
Securing Software Ecosystems through Repository Mining
Aminul Didar Islam1,2* , Slinger Jansen2

1LUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland
2Utrecht University, Utrecht, The Netherlands

Abstract
Through the incessant reuse of code fragments, the worldwide software ecosystem has become highly connected.
This provides advantages, such as faster software engineering, however, it also provides new challenges, such
as easier spreading of vulnerabilities. The world depends on software and the proliferation of code also causes
the proliferation of vulnerabilities. In this PhD project, we explore the use of a code clone hashing and storing
technique to enable fast searches of abstract code clones in the worldwide software ecosystem, called SearchSECO.
With SearchSECO, we can rapidly identify code, code clones, vulnerabilities, license conflicts, and other aspects
of code cloning. With SearchSECO as a platform, we hope to move forward the art and science of repository
mining.

Keywords
Code clones, Repository mining, Code identification, License violations, Software engineering

1. Introduction

The worldwide software ecosystem [1] (SECO) concerns all software producing organizations and
individuals that collaboratively serve a market for software and services. SECOs comprises a network
of developers, vendors, consumers, and other stakeholders who interact through various platforms. It
includes open-source repository software and also proprietary software ranging from small to large-scale
enterprise software systems [2].

A SECO represents a set of actors that function together as a unit that interacts and communicates
with a shared software market according to the services and their relationships [3]. Building on this
concept, this research proposes a software provenance theory, ensuring that the origin and history of
every software engineering artifact are traceable across the entire software supply network.

Mining Software Repositories (MSR) is a research area within software engineering that focuses on
analyzing the vast amount of data generated during software development, maintenance, and usage [4].
This data is stored in various repositories such as version control systems (e.g., GitHub), issue trackers
(e.g., Jira), and code review systems (e.g., Gerrit), among others. The main goal of MSR is to extract
actionable insights and patterns that can improve software quality, guide development processes, and
inform decision-making within software teams.

In the broader context of software engineering, MSR plays a crucial role in supporting evidence-based
decision-making. By applying techniques from data mining, machine learning, and information retrieval
to software repositories, MSR helps researchers and practitioners understand trends, predict future
issues, improve software processes, and evaluate the effectiveness of different practices.

Traditionally, repo mining has focused on file-level or project-level data, providing a broad view of
software systems and their evolution [5]. However, as software ecosystems grow in complexity, a finer-
grained approach is increasingly necessary. By analyzing source code at the method level, researchers
can obtain more detailed insights into code reuse, identify security vulnerabilities with greater precision,
and understand the intricacies of software dependencies and maintenance challenges [3].

The 15th International Conference on Software Business (ICSOB 2024), NOVEMBER 18-20, 2024, Utrecht, The Netherlands
*Corresponding author.
$ aminul.islams@lut.fi (A. Didar Islam); slinger.jansen@uu.nl (S. Jansen)
� https://yamadharma.github.io/ (A. Didar Islam); https://kmitd.github.io/ilaria/ (S. Jansen)
� 0000-0002-0877-7063 (A. Didar Islam); 0000-0003-3752-2868 (S. Jansen)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:aminul.islams@lut.fi
mailto:slinger.jansen@uu.nl
https://yamadharma.github.io/
https://kmitd.github.io/ilaria/
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0003-3752-2868
https://creativecommons.org/licenses/by/4.0/deed.en


We propose SearchSECO, a hash based index for code fragments that enables searching source code
at the method level in the worldwide software ecosystem [3]. Currently, it is possible to identify files by
their hashes in the Software Heritage Graph. We want to create a set of parsers that extract fragments
(methods) from the code files and makes them findable. By making methods from the worldwide
software ecosystem findable, we can perform more reliable license checks, search for vulnerabilities,
and extract call graphs from those methods [6].

