛− 𝑗 MSBs of 𝑥 and 𝑟. The online



Parameters: 𝑛, 𝑙 for input bit-width and output bit-width. F is the function to be computed and

represented by the corresponding 𝑗−times compressed LUT
↶𝑗
tF .

Dealer setup:

1. 𝒟 randomly generates 𝑟 $←− Z2𝑛−𝑗 .

2. 𝒟 builds a 1-hot vector 𝑣 of size 2𝑛−𝑗 with value 1 at position 𝑟.

3. 𝒟 shares 𝑟 and 𝑣 to 𝒫0 and 𝒫1.

LUT evaluation for parties 𝒫𝑖 for 𝑖 ∈ {0, 1}:

4. 𝒫𝑖 truncates the input value J𝑥K by 𝑗: J𝑥*K = J𝑥≫ 𝑗K. ◁ Truncation protocol [52, §5.1]

5. 𝒫𝑖 reduces its share J𝑥*K𝑖 by locally computing J𝑥*K𝑖 mod 2𝑛−𝑗 .

6. 𝒫𝑖 computes J𝛿K = J𝑥*K− J𝑟K and reveal 𝛿.

7. 𝒫𝑖 rotates J𝑣K𝑖 by 𝛿.

8. 𝒫𝑖 applies the inner product between
↶𝑗
tF and the rotated vector, and gets the share J𝑦K.

9. Output: J𝑦K.

ΠHaar-LUT
𝑛,𝑙,𝑗,F (J𝑥K)

Figure 6: Secure Haar protocol.

phase starts with the parties truncating the shares of 𝑥 by 𝑗 and computing its modulo in Z2𝑛−𝑗 . As we

saw, the truncation from the DWT-LUT evaluation approach 1 can be executed with the Escudero et

al. [52, §5.1] probabilistic truncation protocol over rings. The modulo operation is required because the

shares of 𝑟 belong to Z2𝑛−𝑗 and the shares of truncated 𝑥 belong to Z2𝑛 . We note that modulo can be

executed locally as described below. The rest of the protocol is similar to the online phase of the secure

LUT evaluation (Fig. 4).

Local modulo. In the literature, several protocols evaluate the modulo operation over shares in a ring or

field [24, 52]. Those protocols are used whenever the space of the modulo operation is the same for both

inputs and outputs. However, we observe that the modulo operation required for our protocol needs

to reduce the ring size of the operand. More specifically, the shares J𝑥*K in Z2𝑛 have to be reduced to

shares in Z2𝑛−𝑗 . This can be achieved locally by letting the parties compute the modulo operation over

their shares. For correctness, consider 𝑥 = (J𝑥K1 + J𝑥K2) mod 2𝑛 and 𝑥′ = 𝑥 mod 2𝑛−𝑗
. We have,

𝑥′ = 𝑥 mod 2𝑛−𝑗

= ((J𝑥K1 + J𝑥K2) mod 2𝑛) mod 2𝑛−𝑗

= (J𝑥K1 + J𝑥K2) mod 2𝑛−𝑗 ◁ 2𝑛−𝑗
is a factor of 2𝑛.

=
(︀
J𝑥K1 mod 2𝑛−𝑗 + J𝑥K2 mod 2𝑛−𝑗

)︀
mod 2𝑛−𝑗

=
(︀
J𝑥′K1 + J𝑥′K2

)︀
mod 2𝑛−𝑗 .

Thus, the shares of 𝑥′ can be computed locally from J𝑥K.

4.2.2. Biorthogonal-LUT Evaluation

Now, we explore the LUT DWT approximation for the (5, 3) Biorthogonal DWT. As described in

Section 2.3.2, the approximation coefficients are given by a weighted average of 5 elements and, similar

to Haar, approach 1 for the Biorthogonal compresses two indexes with the same 𝑛 − 1 MSBs to the

same index. On the other hand, approach 2 requires computing 𝐵−𝑗 ·
↶𝑗
eF =: ̃︀tF as shown in Eq. (1). For

simplicity, we set 𝑗 = 1 and examine the structure of the inverted Biorthogonal DWT matrix 𝐵−1
:
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approximation coefficients, i.e.,
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tF . Thus, the detail coefficients are effectively set to zero. Observe that

the line indexes with the same 𝑛− 1 MSBs ( green ) constitute a 2× 2 submatrix that combines two

elements from

↶1
tF , i.e., its corresponding index element and the subsequent element. For instance, the

001 -th block of ̃︀tF, combines the 001 -th and the ( 001 + 1)-th index element of

↶1
tF . Note that the

LSB ( red ) of the line index plays a role in the weights of the sub-matrices. Indeed, we have:(︂
2 0
1 1

)︂
=

(︂
2− 0 0
2− 1 1

)︂
.

Finally, consider the case 𝑗 = 2. We omit the (1/4)𝑗 constant for readability. The 2 LSBs of the indices

define the elements of 4× 2 sub-matrices and the 𝑛− 2 MSBs of the indices define the elements from

the approximation LUT

↶2
tF to be used.
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(22 − 0 ) · 𝑎 0 + 0 · 𝑎 0 +1
(22 − 1 ) · 𝑎 0 + 1 · 𝑎 0 +1
(22 − 2 ) · 𝑎 0 + 2 · 𝑎 0 +1
(22 − 3 ) · 𝑎 0 + 3 · 𝑎 0 +1

(22 − 0 ) · 𝑎 1 + 0 · 𝑎 1 +1
(22 − 1 ) · 𝑎 1 + 1 · 𝑎 1 +1
(22 − 2 ) · 𝑎 1 + 2 · 𝑎 1 +1
(22 − 3 ) · 𝑎 1 + 3 · 𝑎 1 +1
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𝐵−2Index
↶2

𝑇 ext
F

̃︀tF

We can generalize the above pattern for any 𝑗, which provides an approximation formula suited for

the secure setting:

̃︀tF(𝑥) = 1

4𝑗

(︂(︀
2𝑗 − 𝑥(𝑗)

)︀
·
↶𝑗
tF(𝑥

(𝑗)) + 𝑥(𝑗) ·
↶𝑗
tF(𝑥

(𝑗) + 1)

)︂
, (2)

where 𝑥(𝑗) and 𝑥(𝑗) represent the 𝑛− 𝑗 MSBs and 𝑗 LSBs of 𝑥, respectively. We recall that the 𝑛− 𝑗
MSBs can be obtained by truncation and the 𝑗 LSB by the mod 2𝑗 operation.

