
Decoding Research Software Impact
Deekshitha

1,2,3,*
, Rena Bakhshi

1
, Rob van Nieuwpoort

3
and Slinger Jansen

2

1Netherlands eScience center, the Netherlands
2Utrecht University, Utrecht
3University of Leiden

Abstract
Research software is an integral part of the research. It is developed through the effort and collaboration of

researchers, Research software engineers, and other stakeholders. Despite its importance in the research, there

is currently no sufficient method for measuring the impact of research software. Assessing research software

impact is essential for advancing the careers of those involved in research software development and ensuring

recognition of their contributions. This study aims to build a research software impact model for the different

stakeholders of the research software by understanding their goals in measuring its impact. By providing a model

for measuring research software impact, this study will contribute to building and strengthening the research

community around research software, enhance its visibility and impact, promote the development of mature

research software, and attract industry partnerships.

Keywords
Research software, Research software impact, Maturity model

1. Problem Definition

Research software includes source code files, algorithms, scripts, computational workflows, and executa-

bles created during the research process or for research purposes. Software components (e.g., operating

systems, libraries, dependencies, packages, scripts) used for research but not created during or with a

clear research intention should be considered software in research, not research software [1]. Different

studies show that a significant amount of research generates new code, and researchers recognize that

code is an integral part of research [2, 3].

The development of research software involves researchers and a diverse group of stakeholders,

each playing a specific role. These stakeholders include funders who support the research financially,

research software engineers (RSEs) managers who design, build, and maintain the software, and

other contributors such as documentation writers, testers, and community managers. Despite the

growing importance of research software, the current academic reward system prioritizes publications,

neglecting the contributions of researchers and RSEs who spend their time and effort developing

research software [4]. This lack of recognition creates challenges for career advancement and leads to

the poor sustainability of research software [5].

The Research Software Engineering movement has emerged to address this gap by promoting the

importance of research software and advocating for the role of people, policies, and infrastructure

in its development, support, and maintenance [6]. Researchers, RSEs, and funding organizations

are increasingly interested in establishing best practices to ensure that research software becomes

sustainable, reproducible, and community-driven [7], RSMD guidelines [8], and the OpenSSF badge

program[9]—offer best practices that enhance visibility, impact, and long-term sustainability. However,

measuring the impact of research software remains a significant challenge. Stakeholders have diverse

goals and priorities, making it difficult to capture the research software impact with the existing

The 15th International Conference on Software Business (ICSOB 2024), NOVEMBER 18-20, 2024, Utrecht, the Netherlands
*
Corresponding author.

$ d.deekshitha@uu.nl (Deekshitha); r.bakhshi@esciencecenter.nl (R. Bakhshi); r.v.van.nieuwpoort@liacs.leidenuniv.nl

(R. v. Nieuwpoort); slinger.jansen@uu.nl (S. Jansen)

� 0000-0002-0877-7063 (Deekshitha); 0000-0002-2932-3028 (R. Bakhshi); 0000-0002-2947-9444 (R. v. Nieuwpoort);

0000-0003-3752-2868 (S. Jansen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:d.deekshitha@uu.nl
mailto:r.bakhshi@esciencecenter.nl
mailto:r.v.van.nieuwpoort@liacs.leidenuniv.nl
mailto:slinger.jansen@uu.nl
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0002-2932-3028
https://orcid.org/0000-0002-2947-9444
https://orcid.org/0000-0003-3752-2868
https://creativecommons.org/licenses/by/4.0/deed.en

approaches [10]. Without a proper framework, the contributions of those involved in research software

development often go unrecognized, hindering both personal and professional advancement and the

sustainability of the research software.