We unearth the relationships between code fragments, code files, and their projects on a worldwide
scale. This fine-grained data enables much richer analyses, significantly moving forward the field of
empirical software engineering and its sub-field of repository mining. Our first projects will deal with
license violation detection in open source, vulnerability finding, and software package identification for
SBOM creation [6, 7].

2. Research Aim and Impact

The primary aim of this research is to enhance the capabilities of repository mining through the
development and deployment of SearchSECO, a hash-based index for code fragments [7]. By enabling
method-level source code searching, this research seeks to address critical issues in license conflict
detection and vulnerability benchmarking within the worldwide software ecosystem. The goal is to
provide a robust, scalable tool that can significantly improve the accuracy and efficiency of software
license compliance and security vulnerability detection.
Impact of the Project: The project’s main predicted impacts are: 1) enabling data-driven analysis

of software ecosystems, and potentially faster submission to the repository mining community, 2) code
license checking and conflict identification will be easier and faster with the cutting-edge technology,
3) the outcome of this research will help for better code quality and better findability 4) promotion of
the SearchSECO tool to researchers and SearchSECO will ease of use.

2.1. Research Questions and Justifications

RQ1: How effective is SearchSECO in detecting method-level license conflicts compared to existing
file-level tools?
Justification: This question aims to evaluate the accuracy and reliability of method-level analysis in
identifying license conflicts. It seeks to demonstrate the advantages of finer granularity in code analysis
over traditional file-level approaches, which can overlook conflicts that occur within individual methods.
RQ2: What impact does method-level vulnerability benchmarking have on identifying and mitigating
security vulnerabilities in software projects?
Justification: This question explores the effectiveness of the vulnerability benchmarking framework
developed using SearchSECO. It assesses whether method-level benchmarking provides more detailed
and actionable insights into security vulnerabilities, leading to improved detection and mitigation
strategies.
RQ3: How can the relationships between code fragments, files, and projects be leveraged to improve
software maintenance and evolution?
Justification: This question investigates the broader applicability of method-level indexing in supporting
software maintenance and evolution tasks. It examines how detailed insights into code relationships
can aid developers in managing and evolving their projects more efficiently and effectively.
RQ4: What are the scalability and performance implications of implementing SearchSECO on a global
scale?
Justification: This question assesses the practicality of deploying SearchSECO across the vast global
software ecosystem. It examines whether the system can handle large-scale data efficiently, ensuring
that it remains useful and effective in real-world scenarios.

With these research questions, we tackle the broader challenge of what it means to look at the SECO
on a global level through source code. It makes the project ambitious, although this is a recurring theme
in the repository mining community.



3. Related Work

Seulbae et al. introduced one state-of-the-art solution named VUDDY (VUlnerable coDe clone DiscoverY)
project which is a scalable approach for code clone detection [5]. This work identifies the code clone and
vulnerability by leveraging the syntactic and symbolic information of the code. This research worked
on four types of code clones that have been recognized and published by scientific papers according to
the granularity units such as token level, line level, function level, file level, etc. However, this work
has limitations in terms of accuracy and consistency because of granularity abstraction. This leads to
higher false negatives and the paper also acknowledges that trustworthiness a concern originates from
the false negative. We effectively use similar techniques as VUDDY, however, we are storing all the
methods that we encounter instead of only the methods encountered with potential vulnerabilities.
This for instance enables us to study license violations, something that VUDDY was not built for.

License conflicts and violations are universal issues, and software licenses generally fall into two
categories. The first one is declared licenses which is specified for the whole project and the second one
is in-code licenses which are directly attached to files throughout the entire directory tree [8]. Most
of the violations originated from the declared to-in-code mismatches on the other hand declared to
declared-to-declared inconsistencies also occur but less often.