Secure Biorthogonal LUT evaluation. Eq. (2) can be used to securely compute an approximated

function F through a look-up table. The full protocol is formally described in Fig. 7. Similarly, the

secure LUT procedure described before (Fig. 4) can be adapted to be compatible with the Biorthogonal

DWT compression technique. Assume input bitwidth 𝑛, output bitwidth 𝑙, and the number of DWT

transformations to be 𝑗.

The secure Biorthogonal LUT protocol, ΠBior-LUT
𝑛,𝑙,𝑗,F (Fig. 7), is similar to ΠHaar-LUT

𝑛,𝑙,𝑗,F with the difference

that it requires two LUT evaluations of

↶𝑗
tF . As an optimization, note that these two LUT evaluations

do not require two different one-hot vectors. Since the LUT evaluation is executed in two consecutive

indices, we can use the same vector 𝑣 to generate two shifted vectors: one shifted by 𝛿 and the other

by 𝛿 + 1. This allows us to use the same dealer setup phase as in secure Haar LUT evaluation. The

online phase starts with the parties computing 𝑥(𝑗) as the 𝑛− 𝑗 MSBs and 𝑥(𝑗) as the 𝑗 LSBs of 𝑥. More

specifically, 𝑥(𝑗) is computed by truncating J𝑥K by 𝑗 (i.e., [52, §5.1]) and locally computing its modulo

in Z2𝑛−𝑗 , while 𝑥(𝑗) is computed locally based on 𝑥(𝑗) as 𝑥 = 2𝑗 · 𝑥(𝑗) + 𝑥(𝑗). The rest of the protocol is



Parameters: 𝑛, 𝑙 for input bit-width and output bit-width. F is the function to be computed and

represented by the corresponding 𝑗−times compressed LUT
↶𝑗
tF .

Dealer setup:

1. 𝒟 randomly generates 𝑟 $←− Z2𝑛−𝑗 .

2. 𝒟 builds a 1-hot vector 𝑣 of size 2𝑛−𝑗 with value 1 at position 𝑟.

3. 𝒟 shares 𝑟 and 𝑣 to 𝒫0 and 𝒫1.

LUT evaluation for parties 𝒫𝑖 for 𝑖 ∈ {0, 1}:

4. 𝒫𝑖 truncates the input value J𝑥K by 𝑗, J𝑥≫ 𝑗K := J𝑥(𝑗)K. Then, 𝒫𝑖 reduces its share J𝑥(𝑗)K𝑖 by
locally computing J𝑥(𝑗)K𝑖 mod 2𝑛−𝑗 .

5. 𝒫𝑖 computes the 𝑗 LSB of 𝑥 by locally computing J𝑥(𝑗)K := J𝑥K− 2𝑗 · J𝑥(𝑗)K.

6. 𝒫𝑖 compute J𝛿K = J𝑥(𝑗)K− J𝑟K and reveal 𝛿.

7. 𝒫𝑖 rotate J𝑣K𝑖 by 𝛿 and 𝛿 + 1.

8. 𝒫𝑖 apply the inner product between
↶𝑗
tF and the rotated vectors. We denote the resulting shares

by J
↶𝑗
tF (𝑥(𝑗))K and J

↶𝑗
tF (𝑥(𝑗) + 1)K.

9. 𝒫𝑖 computes the expression J𝑦K := 1
4𝑗

(︂(︀
2𝑗 − J𝑥(𝑗)K

)︀
· J

↶𝑗
tF (𝑥(𝑗))K + J𝑥(𝑗)K · J

↶𝑗
tF (𝑥(𝑗) + 1)K

)︂
.

10. Output: J𝑦K.

ΠBior-LUT
𝑛,𝑙,𝑗,F (J𝑥K)

Figure 7: Secure Biorthogonal protocol.

similar to the online phase of the secure LUT evaluation (Fig. 4) on 𝛿 and 𝛿 + 1. In the final step 10, the

parties compute the expression (2) as the output.

Both Haar and Biorthogonal secure evaluation protocols can be used to directly evaluate a function

over a fixed interval. Furthermore, we note that our protocols can be combined with a piece-wise

approach commonly employed in prior works [28, 15]. We extend this method in Appendix B to

accommodate any bounded even or odd function (Fig 11). We demonstrate the applicability of this

protocol to various functions, including s-shape functions such as tanh, erf and sigmoid, as well as

activation functions like GeLU and SiLUq. Additionally, in Appendix B.3, we introduce a protocol for

both sin and cos.

4.3. Complexity Analysis

4.3.1. Memory

The secure DWT-LUT approach, using compressed tables, significantly minimizes the memory required

for LUT handling. For instance, consider the interval (0, 4096) with a precision of 𝑓 = 16. A conven-

tional LUT protocol would typically demand a table size of approximately 2.15 GB. However, employing

the DWT technique allows us to reduce the original table size by a factor of approximately 220 while

maintaining high accuracy levels as discussed in Section 5.1.2. The corresponding DWT-reduced LUT

occupies only 1 KB of memory, demonstrating a substantial reduction in storage requirements without

compromising accuracy.

4.3.2. Round & Communication

Both Haar and Biorthogonal protocols have the same preprocessing phase and both start the online phase

by truncating and opening a single field element. However, the Biorthogonal requires an additional
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Figure 8: Mean absolute error (MAE) and latency trade-offs for different DWT compressions. We plot CrypTen
as a baseline.

truncation and two share multiplications (see Fig. 7 Step 9). Observe that Escudero et al. [52, §5.1]

probabilistic truncation protocol over rings involves one round to open a ring element. Consequently,

while the Haar protocol operates within 2 rounds and transmits 2 ring elements, the Biorthogonal is

more resource-intensive, requiring 4 rounds and transmitting 5 elements.

5. Experimental Results

We implemented Curl by building on top of CrypTen and open-source it in https://github.com/jimouris/

curl . Curl natively supports both CPU and GPU backends, however, we focus on CPU experiments as

this is the most widely used setting in MPC. For completeness, we conduct some GPU experiments using

an NVIDIA GeForce RTX 4080. All parties run in separate processes on a c5n.9xlarge AWS instance

with 36 vCPUs and 96 GB of memory. As communication and round complexity form crucial metrics

for assessing MPC end-to-end runtime, we extensively report these numbers in all our benchmarks.