2. Knowledge Gap

This study aims to address three knowledge gaps identified in the existing literature, as listed below:

• No foundational method for measuring research software impact: Several tools are avail-

able to measure some aspects of the impact of research software in terms of features such as code

quality, citation, and software dependency. One example is the largest open-source platform,

GitHub, which provides various metrics like forks, watchers, stars, and user counts, which offer

some insights into software usage. However, these metrics do not capture the full impact of

research software and the expertise of its developers. Current measures do not fully account for

factors such as the qualitative contributions of software, its role in advancing research, or the

broader context of its use [11].

Although a limited number of studies have begun to address this issue by considering metrics

such as citations, stars, contributor numbers, code reuse, FAIRness (Findability, Accessibility,

Interoperability, and Reusability), and software quality, practical evaluation of the impact of

research software requires a more understanding and the ability to make judgments about these

various factors.

Furthermore, existing tools designed to assess the impact of research software, including Re-

search Software Directory (RSD) [12], Software Heritage Graph (swh-graph) [13], Depsy [14],

Libraries.io, howfairis [15], Tortellini [16], SearchSECO [17], SQAaaS [18], Sigrid, and

GrimoireLab offer only limited insights. These tools often address only specific impact aspects

or provide fragmented data, highlighting the need for a more unified and detailed framework to

evaluate research software. Thus, all the above tools are limited to some criteria and need to fully

cover the requirements to recognize the efforts of the people behind the development.

• Lack of a foundational method for measuring the maturity of research software projects:

The second knowledge gap is not a sufficient method for assessing the maturity of research

software projects since research software projects differ in many criteria, including importance

to citation, sustainability, reproducibility, and much more [19].

• Lack of automated mechanisms for classifying research software: The third knowledge gap

is the Lack of automated methods to distinguish research software from other types of software

and classify it by domain. Research software is distributed across various platforms such as

GitHub and GitLab, but there is no current solution to automatically identify it or categorize it

based on its specific domain [20].

This study aims to fill these gaps by proposing solutions, including developing research software impact

models, maturity assessments, and automated research software classification techniques. Through

these contributions, it seeks to provide a framework or methods for evaluating, managing, and advancing

research software ecosystems.

3. Objectives

To address the knowledge gap mentioned in the previous section, this study establishes the following

objectives:

The primary objective of this research is to develop a Research Software Impact Model that meets the

needs of all stakeholders within the research software ecosystem. This model will serve as a framework

to capture the value of research software and recognize the contributions of all stakeholders, including

researchers, funders, developers, and managers.

In addition to measuring impact, this study also explores related areas to improve research software

management:

• Identifying factors that influence research software impact: Several factors affect the impact

of research software, including code quality, citations, and software dependencies. Additionally,

stakeholders such as developers, users, and funders have varying goals and perspectives regarding

research software impact [21]. The objective is to find the factors that influence the impact of the

research software.

• Maturity model for research software: The objective is to identify what defines mature

research software and improve the management processes of research software projects. The

study assesses the maturity of research software projects by evaluating existing practices and

identifying best practices for sustainable software development.

• Automatizing classification of research software: This study focuses on developing a model

to automatically categorize research software based on different factors such as domain, maturity

level, and other relevant characteristics.

By developing a structured framework for measuring research software impact, this research aims

to bridge the gap between research software development and academic recognition. Ultimately, the

proposed model will ensure that research software is sustainable, impactful, and supported by a research

community, fostering stronger connections between academia and industry.

4. Research questions

The main research question is

RQ: How to decode the impact of research software?
We divided the above main question into sub-questions that are listed below:

SQ1: How can AI support accessing the impact of research software? To address this, we started by

exploring current models or tools used to measure the impact of research software. Then, considering

code quality, code reuse, and code citation, we developed Github action to measure the impact of the

research software. These impact scores are used to tell how impactful the software is. Brief information

about FAIRSECO is provided in 5.1. Additionally, during the National Research Software Day, we

conducted a workshop. We discussed various goals for measuring the impact of research software

from the perspectives of researchers, research software engineers, funders, and policymakers. We also

identified relevant metrics for impact measurement [21].