Research shows [9] there are multiple reasons behind code license violations in open-source code
software (OSS). The first one originates from the resource and time constraints of software developers
and they do not want to focus on trivial tasks. And the second one is related to the misconceptions about
the nature and characteristics of open-source licenses which are escalating chronologically because
of the large number of repositories produced. Another paper mentioned about the incompatibility of
licenses among components, for example, GNU General Public License (GPL) has multiple versions
but it doesn’t have backward compatibility such as components released under GPL version 3 are not
compatible with components released under GPL version 2 [10]. However, when the same project
shares two different licenses then it’s an inconsistency but that does not necessarily mean a license
conflict. License conflict means contradictory, incompatible obligations or contradictory rights [8].

Wolter et al. also published a research work based on 1,000 GitHub repositories and the found that
fifty percent of the work repositories did not include a complete and accurate list of all the licenses
associated with the code. However, out of these 10% has a mismatch between permissive and copyleft
licenses. This work heavily relied on existing open source tools such as Nomos, ScanCode etc. also
mentioned the necessity of license scanning tools directly from the code.

The FOSSology project is one of the widely used projects for license detection [11]. Based on regular
expressions a license scanner has been developed and the main tool of FOSSology. For the purpose
of license scanning, FOSSology introduced open-source license scanners, for example, Ninka. Within
source code comments, Nika can analyze sentences and it can recognize over 120 different licenses [12].

Some research done based on binary code clone detection for detecting software code released in
binary form [13] which mentioned that upstream suppliers often provide solutions in binary form, thus
it’s difficult to assess the existence of unlicensed third-party code. It’s also mentioned that the license
violations are not accidental, but rather more systematic, and for most software and hardware products
this is a large-scale problem.

This research is based on a previously proposed solution named SearchSECO by Slinger Jansen et al.
for a hash-based index that aims to collect billions of open-source files from open-source repositories to
provide full software provenance which also address the license conflicts and violations problem [3].

4. Research Method

Software engineering is a maturing field, and repository mining as a branch of it, is as well. This can be
observed especially when looking at the way in which empirical software engineering research is being
conducted and evaluated. In this thesis project, we follow the empirical software engineering research



standards for our sub-projects.1

To address the issues and problems of vulnerability detection, license conflicts, software maintenance,
and scalability in large-scale software ecosystems, this PhD research will enhance the capability and
explore the possibility of an already proposed solution named SearchSECO [3]. This PhD research will
be under the Design Science Research (DSR) paradigm because this research is based on software artifact
development which involves an evaluation process for code license violation detection. The evaluation
process will have two steps: the first step is a vulnerability benchmarking framework that will be
established to evaluate the capabilities of the SearchSECO software artifact. The second step is a case
study in an industry organization and for this purpose, we plan to incorporate other research methods
under DSR to answer a particular research question. For example, to deploy SearchSECO in an industry
organization and to identify code license violations in large unidentified code bases we will follow
Action Design Research (ADR) as a part of this PhD research (section 6, WP2 and WP3) [14, 15]. ADR
is particularly designed to develop, work, and evaluate with organizational settings where researcher
intervention is expected [16]. This method centers on creating, intervening, and evaluating an artifact
that embodies the researchers’ theoretical foundations and intentions while incorporating user influence
and the impact of real-world use.

A validity threat for our project is that we can hardly generalize our findings to the whole software
ecosystem. Even though we currently have analyzed the top 100.000 projects on Github, that is still only
a fraction of the total Github source code, let alone the worldwide software ecosystems’ source code.
For now, we will refrain from making inductive statements outside of the scope of our own data set.

A construct validity threat is on the definition of a clone. Currently, we are storing any clone,
including for instance, getters and setters, in an abstract manner. However, as these are typically
uniform and we use a high level of abstraction, we find many false positives in our clone set. In the
near future we hope to counter this validity threat by setting a standard length for a ‘valid’ clone, e.g., a
minimum of five lines of code.