This can be used to glean WAN performance.

Furthermore, as Curl’s novelty lies in improving approximations through DWT-encoded lookup

tables, we focus on reporting the mean absolute errors (MAE) and mean relative errors (MRE) over the

expected result. Finally, we focus on private LLM inference using secret-shared models on secret-shared

data. Note that Curl can be used for private training in a similar way, which we omit due to space

constraints. We use 16 bits of precision, following related works that typically use precision between 9
and 17 bits [46, 15, 73, 23].

5.1. Non-linear Functions

We experimentally verified that the Biorthogonal protocol achieves better approximations than Haar

with almost identical latency and communication costs (Appendix C). Therefore, we use the Biorthogonal

protocol for almost all our experiments. We choose constrained ranges of input values to enable a

meaningful comparison with CrypTen. For wider ranges, such as (0, 212), CrypTen’s approximations

exhibit significantly higher errors. Since previous MPC works [28, 27, 42] rely on similar polynomial

approximations, we can argue that they all have similar error levels. For example, for the log function,

https://github.com/jimouris/curl
https://github.com/jimouris/curl


Table 1
Overview of Curl’s improvement over CrypTen for selected tensors functions in terms of latency, mean absolute
error (MAE), and mean relative error (MRE), for tensors of 256× 256 elements.

Op. Protocol Domain

Curl CrypTen [12]

LUT Latency Com.‡ Error§ Latency Com. Error
(sec.)† Rounds MB MAE MRE (sec.) Rounds MB MAE MRE

log Fig. 7 (0, 64) 28 0.17 4 2.6 2.09e-2 5.48e-2 0.17 40 39.8 2.14e-2 6.36e-3

reciprocal Fig. 7 (1, 64) 27 0.09 4 2.6 7.18e-4 1.43e-3 0.11 59 38.3 1.7e-4 7.05e-3

sqrt Fig. 7 (0, 256) 26 0.06 4 2.6 1.23-1 1.11e-2 0.09 26 17.3 6.09e+0 4.04e-1

invsqrt Fig. 6 (0, 256) 26 0.04 2 1.0 1.45e-2 1.14e-1 0.09 24 15.7 2.69e-2 0.405e-1

sin App. B.3 (−64, 64) 25 0.08 16 20.4 4.55e-3 1.14e-2 0.11 37 24.1 8.52e-1 1.58e+0

cos App. B.3 (−64, 64) 25 0.08 16 20.4 4.77e-3 9.85e-2 0.10 37 24.1 8.86e-1 1.45e+0

sigmoid
Fig. 11 (−64, 64) 26 0.10 22 33.6 4.70e-5 7.83e-2 0.11 26 26.2 7.00e-5 3.49e+0
Fig. 7 (−64, 64) 26 0.10 4 2.6 1.11e-2 6.59e-2 0.11 26 26.2 7.00e-5 3.49e+0

tanh Fig. 11 (−64, 64) 25 0.09 22 33.6 2.31e-4 3.96e-4 0.13 26 26.2 8.60e-5 1.19e-4

erf Fig. 11 (−64, 64) 23 0.09 22 33.6 8.98e-4 1.83e-3 0.21 56 36.2 3.39e+7 3.40e+7

GeLU
App. B.2 (−64, 64) 24 0.10 30 47.7 5.95e-3 2.79e+0 N/A N/A N/A N/A N/A

Fig. 7 (−4, 4) 24 0.11 4 2.6 2.60e-3 5.02e-2 N/A N/A N/A N/A N/A

SiLU
App. B.2 (−64, 64) 26 0.14 30 47.7 2.61e-3 5.48e-3 N/A N/A N/A N/A N/A

Fig. 7 (−64, 64) 26 0.09 4 2.6 1.54e-1 1.18e-1 N/A N/A N/A N/A N/A

† Green background indicates the fastest runtime, ‡ orange indicates the lowest communication, and § blue indicates the lowest error
(MAE or MRE).

CrypTen’s approximation yields a MAE of 1.09e+10, whereas the Biorthogonal with a compression

𝑗 = 21 achieves a substantially lower MAE of 2.66e-1. We note that the latency time reported is

dominated by computation time as the protocol is executed in the same machine.

5.1.1. Choosing LUT Sizes

We evaluate our secure DWT protocols to compute a set of smooth functions commonly used in

machine learning tasks such as logarithm (used for perplexity and cross-entropy that measure LLM’s

performance), square root and inverse square root (used for layer normalization), sigmoid, and SiLU. In

Fig. 8 we investigate the trade-offs between latency on the left y-axes (green) and MAE on the right

y-axes (red) for the aforementioned non-linear functions. As a baseline, we show CrypTen’s latency

and MAE with dashed green and red lines, respectively. In the case of SiLU, which we evaluate with

two different protocols, CrypTen does not support this so we only show Curl’s latency and MAE. Of

course, bigger LUTs in Curl achieve better approximations but require more computation and thus

higher latency. However, DWT reduces the size of the LUTs which therefore decreases the computation

complexity of Curl while still achieving good approximations. For a LAN setting, the total runtime is

expected to be dominated by the computation time. However, for WAN, the total runtime is mostly

dominated by communication. Therefore, we focus on achieving better errors than CrypTen while

keeping a similar latency level. As an example, consider running 265×265 log functions in a LAN

setting with 0.8ms ping-time and 3 Gbps bandwidth and in a WAN setting with 80ms ping-time and

200 Mbps bandwidth. We estimate
3

Curl to take 180ms and CrypTen to take 313ms (×1.8 more) in

LAN and Curl to take 599ms and CrypTen to take 5, 039ms (×10.1 more) in WAN.

For general and unbounded functions, we apply the secure Biorthogonal protocol (Fig. 7). Exception-

ally, we use Haar-encoded protocol (Fig. 6) for the invsqrt function as it achieves better errors whenever

the (0, 1) interval is included. For sqrt and invsqrt we consider the interval (0, 256). However, for

log we consider the interval to be (0, 64) as CrypTen’s MAE and MRE are of the order of 1e+6 for

(0, 256). This corresponds to an original LUT of size 224 for sqrt and invsqrt and of size 222 for log.