In the coming months, we plan to conduct focus group discussions with Research Software Producers,

Research Software Users, Funders, Institutional Research Software Ecosystem Enablers, and Non-

Institutional Research Software Ecosystem Enablers. These discussions will further explore research

software impact and help develop an impact model tailored to the needs of research software stakeholders.

Additionally, it aims to use machine learning models to measure the impact of research software.

SQ2: How does assessing the maturity of the research software help to evaluate the research software
project management process? The second chapter of the thesis (research study) introduces a frame-

work for evaluating research software project management, addressing research question SQ2. The

framework, Research Software focus area Maturity Model (RSMM) includes 79 best practices and 19

capabilities, grouped into four focus areas. This method employs a systematic literature review to

collect best practices in research software project management. Additionally, semi-structured expert

interviews are conducted to determine the positioning of these practices within a maturity matrix. A

case study is also conducted to evaluate the model RSMM. A brief description of the RSMM is provided

in 5.2.

SQ3: How to automatically categorize research software? Research software can be categorized into

many categories, such as role-based, developer-based and maturity [20]. The third chapter will discuss

the automatic classification of research software using machine learning and NLP techniques.

The next section describes the research method used to address these research questions.

5. Research Method

The research questions are solved using the below methods.

5.1. FAIRSECO: Framework for impact measurement

FAIRSECO is designed to help researchers and research software engineers access the impact of their

research software over time. It considers the following features:

• FAIR Assessment for Research Software: FAIRSECO evaluates the FAIRness of research

software based on five recommendations [22]. It examines whether the research software utilizes

a public repository with version control, contains a license and citation file, is listed in a community

registry, and follows a quality checklist. Repositories meeting all five criteria receive a perfect

FAIRness score of 5 out of 5.

• Quality Scoring: The quality of the research software is determined through four criteria:

FAIRness, license compliance, maintainability, and documentation score. FAIRSECO checks for

license compliance and calculates a score accordingly. Maintainability is evaluated by assessing

the percentage of closed issues in the repository, and the documentation score is determined by

verifying the presence of documentation and readme files. These aspects collectively contribute

to the overall quality assessment.

• Code Reusability: FAIRSECO measures the code reuse by using the tool SearchSECO, which

looks in its database for occurrences of the method of the research software to find the code

reusability score.

• Citation Analysis: FAIRSECO identifies the citation score of the software by using OpenAlex

and Semantic Scholar databases.

• Software Bill of Materials (SBOM): FAIRSECO generates a Software Bill of Materials for the

research software, which includes information about its software dependencies.

Quality score, code reuse and citation are used to calculate impact score. The GitHub action, FIRSECO,

is available to assess the impact of any GitHub repository. Detailed information about FAIRSECO is

provided in this paper [23]. In future work, we will validate the factors considered for measuring impact

with various stakeholders of research software.

5.2. RSMM- Focus area maturity model for research software projects

The maturity model is "a structured collection of elements that describe the characteristics of effective
processes at different stages of development. It also suggests demarcation points between stages and
methods of transitioning from one stage to another" [24]. The maturity models are tools developed for

organizations to evaluate and compare, providing a basis for improvement and informed strategies to

enhance specific areas within the organization [25]. The maturity models include a sequence of maturity

levels for organizations or processes, outlining the expected, desired, or typical evolution path of these

as discrete stages [26]. Many existing maturity models are used for software capability management but

are not specific to research software project management. Therefore, they do not cover sustainability,

reproducibility, impact measurement, promotion, visibility, and adoptability. Capability Maturity