A proposed and partially implemented system diagram is shown in figure 1. It illustrates the project
SearchSECO intended to collect source code from the worldwide software ecosystem and store method-
level code with the call graph of the code in a Software Method Knowledge Base (SMKB), which allows
for structural analysis of the source code. For example, license violation and vulnerability patterns will
be identifiable utilizing the call graph of a source code. Thus, in the software engineering domain more
specifically in repository mining SearchSECO is a radical innovation [3]. To construct SeacrhSECO we
follow four lines of query: first, we develop parsing techniques and design work distribution mechanisms
to explore the global SECO. Next, we store the collected methods in the SecureSECO Knowledge Base
(SMKB). Third, we apply basic data analysis techniques to the stored data within the SMKB. Finally,
we leverage artificial intelligence to perform graph mining on the worldwide SECO graph for deeper
insights [3].

5. Implementation Plan and Timeline

A total of four years PhD thesis plans has been added to the Table1. The first paper with the initial
results has been accepted for publication at BENEVOL 2024 conference. The title is "Work in Progress
Paper: Detecting Method Level License Conflicts in the Worldwide Software Ecosystem". This paper
demonstrated code-level license extraction and violation detection as a definitive method for ensuring
license compliance in borrowed code, independent of any declarations. Using SearchSECO, we examined
3,500 repositories from leading software companies to assess the prevalence of violations. Our analysis
uncovered approximately 32,000 violations in total.

1For more details on empirical software engineering standards, see Empirical Standards Repository.
1This diagram provides an overview of the SearchSECO system components and their interactions for efficient code fragment
search at the method level.

https://github.com/acmsigsoft/EmpiricalStandards/tree/master/docs/standards


Figure 1: SearchSECO System Architecture [3]

6. Future work

The FOSSology project first introduced an ML-based solution for license identification problems utilizing
license classification [17]. Another research introduced Machine learning-based license exception
detection [18]. However, only a few ML-based solutions are introduced, and some topics such as
license violation are not explored. Moming et al. introduced an ML-based solution named ModelGo for
license conflict detection [19]. Research needs to be done on this problem. In our SearchSECO project
introducing ML-based license violation solution could be an interesting experiment for the scientific
and research community. However, another idea is to create a hybrid solution, utilizing the current
proposed SearchSECO license violation and combining an ML-based solution.

A recent development is the use of LLMs for generating code. Frequently, the code that is generated
follows exact patterns from licensed code, meaning that the LLM could potentially be offering licensed
code, thereby stimulating license violations by the software engineer [20]. While we cannot guarantee
it currently, we look forward to exploring whether we can identify such licensed code suggestions, with
the goal of improving these LLMs to avoid licensed code.

Incorporating existing tools such as Binary Analysis Tool (BAT) [13] binary code clone detection
can be done in the SearchSECO project too. Utilizing bytecode scanning tools like JEB Decompiler or
ProGuard [21] that can extract relevant license details directly from compiled code (e.g., Java .class files
or .NET assemblies). Bytecode-level analysis allows for the detection of licensing information even
when source code is unavailable [22].

7. Contribution of the Thesis

SearchSECO has the aim of creating a new sense of provenance in software engineering, where we
try to find the earliest version of a code clone and its authors. Provenance, which concerns the origins
of an artifact, has been neglected in software engineering for far too long. For instance, if we look at
the Dieselgate scandal, the code which violated the tests was never found. With SearchSECO, it would
perhaps have been possible to identify the intended code [23].

As we are performing design science, with potentially highly useful artifacts, both for research and
industry, we foresee several routes towards research impact. For one, we hope to apply and evaluate
our artifacts in case studies. Secondly, if the technology proves valuable for the industry, we could
consider spinning out the SearchSECO features into a startup.



Table 1
SearchSECO Development and Deployment Plan Over Four Years

Year WP(s) Objective Milestones
Year 1 WP0

&
WP1

Understanding
SearchSECO and
Code Borrowing,
Using SearchSECO for
determining license
conflicts

Q1: Finalize the enhancements to SearchSECO for license conflict
detection.
Q2: Apply prototypes to real-world datasets and gather preliminary
results.
Q3: Conduct initial tests and validations of the developed artifacts
and publish the code license violation detection paper.
Q4: Enhance the SearchSECO license-checking capability for bench-
marking.