Observe the logarithm approximation in Fig. 8a in which both latency and MAE of Curl matches that

3

We add the computation latency, the ping-time multiplied by the number of rounds and the amount of information sent

divided by the bandwidth. We use the numbers reported in Table 1.



of CrypTen’s for LUT sizes of 8 bits. In Figs. 8b and 8c, Curl’s MAE is always below CrypTen’s. For

these two functions, we use LUT sizes with 6 bits as these provide lower latency for Curl. We set the

compression parameter to 𝑗 = 18 for both sqrt and invsqrt and 14 for log. For sigmoid, we use the

protocol presented in Fig. 11 and set the interval to be (−64, 64). As analyzed in Appendix B.1, sigmoid

is not an odd function but the last step of the protocol can be adapted to be applied to any s-shape

function, including sigmoid. We observe that Curl achieves a better approximation than CrypTen for

LUT sizes with 6 or more bits with runtime being marginally slower. Finally, for SiLU, we set the

interval to be (−64, 64) and we use two different protocols: the approach described in Appendix B.2

which is a derivation of Fig 11 protocol (Fig. 8e); and the Biorthogonal protocol (Fig. 8f). We observe

that Appendix B.2 approach achieves better MAE errors when compared to the Biorthogonal protocol.

The latency from Fig. 8e is less affected by an increase in the LUT when compared with Fig. 8f. The

same behavior happens with GeLU and SiLU as we can observe in Table 1. This is justified by the fact

that the approach from Appendix B.2 requires comparisons, whether the Biorthogonal protocol does

not. Indeed, note that in all functions where a DWT-LUT protocol is applied, the latency decreases by

half when we half the LUT size.

5.1.2. Evaluations

Having found the optimal tradeoffs for LUT sizes, we compare the Curl approximations with the DWT

technique to CrypTen’s polynomial approximations in terms of latency, communication, and errors.

In Table 1, we evaluate a set of commonly used non-linear functions including logarithm, inverse

square root, the sigmoid activation function, as well as GeLU and SiLU. For unbounded functions, we

use the protocol from Fig. 7, while for bounded functions (e.g., sin) we use our optimized protocols

which are referenced in the table. We experimentally verified that, in most cases, the Biorthogonal

protocol outperforms the Haar DWT in terms of both MAE and MRE, with the only exception being

invsqrt. Observe that for the same LUT size, the latency for Haar is 2/3 lower than the Biorthogonal

approach (compare sqrt 0.06s latency using Biorthogonal with invsqrt 0.04s latency using Haar). For

each function, we specify the evaluation domain for which we report the errors (i.e., MAE and MRE).

Observe that all functions that utilize the protocol from Fig. 7 and Fig. 6 have constant rounds and

communication, regardless of the LUT size, as the one-hot vectors (which depend on the size) are

generated during preprocessing from the dealer. Latency is affected by the LUT size (e.g., sqrt vs log)

since the LUT output value is accumulated with shares of zero, which are as many as the LUT size

(see last step of Fig. 4). However, as discussed before, the end-to-end latency will be dominated by the

number of rounds and total communication size, for which Curl is almost always significantly better.

Regarding trigonometric functions (sin and cos) we use the approach proposed in Appendix B.3. We note

that CrypTen’s approximation of both functions already has a 1.2e+2 error for the range (−128, 128).
For this reason, we decrease the interval range to (−64, 64). On the other hand, Curl’s approximation

keeps the same level of errors independent of the input range. Moreover, Curl achieves that while

having less latency, rounds and communication when compared with CrypTen.

5.2. LLM Inference

We evaluate Curl with BERT Tiny (4 million parameters), BERT Base (110 million parameters), BERT

Large (340 million parameters), GPT-2 (124 million parameters), and GPT Neo (1.3 billion parameters).

In Table 2, we report the latency, number of rounds, and total communication for each LLM for 64

inputs. For completeness, we also evaluate BERT Tiny and Base on GPU for 64 elements and report

between 2− 3× speedup compared to CPU (1.1 and 6.5 seconds, respectively). Finally, we use the QNLI

classification task from the GLUE benchmark [74] to evaluate the accuracy of our models. Curl achieves

an accuracy of 80.3% for encrypted BERT Tiny, which almost matches the plaintext accuracy (i.e.,

81.4%). This further verifies our claim regarding the probabilistic truncation protocol that is sufficiently

accurate to evaluate LLMs. However, we observed that in LLMs the LUT protocols are not great for

inverse square root as the input range varies and the output of the function changes rapidly in (0, 1].



Thus, to achieve high accuracy we resort to a comparison and two LUTs: a dense one between (0, 1]
and a sparse one in (1, 256), getting the best of both worlds.

Table 2
Runtime and communication of Curl with a sequence length of 64 items.

Model Latency (s) Rounds Com. (GB)

BERT Tiny 3.55 409 1.34
BERT Base 13.63 1,629 2.8
BERT Large 33.93 3,093 5.66

GPT-2 16.61 1,630 3.77
GPT-Neo 103.4 3,118 14.9

Next, we compare with Iron, MPCFormer, Puma, and Bolt in Table 3 for BERT Base with 128 items.

In terms of end-to-end latency, Curl outperforms all other frameworks by at least 1.5×, with as much

as 20× in the case of Iron. More importantly, Curl achieves this with significantly less amount of

rounds and total communication. Specifically, Iron and Bolt require 8× and 6× more rounds than Curl,

respectively, while in terms of total communication, all other frameworks need more than 10 GBs (with

Iron needing 281 GBs) while Curl only needs 5.7 GBs. Although the end-to-end runtime in a real-world

instantiation would increase due to communication, Curl would not be affected as much by that since it

exhibits the lowest communication and number of rounds.

Table 3
Runtime and communication comparisons with a sequence length of 128 items for the full BERT Base LLM.

Framework Latency (s) Rounds Com. (GB)

Iron [26] 475 13,663 281
MPCFormer [27] 55.3 – 12.1

Puma [42] 33.9 – 10.8
Bolt [28] 185 10,509 59.6

Bolt (WE) [28]† 91 10,901 25.7

Curl 22.5 1,629 5.7

† In Bolt, WE stands for word elimination.

Finally, in Table 4 we compare Curl with CrypTen for five LLMs with 64 inputs. This differs from

Tables 2 and 3 as CrypTen lacks a protocol to evaluate embeddings (Section 2.2). Thus, in Table 4, we

skip embedding for a fair comparison. Curl needs less than half the amount of rounds CrypTen does for

all five models and almost half the total communication. Although Curl’s runtimes are already faster

than CrypTen’s, the difference in end-to-end latency will increase further in a realistic instantiation due

to communication.