Model Integration (CMMI) and its predecessor Capability Maturity Model (CMM) are industry standard

maturity models [27]. They include 5 maturity levels. CMM is used to evaluate an organization’s software

engineering processes regarding maturity. It helps developers to enhance software quality and the

overall software engineering process. CMMI v3.0 [27] goes beyond software development and includes

process quality assurance, configuration management, monitoring and control, planning, estimating

requirements development and management governance, implementation infrastructure, organizational

training, process management verification and validation. Therefore, it considers developers and

other departments such as marketing, finance, and purchasing. The focus area maturity model is

one type of maturity model [28]. It helps organizations to measure their performance in a particular

functional domain. A functional domain consists of different focus areas, each with its capabilities. These

capabilities are arranged in a maturity matrix, which helps to identify different maturity levels. Each

capability includes various improvement actions. These improvement actions support the organization

in gradually improving in that functional domain. Unlike other maturity models, the focus area maturity

model does not have fixed maturity levels; maturity levels can start from 0 and end at any positive

integer. Each focus area is evaluated separately and has its maturity levels.

This work addresses the maturity gap by developing a tailored Research Software Focus Area Maturity

Model (RSMM), integrating best practices across software project management, research software-

specific challenges, and community-driven development." Inspired by the previous FAMMs [29, 30], we

have developed our model RSMM to evaluate research software project management by assessing its

maturity. We followed the De Bruin design phases to design the model [25]. The explanation for these

steps is given below:

• Scope: The scope of RSMM is to evaluate and improve the management of research software

projects.

• Design The design phase focuses on the questions "why," "how," and "who", as outlined below:

– The Why: The purpose of RSMM is to help an organization that produces research software

to improve their research software project management by assessing and improving the

maturity of their projects.

– The How: RSMM provides a structured framework with practices and capabilities for

managing research software projects. It helps organizations learn about the practices that

help them reach the desired maturity level and implement them effectively.

– The Who: The intended audience of RSMM is researchers, research software engineers,

research software project managers, funders, and policymakers.

• Populate: We identified the focus areas, capabilities, and practices of research software project

management through a systematic literature review, resulting in RSMM v0.1.

• Test: This phase helps to place practices within the maturity matrix. Furthermore, we sent the

resulting model, RSMM v1.0, to the interview experts to confirm and evaluate the model.

• Deploy: The updated version of our model, RSMM v1.0, is applied to 50 projects and validates

the applicability of RSMM.

This RSMM is developed through a systematic literature review and expert interviews. Fifty research

software projects are evaluated using RSMM to test its usability.

6. Timeline of the research

This research timeline started in February 2023 at the Netherlands eScience Center. The author is

planning to finish the study at the proposed time in January 2027.

7. Expected Contributions

From the literature study, it is clear that there needs to be more effective methods for measuring the

impact of research software and addressing its associated needs.

• We will identify and validate factors for measuring research software impact by conducting focus

group discussions with stakeholders.

• We will develop an impact model aligned with stakeholders’ goals based on the insights gathered

from these focus group discussions.

• We developed a maturity model for research software projects, utilizing a systematic literature

review and expert interviews.

• We will automate the categorization of research software based on its domain and maturity.

Lastly, this study aims to help researchers, research software engineers, and research organizations

improve their project management processes, gain recognition for their contributions, and secure

funding for future research software projects.

8. Future studies

Future studies of this research are listed below:

• Future studies could focus on refining and validating the impact model in different disciplines or

types of research software.

• Conducting case studies to track the life cycle of research software to get more detailed insights

into what affects its sustainability, growth, and retirement of the research software.

• We plan to investigate the influence of impact models and maturity assessments on funding

decisions and policy development within research organizations. These findings can help establish

best practices for justifying and securing funding for research software projects.

9. Conclusions

Research software impact means the difference that research software makes to research, the research

community, and society. This study focuses on developing a research software impact model that can

be used by all the research software stakeholders, researchers, research software engineers, funders,

and policymakers to assess the impact of their software. Additionally, the study explores related topics,

including developing a maturity model for research software and the automated classification of research

software, providing an approach to understanding and managing research software impact.