Year 2 WP2 Benchmarking Search-
SECO’s capabilities
for identifying vulner-
abilities

Q1: Develop the vulnerability benchmarking framework and tools
and conduct detailed case studies on license conflict detection and
vulnerability benchmarking.
Q2: Refine the artifacts based on feedback and testing results.
Q3: Publish initial findings in peer-reviewed venues.
Q4: Expand the dataset and improve the scalability and robustness
of the tools.

Year 3 WP3 Deploying Search-
SECO in an industry
organization: identi-
fying code in large
unidentified code
bases

Q1: Analyze scalability and performance implications of implement-
ing SearchSECO on a global scale.
Q2: Deploy code in an industry organization and collect data.
Q3: Write articles for the scalability and performance implications
of implementing SearchSECO on a global scale and publish papers
in journals and conferences.
Q4: Conduct extensive evaluations and final validation of the devel-
oped artifacts.

Year 4 WP4 StackOverflow Data
Analysis with Search-
SECO

Q1: Collect StackOverflow data and check against SearchSECO
database.
Q2: Publish comprehensive results and methodology in high-impact
journals and conferences.
Q3: Disseminate the tools and methodologies to the broader com-
munity and present the technical artifact and share knowledge with
the community.
Q4: Complete the dissertation writing and defense.

Acknowledgments

We wish to thank Geert-Jan Giezeman, Wouter Beffers, and Deekshitha for their important contributions
to the SearchSECO project on Github. This research was funded by the Business Finland project 6G
Bridge – 6G software for extremely distributed and heterogeneous massive networks of connected
devices (8516/31/2022).

Declaration on Generative AI

ChatGPT 4o was used for polishing the grammar and spelling of the text in this document.

References

[1] S. Jansen, P. Buxmann, T. Kude, K. Popp, Proceedings of European Workshop on Software Ecosys-
tems: 2012 - Walldorf, Synomic Academy, Books on Demand, 2013. URL: https://books.google.fi/
books?id=BbivKcE6vWMC.

[2] S. Jansen, M. A. Cusumano, S. Brinkkemper, Software ecosystems: analyzing and managing
business networks in the software industry, Edward Elgar Publishing, 2013.

https://books.google.fi/books?id=BbivKcE6vWMC
https://books.google.fi/books?id=BbivKcE6vWMC


[3] S. Jansen, S. Farshidi, G. Gousios, J. Visser, T. van der Storm, M. Bruntink, Searchseco: A worldwide
index of the open source software ecosystem, in: The 19th Belgium-Netherlands Software Evolution
Workshop, BENEVOL 202, CEUR-WS. org, 2020.

[4] K. K. Chaturvedi, V. Sing, P. Singh, Tools in mining software repositories, in: 2013 13th International
Conference on Computational Science and Its Applications, IEEE, 2013, pp. 89–98.

[5] S. Kim, S. Woo, H. Lee, H. Oh, Vuddy: A scalable approach for vulnerable code clone discovery, in:
2017 IEEE symposium on security and privacy (SP), IEEE, 2017, pp. 595–614.

[6] Secureseco, 2024. URL: https://github.com/SecureSECODAO/searchSECO-miner, [www docu-
ment], [Accessed on 12.09.2024].

[7] Searchseco, 2024. URL: https://secureseco.org/secureseco-introduction/searchseco/, [www docu-
ment], [Accessed on 12.09.2024].

[8] T. Wolter, A. Barcomb, D. Riehle, N. Harutyunyan, Open source license inconsistencies on github,
ACM Trans. Softw. Eng. Methodol. 32 (2023). doi:10.1145/3571852.