Table 4
Runtime and communication comparisons with CrypTen with a sequence length of 64 items. These models skip
the embeddings as CrypTen does not support lookups.

Model Curl CrypTen [12]

Latency (s) Rounds Com. (GB) Latency (s) Rounds Com. (GB)

BERT Tiny 0.51 252 0.02 0.86 539 0.05
BERT Base 9.01 1,472 1.31 13.23 3,089 2.62
BERT Large 28.79 2,936 4.11 38.59 6,149 7.6

GPT-2 8.94 1,464 1.31 12.93 3,060 2.62
GPT-Neo 98.44 2,952 11.95 137.20† 6,144 18.91

† Approximated since CrypTen could not fit GPT Neo in RAM.



6. Concluding Remarks

We have introduced Curl, a framework for privacy-preserving machine learning that evaluates non-linear

functions as lookup tables, resulting in better approximations and significant round and communication

reduction. Curl achieves this by relying on discrete wavelet transformations to reduce the lookup table

sizes without sacrificing accuracy, which has resulted in up to 19× round and communication reduction

compared to related works. We have evaluated Curl on five large language models such as BERT, GPT-2,

and GPT Neo (1.3 billion parameters), and have compared it against state-of-the-art related works,

significantly reducing latency, the number of communication rounds, and the total communication. On

top of that, Curl is easy to use by exposing a tensor-based programming model that machine learning

researchers and developers are familiar with which allows for both CPU and GPU backends. Lastly,

we have introduced a new ideal functionality for probabilistic truncation protocols and proved their

security in the real-ideal paradigm. This is of independent interest, as truncation is a core component of

encrypted machine-learning models, and probabilistic truncation was previously considered insecure.
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Appendices

A. Proof of Theorem 3.1

We consider the probabilistic truncation protocol of Escudero et al. [52], denoted ΠTruncPr
𝑛,𝑓 (J𝑥K) and

shown in Fig. 9. Below we prove Theorem 3.1, i.e. we show that protocol ΠTruncPr
𝑛,𝑓 (J𝑥K) securely realizes

the modified probabilistic truncation functionality ℱTruncPr
𝑛,𝑓 (J𝑥K) shown in Fig. 3 in Section 3. To

simplify notation, we assume below that ℓ = 𝑛 − 1, in which case 𝑠̃ = 𝑠 = (𝑥 + 𝑟̃) mod 2𝑛 for

𝑟̃ = 2𝑛−1𝑏+ 2𝑓𝑟+ 𝑟′. In the general case of ℓ < 𝑛 all arguments are the same except that computation

is done over Z2ℓ+1 instead of Z2𝑛 .

1. Assume parties hold J𝑥K ∈ Z2𝑛 for 𝑥 < 2ℓ, ℓ < 𝑛.

2. Assume parties hold (J𝑟K, J𝑟′K, J𝑏K) from pre-processing where 𝑟, 𝑟′, 𝑏 are random in resp. Z2ℓ−𝑓 ,
Z2𝑓 , and Z2.

3. Parties set J𝑠K = 2𝑛−(ℓ+1) · (J𝑥K + 2ℓJ𝑏K + 2𝑓 J𝑟K + J𝑟′K) and publicly reconstruct 𝑠 from J𝑠K.

4. Denote 𝑠 = 2𝑛−(ℓ+1) · 𝑠̃ and note that 𝑠̃ = (𝑥+ 𝑟̃) mod 2ℓ+1 where 𝑟̃ = 2ℓ𝑏+ 2𝑓𝑟 + 𝑟′ < 2ℓ+1.

5. Parties compute J𝑣K = J𝑏⊕ 𝑠̃ℓK = J𝑏K + 𝑠̃ℓ · (1− 2J𝑏K), where 𝑠̃ℓ is the ℓ-th bit of 𝑠̃.

6. Parties output J𝑥′K = 2ℓ−𝑓 J𝑣K + ⌊(𝑠̃ mod 2ℓ)/2𝑓⌋ − J𝑟K.

ΠTruncPr
𝑛,𝑓 (J𝑥K)

Figure 9: Probabilistic truncation protocol of [52].

Proof. The simulator receives the shares of corrupted parties in sharings J𝑥K, J𝑟K, J𝑟′K, J𝑏K and a random

value 𝑠(𝑓) ∈ Z2𝑓 from functionality ℱTruncPr
𝑛,𝑓 (J𝑥K). On these inputs the simulator picks a random

value 𝑠(𝑓) in Z2𝑛−𝑓 , sets 𝑠 = 2𝑓 · 𝑠(𝑓) + 𝑠(𝑓), and simulates the reconstruction of secret-sharing

J𝑠K = J𝑥 + 𝑟̃K = J𝑥K + 2𝑛−1J𝑏K + 2𝑓 J𝑟K + J𝑟′K into value 𝑠. Note that all other computations in the

protocol are local given the input shares and the revealed value 𝑠, so the simulator’s work is done.

Note that ΠTruncPr
𝑛,𝑓 (J𝑥K) reveals only 𝑠 reconstructed from secret-sharing J𝑠K = J𝑥 + 𝑟̃K. Since

𝑠 = 𝑥 + 𝑟̃ mod 2𝑛 and 𝑟̃ is random in Z2𝑛 it follows that 𝑠 is uniform in Z2𝑛 for every 𝑥, hence the

simulation above is perfect. Note also that since the simulator sets 𝑠 as 2𝑓 · 𝑠(𝑓) + 𝑠(𝑓), output 𝑠(𝑓) in

the simulation agrees with value 𝑠(𝑓) set by the functionality.

It remains to argue that distribution of 𝑥′ output by the ΠTruncPr
𝑛,𝑓 (J𝑥K) is the same as in the ideal-

world functionality ℱTruncPr
𝑛,𝑓 (J𝑥K). In the ideal-world functionality, value 𝑥′ is a function of 𝑥 and 𝑠(𝑓),

determined by the following formula:

𝑥′ =

{︂
𝑥(𝑓) if 𝑠(𝑓) ≥ 𝑥(𝑓),

𝑥(𝑓) + 1 otherwise.