10. Declaration on Generative AI

During the preparation of this work, the author(s) used Grammerly and OpenAI ChatGPT-4 Turbo

to: Grammar and spelling check, Paraphrase, and reword. After using this tool/service, the author(s)

reviewed and edited the content as needed and take(s) full responsibility for the publication’s content.

References

[1] N. P. Chue Hong, D. S. Katz, M. Barker, A.-L. Lamprecht, C. Martinez, F. E. Psomopoulos, J. Harrow,

L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman, A. Struck, A. Lee, A. Loewe, B. van

Werkhoven, C. Jones, D. Garijo, E. Plomp, F. Genova, H. Shanahan, J. Leng, M. Hellström, M. Sand-

ström, M. Sinha, M. Kuzak, P. Herterich, Q. Zhang, S. Islam, S.-A. Sansone, T. Pollard, U. D. Atmojo,

A. Williams, A. Czerniak, A. Niehues, A. C. Fouilloux, B. Desinghu, C. Goble, C. Richard, C. Gray,

C. Erdmann, D. Nüst, D. Tartarini, E. Ranguelova, H. Anzt, I. Todorov, J. McNally, J. Moldon,

J. Burnett, J. Garrido-Sánchez, K. Belhajjame, L. Sesink, L. Hwang, M. R. Tovani-Palone, M. D.

Wilkinson, M. Servillat, M. Liffers, M. Fox, N. Miljković, N. Lynch, P. Martinez Lavanchy, S. Gesing,

S. Stevens, S. Martinez Cuesta, S. Peroni, S. Soiland-Reyes, T. Bakker, T. Rabemanantsoa, V. Sochat,

Y. Yehudi, R. F. WG, FAIR Principles for Research Software (FAIR4RS Principles), 2022. URL:

https://doi.org/10.15497/RDA00068, version: 1.0.

[2] M. Barker, N. P. Chue Hong, D. S. Katz, M. Leggott, A. Treloar, J. van Eijnatten, S. Aragon,

Research software is essential for research data, so how should governments respond?, 2021.

doi:10.5281/zenodo.5762703.

[3] J. Carver, N. Weber, K. Ram, S. Gesing, D. Katz, A survey of the state of the practice for research

software in the united states, PeerJ Comput Sci. 8 (2022) e963. doi:10.7717/peerj-cs.963.

[4] T. Greenhalgh, J. Raftery, S. Hanney, M. Glover, Research impact: a narrative review, 2016.

https://doi.org/10.15497/RDA00068
http://dx.doi.org/10.5281/zenodo.5762703
http://dx.doi.org/10.7717/peerj-cs.963

[5] H. Anzt, F. Bach, S. Druskat, F. Löffler, A. Loewe, B. Y. Renard, G. Seemann, A. Struck, E. Achhammer,

P. Aggarwal, et al., An environment for sustainable research software in germany and beyond:

current state, open challenges, and call for action, F1000Research 9 (2020).

[6] A.-L. Lamprecht, C. Martinez-Ortiz, M. Barker, S. L. Bartholomew, J. Barton, N. C. Hong, J. Cohen,

S. Druskat, J. Forest, J.-N. Grad, et al., What do we (not) know about research software engineering?,

Journal of Open Research Software 10 (2022).

[7] M. Barker, N. P. Chue Hong, D. S. Katz, A.-L. Lamprecht, C. Martinez-Ortiz, F. Psomopoulos,

J. Harrow, L. J. Castro, M. Gruenpeter, P. A. Martinez, T. Honeyman, Introducing the fair principles

for research software, Scientific Data 9 (2022). doi:10.1038/s41597-022-01710-x.

[8] M. Gruenpeter, N. Chue Hong, S. Granger, E. Breitmoser, M. Priddy, M. Antonioletti, P. A. Martinez,

T. Honeyman, J. A. Collins, R. Meneses, Research Software Workshop: Guidelines and Metrics for

Metadata Curation, 2023. doi:10.5281/zenodo.8075097.