(3)

We argue that 𝑥′ is determined in the same way in protocol ΠTruncPr
𝑛,𝑓 (J𝑥K). Recall that for any 𝑣, we

denote 𝑣(𝑓) = ⌊𝑣/2𝑓⌋ and 𝑣(𝑓) = (𝑣 mod 2𝑓 ), hence 𝑣 = 𝑣(𝑓) · 2𝑓 + 𝑣(𝑓). Correctness of the protocol

is based on the observation that if 𝑠 = 𝑥+ 𝑟̃ mod 2𝑛 then 𝑠 = 𝑥+ (2𝑓𝑟 + 𝑟′)− 2𝑛−1𝑣 over integers,

where 𝑣 = 𝑏⊕ 𝑠𝑛−1, equivalently 𝑠 = 2𝑓 (𝑥(𝑓) + (𝑟− 𝑣)) + (𝑥(𝑓) + 𝑟′) where 𝑣 = (2(𝑛−1)−𝑓 )𝑣. There

are two cases for how 𝑠(𝑓) and 𝑠(𝑓) relate to 𝑥(𝑓), 𝑟, 𝑣 and 𝑥(𝑓), 𝑟
′
:

𝑠(𝑓) =

{︂
𝑥(𝑓) + (𝑟 − 𝑣) if 𝑥(𝑓) + 𝑟′ < 2𝑓 ,

𝑥(𝑓) + (𝑟 − 𝑣) + 1 otherwise.

(4)

𝑠(𝑓) =

{︂
𝑥(𝑓) + 𝑟′ if 𝑥(𝑓) + 𝑟′ < 2𝑓 ,

𝑥(𝑓) + 𝑟′ − 2𝑓 otherwise.

(5)



Since J𝑥′K is set to 𝑠(𝑓) − J𝑟 − 𝑣K, equation (4) implies that:

𝑥′ = 𝑠(𝑓) − (𝑟 − 𝑣) =

{︂
𝑥(𝑓) if 𝑥(𝑓) + 𝑟′ < 2𝑓 ,

𝑥(𝑓) + 1 otherwise.

(6)

However, equation (5) implies that:

𝑥(𝑓)+𝑟′ < 2𝑓 if and only if 𝑠(𝑓) = 𝑥(𝑓)+𝑟′ ≥ 𝑥(𝑓)
𝑥(𝑓)+𝑟′ ≥ 2𝑓 if and only if 𝑠(𝑓) = 𝑥(𝑓)+(𝑟′−2𝑓 ) < 𝑥(𝑓).

(7)

Equations (6) and (7) together imply the same expression of 𝑥′ according to 𝑥(𝑓) and 𝑠(𝑓) as in equation

(3). We conclude that 𝑥′ output by protocol ΠTruncPr
𝑛,𝑓 (J𝑥K) is set by the same formula as in the ideal

functionality ℱTruncPr
𝑛,𝑓 (J𝑥K).

In the proof above, note that the randomness of the opened masked value is part of the view of the

adversary, so the rounding error is fixed in both the real and ideal worlds by the adversary’s view.

This argument can be extended to all probabilistic truncation protocols that follow the same pattern

regarding masking the input value with randomness. More specifically, the proof can be adapted for

the protocols with non-zero correctness error, including [24] and [51], and for other protocols with

perfect correctness, e.g., [11].

B. Bounded functions

Recall that an odd function F obeys the following property F(−𝑥) = −F(𝑥) and an even function F
is such that F(−𝑥) = F(𝑥). In this section, we generalize the approach taken by Sigma for the GeLU
function [15] and apply it to any bounded odd or even function that converges to some constant 𝑐 for

|𝑥| → ∞ (e.g., s-shape functions). This method can be applied to several important functions: s-shape

functions, used as activation functions (hyperbolic tangent tanh and error function erf); shifted s-shape

functions, like sigmoid; and more general functions such as GeLU and SiLU.

The odd/even property guarantees that we only need to compute the function for positive values.

This effectively halves the size of the required LUT. To achieve this, we compute the sign of the input

and multiply it by its value, then get its absolute value. The convergence property ensures that, given

some acceptable error, we can clip the function for some interval [−𝑎, 𝑎] and assign a constant value 𝑐
to all elements outside that interval. We note that [15] sets 𝑐 = F(𝑎) but we set the constant 𝑐 to be

the limit value of the function F. Outside [−𝑎, 𝑎], we claim that the error incurred by [15] is bigger for

most of the inputs but for a short interval. Intuitively, Fig. 10 shows the errors incurred by Curl’s and

Sigma’s approach to the Sigmoid function. Observe that the error following Sigma’s approach ( red

area) is bigger than the error by Curl’s approach ( green area) outside the interval [2, 2.76].

Curl

[20]

[20] has
lower error

Curl has
lower error

2 2.76

0.5

0.88
0.94

1

𝑥

𝜎(𝑥)

Figure 10: Analysis of error incurred by Curl’s ( green ) and Sigma’s ( red ) approach on approximating Sigmoid
function 𝜎(𝑥) for 𝑥 > 2. Curl’s approach sets the approximation ̃︀𝜎(𝑥) = 1 and Sigma’s approach sets̃︀𝜎(𝑥) = 𝜎(2) for 𝑥 > 2. Sigma’s approach error is lower in [2, 2.76) and Curl’s approach error is lower in
(2.76,+∞).



Parameters: 𝑛 is the full bit-width, 𝑎 defines the interval in which the bior-LUT protocol is applied,
𝑐 is the constant value for the function outside the interval, 𝑝 is the parity of F (𝑝 = 1 for odd
functions and 𝑝 = 0 for even functions) and 𝑗 is the compression variable for the bior-LUT protocol.

Compute sign and absolute value, Jsgn(𝑥)K and J|𝑥|K:

1. ⟨⟨𝑥⟩⟩ ← ΠA2B
𝑛,𝑛 (J𝑥K) ∈ Z𝑛

2

2. ⟨⟨𝑏⟩⟩ ← ⟨⟨𝑦⟩⟩ ≫ (𝑛− 1) ∈ Z2

3. J𝑏K← ΠB2A
1,𝑛 (⟨⟨𝑏⟩⟩) ∈ Z2𝑛

4. Jsgn(𝑥)K← 1− 2 · J𝑏K ∈ Z2𝑛

5. J|𝑥|K← Jsgn(𝑥)K · J𝑥K ∈ Z2𝑛

Check |𝑥| < 𝑎:

6. J𝑧K← J|𝑥|K− 𝑎 ∈ Z2𝑛

7. ⟨⟨𝑧⟩⟩ ← ΠA2B
𝑛,𝑛 (J𝑧K) ∈ Z𝑛

2

8. ⟨⟨𝑖⟩⟩ ← ⟨⟨𝑧⟩⟩ ≫ (𝑛− 1) ∈ Z2

9. J𝑖K← ΠB2A
1,𝑛 (⟨⟨𝑖⟩⟩) ∈ Z2𝑛

Compute F:

10. J𝑦′K← ΠBior-LUT
𝑛,𝑛,𝑗,F (J|𝑥|K)

11. J𝑦K← (J𝑖K · J𝑦′K + (1− J𝑖K) · 𝑐) ◁ Computes share of: 𝑦 =

{︃
𝑦′, if |𝑥| < 𝑎

𝑐, otherwise.