[9] A. A. Younis, Y. Hu, R. Abdunabi, Analyzing software supply chain security risks in industrial

control system protocols: An openssf scorecard approach, in: 2023 10th International Conference

on Dependable Systems and Their Applications (DSA), IEEE, 2023, pp. 302–311.

[10] A.-M. Istrate, B. Veytsman, D. Li, D. Taraborelli, I. Williams, New data reveals the hid-

den impact of open source in science, 2022. URL: https://medium.com/czi-technology/

new-data-reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2.

[11] H. Borges, M. T. Valente, What’s in a github star? understanding repository starring practices in a

social coding platform, Journal of Systems and Software 146 (2018) 112–129.

[12] J. H. Spaaks, T. Klaver, S. Verhoeven, F. Diblen, J. Maassen, E. Tjong Kim Sang, P. Pawar, C. Meijer,

L. Ridder, L. Kulik, T. Bakker, V. van Hees, L. Bogaardt, A. Mendrik, B. van Es, J. Attema, W. van

Hage, E. Ranguelova, R. van Nieuwpoort, R. Gey, H. Zach, Research Software Directory (2020).

URL: https://github.com/research-software-directory/research-software-directory. doi:10.5281/
zenodo.1154130, version: 3.0.1.

[13] P. Boldi, A. Pietri, S. Vigna, S. Zacchiroli, Ultra-large-scale repository analysis via graph com-

pression, in: 2020 IEEE 27th International Conference on Software Analysis, Evolution and

Reengineering (SANER), IEEE, 2020, pp. 184–194.

[14] D. Singh Chawla, The unsung heroes of scientific software, Nature 529 (2016) 115–116. doi:10.
1038/529115a.

[15] J. H. Spaaks, S. Verhoeven, E. Tjong Kim Sang, F. Diblen, C. Martinez-Ortiz, E. Etuk, M. Kuzak,

B. van Werkhoven, A. Soares Siqueira, S. Saladi, A. Holding, howfairis, 2022. URL: https:

//github.com/fair-software/howfairis, version: 0.14.2.

[16] S. Verhoeven, F. Diblen, J. H. Spaaks, E. Tjong Kim Sang, tortellini, 2021. URL: https://github.com/

tortellini-tools/action, version: v3.

[17] S. Jansen, S. Farshidi, G. Gousios, J. Visser, T. van der Storm, M. Bruntink, Searchseco: A worldwide

index of the open source software ecosystem., in: Proceedings of the 19th Belgium-Netherlands

Software Evolution Workshop (BENEVOL 2020), volume 2912 of CEUR Workshop Proceedings,
CEUR-WS.org, 2020.

[18] P. Orviz, J. Gomes, S. Bernardo, D. Naranjo, M. David, EOSC-SYNERGY, EOSC-SYNERGY EU

DELIVERABLE: D3.4 Final release of the SQAaaS, 2022. URL: http://hdl.handle.net/10261/274895.

[19] M. C. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, Capability maturity model, version 1.1, IEEE

software 10 (1993) 18–27.

[20] W. Hasselbring, S. Druskat, J. Bernoth, P. Betker, M. Felderer, S. Ferenz, A.-L. Lamprecht,

J. Linxweiler, B. Rumpe, Toward research software categories, arXiv preprint arXiv:2404.14364

(2024).

[21] Deekshitha, C. M. Ortiz, R. Bakhshi, J. Maassen, R. van Nieuwpoort, S. Jansen,

T. Smeele, A. Treloar, L. Bezuidenhout, M. Schermer, L. Sesink, P.-K. Fung, C. Bos, De-

coding research software impact: A collaborative journey, https://blog.esciencecenter.nl/

decoding-research-software-impact-a-collaborative-journey-0db9aa88415e, 2024. Medium article.