12. Output: Jsgn(𝑥)K𝑝 · J𝑦K ∈ Z2𝑛 ◁ Equivalent to J𝑦K for even functions and J−𝑦K otherwise.

ΠF
𝑛,𝑎,𝑐,𝑝,𝑗(J𝑥K)

Compute comparison bit:
𝑏 = 𝑥 < 0.

Compute comparison bit:
𝑖 = |𝑥| < 𝑎.

Figure 11: Protocol for convergent bounded odd (𝑝 = 1) or even (𝑝 = 0) function F based on the secure
biorthogonal-encoded LUT protocol.

The ΠF
𝑛,𝑎,𝑐,𝑝,𝑗(J𝑥K) protocol is formally shown in Fig. 11. Recall from Section 2.1, that ΠA2B

𝑛,𝑙 and ΠB2A
𝑛,𝑙

represent the arithmetic to binary and binary to arithmetic conversion protocols. The protocol goes as

follows. For input value 𝑥, the parties start by computing the signal of 𝑥 and its absolute value. Note

that the signal value can be computed using the expression sgn(𝑥) = 1− 2 · (𝑥 < 0) and the absolute

value of 𝑥 can be computed as |𝑥| = sgn(𝑥) · 𝑥. The absolute value is then used to check whether 𝑥
lies within a predetermined interval [−𝑎, 𝑎] or not. Then, parties run the secure Biorthogonal protocol

ΠBior-LUT
𝑛,𝑙,𝑗,F (J𝑥K) to evaluate on |𝑥|, returning 𝑦′. In case 𝑥 ∈ [−𝑎, 𝑎], parties output 𝑦′, otherwise they

output the limit value 𝑐 of the function F. This is effectively computed by the operation 𝑖 ·𝑦′+(1− 𝑖) · 𝑐,

where 𝑖 is the comparison bit for |𝑥| < 𝑎. In the last step, the output value is corrected in case the

function is odd: returning sgn(𝑥) · 𝑦. This is set by the parity parameter 𝑝, which is 𝑝 = 0 for even

functions and 𝑝 = 1 for odd functions.

B.1. S-shape functions

In the previous section, we presented a protocol that can be applied to any bounded odd or even function

that is convergent. S-shape functions are bounded functions that converge to some value 𝑐 for |𝑥| → ∞
but are not necessarily odd or even. For example, we have that tanh and erf are odd functions but the

sigmoid function 𝜎(𝑥) is not. However, we note that we can transform any s-shape function to an odd

function by applying a shift. For example, the sigmoid function 𝜎(𝑥) can be shifted by 1/2, resulting in

an odd function: 𝜎(𝑥)− 1/2.

Generally, observe that, for an s-shape function F, there exists a shift value 𝑠, such that F(−𝑥)− 𝑠 =



−F(𝑥) + 𝑠 ⇔ F(−𝑥) = 2 · 𝑠 − F(𝑥). So, setting for 𝑏 = 𝑥 < 0, we can change the last step (12) of

protocol ΠF
𝑛,𝑎,𝑐,𝑝,𝑗(J𝑥K) to evaluate the function F:

F(𝑥) = 𝑏 · F(−|𝑥|) + (1− 𝑏) · F(|𝑥|)
= 𝑏 · (2 · 𝑠− F(|𝑥|)) + (1− 𝑏) · F(|𝑥|)
= 𝑏 · 2 · 𝑠+ sgn(𝑥) · F(|𝑥|),

where sgn(𝑥) = (1 − 2 · 𝑏). Thus, for the sigmoid function where 𝑠 = 1/2, the last step (12) from

Fig. 11 is as follows: J𝑏K + Jsgn(𝑥)K · J𝑦K. Note that for both tanh and erf 𝑏 = 0, recovering the initial

expression.

Parameters. Now, for each of the three s-shape functions, we need to define the following parameters:

bitwidth 𝑛, the interval [−𝑎, 𝑎], the constant 𝑐, the parity 𝑝 and the compression value 𝑗. We use the

hardcoded bitwidth value from CrypTen 𝑛 = 64, imposed by the PyTorch dependency. Also, 𝑐, 𝑝 = 1
for all three s-shape functions. We note that [15] clips the interval in GeLu and accepts a constant

error on the order of ∼ 10−5
. We follow a similar approach and accept errors < 10−5

. For the error

function (erf), hyperbolic tangent (tanh) and sigmoid (sigmoid) we set the interval to be [−4, 4], [−8, 8]
and [−16, 16], respectively. These intervals incurr a maximum error on the order of 10−8

, 10−7
and

10−7
, and the size of the original LUT is 218, 219 and 220, respectively.

B.2. Activation Functions: GeLU And SiLU

In this section, we consider two popular activation functions: GeLU [60] and SiLU [75], given by

GeLU(𝑥) :=
𝑥

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
,

where erf(·) denotes the Gauss error function and

SiLU(𝑥) := 𝑥 · sigmoid(𝑥).

These activation functions are sometimes considered smooth approximations to the classical ReLU of

[59]. We observe that the functions DGeLU := ReLU(𝑥)− GeLU(𝑥) and DSiLU := ReLU(𝑥)− SiLU(𝑥)
are even functions. Regarding DGeLU, note that

DGeLU =
1

2

(︂
|𝑥| − 𝑥 erf

(︂
𝑥√
2

)︂)︂
,

so the claim follows as |𝑥| is even and 𝑥 and erf are both odd. Regarding DSiLU, observe that 𝜎(−𝑥) =
1− 𝜎(𝑥), for sigmoid 𝜎. Thus, we have:

DSiLU(𝑥) =

{︃
𝑥 · (1− 𝜎(𝑥)) 𝑥 ≥ 0,

−𝑥 · 𝜎(𝑥) 𝑥 < 0

=

{︃
𝑥 · 𝜎(−𝑥) 𝑥 ≥ 0,

−𝑥 · 𝜎(𝑥) 𝑥 < 0

= DSiLU(−𝑥).