[22] C. Martinez-Ortiz, M. Kuzak, J. H. Spaaks, J. Maassen, T. Bakker, Five recommendations for "FAIR

software", 2020. doi:10.5281/zenodo.4310217.

http://dx.doi.org/10.1038/s41597-022-01710-x
http://dx.doi.org/10.5281/zenodo.8075097
https://medium.com/czi-technology/new-data-reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2
https://medium.com/czi-technology/new-data-reveals-the-hidden-impact-of-open-source-in-science-11cc4a16fea2
https://github.com/research-software-directory/research-software-directory
http://dx.doi.org/10.5281/zenodo.1154130
http://dx.doi.org/10.5281/zenodo.1154130
http://dx.doi.org/10.1038/529115a
http://dx.doi.org/10.1038/529115a
https://github.com/fair-software/howfairis
https://github.com/fair-software/howfairis
https://github.com/tortellini-tools/action
https://github.com/tortellini-tools/action
http://hdl.handle.net/10261/274895
https://blog.esciencecenter.nl/decoding-research-software-impact-a-collaborative-journey-0db9aa88415e
https://blog.esciencecenter.nl/decoding-research-software-impact-a-collaborative-journey-0db9aa88415e
http://dx.doi.org/10.5281/zenodo.4310217

[23] Deekshitha, S. Farshidi, J. Maassen, R. Bakhshi, R. Van Nieuwpoort, S. Jansen, FAIRSECO: An

Extensible Framework for Impact Measurement of Research Software, in: Proc. IEEE Conf. on

e-Science (e-Science), 2023, pp. 1–10.

[24] W. Pullen, A public sector HPT maturity model, Performance Improvement 46 (2007) 9–15. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1002/pfi.119. doi:https://doi.org/10.1002/pfi.
119.

[25] T. De Bruin, M. Rosemann, R. Freeze, U. Kaulkarni, Understanding the main phases of developing

a maturity assessment model, in: Proc. Australasian Conf. on Information Systems (ACIS), 2005,

pp. 8–19.

[26] J. Pöppelbuß, M. Röglinger, What makes a useful maturity model? a framework of general design

principles for maturity models and its demonstration in business process management, 2011, p. 28.

URL: http://aisel.aisnet.org/ecis2011/28.

[27] ITG Consulting, CMMI v3 and the transition from CMMI v2, https://consulting.itgonline.com/

cmmi-consulting/cmmi-v3-and-the-transition-from-cmmi-v2/, ???? Accessed: May 1, 2024.

[28] M. van Steenbergen, R. Bos, S. Brinkkemper, I. van de Weerd, W. Bekkers, The Design of Focus

Area Maturity Models, in: Proc. Conf. Global Perspectives on Design Science Research (DESRIST

2010), Springer, Springer Berlin Heidelberg, 2010, pp. 317–332.

[29] S. Jansen, A focus area maturity model for software ecosystem governance 118 (2020) 106219.

[30] M. Overeem, M. Mathijssen, S. Jansen, API-m-FAMM: A focus area maturity model for API

Management 147 (2022) 106890.

https://onlinelibrary.wiley.com/doi/abs/10.1002/pfi.119
http://dx.doi.org/https://doi.org/10.1002/pfi.119
http://dx.doi.org/https://doi.org/10.1002/pfi.119
http://aisel.aisnet.org/ecis2011/28
https://consulting.itgonline.com/cmmi-consulting/cmmi-v3-and-the-transition-from-cmmi-v2/
https://consulting.itgonline.com/cmmi-consulting/cmmi-v3-and-the-transition-from-cmmi-v2/

	1 Problem Definition
	2 Knowledge Gap
	3 Objectives
	4 Research questions
	5 Research Method
	5.1 FAIRSECO: Framework for impact measurement
	5.2 RSMM- Focus area maturity model for research software projects

	6 Timeline of the research
	7 Expected Contributions
	8 Future studies
	9 Conclusions
	10 Declaration on Generative AI