Since these two activation functions are also bounded and converge to 0 for |𝑥| → ∞, we can use

ΠF
𝑛,𝑎,𝑐,𝑝,𝑗 protocol (Fig. 11) to compute both GeLU and SiLU by evaluating: GeLU(𝑥) = ReLU(𝑥) −

ΠDGeLU
𝑛,𝑎,𝑐,𝑝,𝑗(𝑥) and SiLU(𝑥) = ReLU(𝑥)−ΠDSiLU

𝑛,𝑎,𝑐,𝑝,𝑗(𝑥).
Note that ReLU can be computed using ReLU(𝑥) = (𝑥 < 0) · 𝑥. Since we compute 𝑥 < 0 in step 3.

of the ΠF
𝑛,𝑎,𝑐,𝑝,𝑗 protocol (Fig. 11), we can reuse this value.

Parameters. Again, we use the hardcoded bitwidth value from CrypTen 𝑛 = 64 and 𝑐, 𝑝 = 0. As noted

before, [15] clips the interval in GeLU and accepts a constant error on the order of ∼ 10−5
. We follow

a similar approach and accept errors < 10−5
. For GeLU and SiLU we set the interval to be [−4, 4] and

[−16, 16], respectively. These intervals incur a maximum error on the order of 10−8
and 10−7

, and the

size of the original LUT is 218 and 220, respectively.



Parameters: 𝑛 is the full bit-width, 𝑓 is the number of bits used for the fractional part, and 𝑝 = 0 for
even functions) and 𝑗 is the compression variable for the Biorthogonal protocol.

Compute sign and absolute value, Jsgn(𝑥)K and J|𝑥|K:

1. ⟨⟨𝑥⟩⟩ ← ΠA2B
𝑛,𝑛 (J𝑥K)

2. ⟨⟨𝑏⟩⟩ ← ⟨⟨𝑦⟩⟩ ≫ (𝑛− 1)

3. J𝑏K← ΠB2A
1,𝑛 (⟨⟨𝑏⟩⟩)

4. Jsgn(𝑥)K← 1− 2 · J𝑏K

5. J|𝑥|K← Jsgn(𝑥)K · J𝑥K

Compute sin:

6. Use encoding of 2𝜋, 𝑞 := ⌊2𝜋 · 2𝑓⌋, and compute J|𝑥′|K← Πdiv(J|𝑥|K, 𝑞).

7. J𝑦′K← ΠBior-LUT
𝑛,𝑛,𝑗,sin(2𝜋·)(J|𝑥

′|K)

8. Output: Jsgn(𝑥)K · J𝑦K ∈ Z2𝑛 ◁ For cos it returns J𝑦K.

Πsin
𝑛,𝑓,𝑗(J𝑥K)

Figure 12: Protocol for sin function based on the secure Biorthogonal protocol.

B.3. Trigonometric functions

It is known that sin is an odd function and cos is an even function. However, these two functions do not

converge, making protocol ΠF
𝑛,𝑎,𝑐,𝑝,𝑗 (Fig. 11) unsuitable. Despite this, we can still use the core concepts

from that protocol and adapt them to these trigonometric functions. The key insight is that both

functions are periodic with a period of 2𝜋. We leverage this periodicity by scaling these trigonometric

functions to have period 1. This is achieved by generating LUT for sin(2𝜋 · 𝑥) and cos(2𝜋𝑥), where

𝑥 ∈ [0, 1]. Then, for input 𝑥, we evaluate the LUT using the secure Biorthogonal protocol at point

𝑥/(2𝜋). We execute division (Πdiv
) based on the Escudero et al. [52, §5.1] probabilistic truncation

protocol over rings. The protocol for sin is formally described in Fig. 12. The cos protocol is similar but

does not require the sign correction in the last step.

B.4. The Softmax Function

Recall that softmax is given by the following expression:

𝑦𝑖 =
𝑒𝑥𝑖−max(𝑥)∑︀𝑘−1
𝑗=0 𝑒

𝑥𝑗−max(𝑥)
,

where 𝑥 ∈ R𝑘
and max is the maximum operation over the vector 𝑥. To be able to compute the

expression above, we need three main functions: maximum, natural exponentiation, and reciprocal.

The maximum operation is computed using the protocol implemented in CrypTen (Section C.1.4 [12]).

We note that both CrypTen adopts a tree-reduction algorithm but also provides a pairwise method with

constant round complexity.

Reciprocal. From the softmax expression, we have that there exists at least one index 𝑗 such that

𝑒𝑥𝑗−max(𝑥) = 1. Also, since there are at most 𝑘 terms, we have that the reciprocal function can be only

evaluated within the [1, 𝑘] interval. We set 𝑘 = 64 as per in GPT-2 model [76]. Then, we apply the

secure ΠBior-LUT
𝑛,𝑙,𝑗,F to the interval [1, 64].



Table 5
Comparison of the mean absolute error (MAE) between Haar and Bioriothogonal LUT protocol with probabilistic
and deterministic truncation in (1, 64).

Op. Probabilistic Truncation Deterministic Truncation

Haar Biorthogonal Haar Biorthogonal

log 8.63e-3 2.53e-2 9.76e-03 4.63e-04
reciprocal 2.26e-3 4.58e-4 1.87e-03 5.79e-04

sqrt 1.29e-1 8.84e-4 6.04e-02 6.41e-05
invsqrt 7.58e-4 5.40e-5 9.36e-04 2.20e-05

§ The light blue background indicates the lowest MAE error.

C. Truncation with Haar vs Biorthogonal

We compare the accuracy of Haar and Biorthogonal DWT approaches using both probabilistic and

deterministic truncation methods in Table 5. Our findings indicate that the Biorthogonal approach

consistently outperforms the Haar approach. The reason for this is that Haar averages out two consecu-

tive values whereas Birthogonal uses five consecutive elements, thus retaining more information and

capturing the trend of the function. Finally, for the both Haar and Biorthogonal approaches we observe

only a marginal difference between the probabilistic and deterministic truncation protocols.
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