[9] Y. Golubev, M. Eliseeva, N. Povarov, T. Bryksin, A study of potential code borrowing and license
violations in java projects on github, in: Proceedings of the 17th International Conference on
Mining Software Repositories, MSR ’20, Association for Computing Machinery, New York, NY,
USA, 2020, p. 54–64. doi:10.1145/3379597.3387455.

[10] A. Mathur, H. Choudhary, P. Vashist, W. Thies, S. Thilagam, An empirical study of license violations
in open source projects, in: 2012 35th Annual IEEE Software Engineering Workshop, 2012, pp.
168–176. doi:10.1109/SEW.2012.24.

[11] R. Gobeille, The fossology project, in: Proceedings of the 2008 International Working Conference
on Mining Software Repositories, MSR ’08, Association for Computing Machinery, New York, NY,
USA, 2008, p. 47–50. doi:10.1145/1370750.1370763.

[12] M. C. Jaeger, O. Fendt, R. Gobeille, M. Huber, J. Najjar, K. Stewart, S. Weber, A. Wurl, The fossology
project: 10 years of license scanning, IFOSS L. Rev. 9 (2017) 9.

[13] A. Hemel, K. T. Kalleberg, R. Vermaas, E. Dolstra, Finding software license violations through
binary code clone detection, in: Proceedings of the 8th Working Conference on Mining Software
Repositories, MSR ’11, Association for Computing Machinery, New York, NY, USA, 2011, p. 63–72.
doi:10.1145/1985441.1985453.

[14] Engineering research (aka design science), 2024. URL: https://github.com/acmsigsoft/
EmpiricalStandards/blob/master/docs/standards/EngineeringResearch.md, [www document],
[Accessed on 03.10.2024].

[15] R. Baskerville, J. Pries-Heje, J. Venable, Soft design science methodology, in: Proceedings of the
4th international conference on design science research in information systems and technology,
2009, pp. 1–11.

[16] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, R. Lindgren, Action design research, MIS quarterly
(2011) 37–56.

[17] R. Gobeille, The fossology project, in: Proceedings of the 2008 international working conference
on Mining software repositories, 2008, pp. 47–50.

[18] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, D. Poshyvanyk, Machine
learning-based detection of open source license exceptions, in: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017, pp. 118–129. doi:10.1109/ICSE.2017.19.

[19] M. Duan, Q. Li, B. He, Modelgo: A practical tool for machine learning license analysis, in:
Proceedings of the ACM Web Conference 2024, WWW ’24, Association for Computing Machinery,
New York, NY, USA, 2024, p. 1158–1169. doi:10.1145/3589334.3645520.

[20] V. Majdinasab, A. Nikanjam, F. Khomh, Trained without my consent: Detecting code inclusion in
language models trained on code, 2024. URL: https://arxiv.org/abs/2402.09299.

[21] E. Lafortune, Shrink your java and android code, proguard., 2016. URL: https://www.guardsquare.
com/proguard, [www document], [Accessed on 21.10.2024].

[22] J.-T. Chan, W. Yang, Advanced obfuscation techniques for java bytecode, Journal of Sys-
tems and Software 71 (2004) 1–10. URL: https://www.sciencedirect.com/science/article/pii/
S0164121202000663. doi:https://doi.org/10.1016/S0164-1212(02)00066-3.

https://github.com/SecureSECODAO/searchSECO-miner
https://secureseco.org/secureseco-introduction/searchseco/
http://dx.doi.org/10.1145/3571852
http://dx.doi.org/10.1145/3379597.3387455
http://dx.doi.org/10.1109/SEW.2012.24
http://dx.doi.org/10.1145/1370750.1370763
http://dx.doi.org/10.1145/1985441.1985453
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/EngineeringResearch.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/standards/EngineeringResearch.md
http://dx.doi.org/10.1109/ICSE.2017.19
http://dx.doi.org/10.1145/3589334.3645520
https://arxiv.org/abs/2402.09299
https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://www.sciencedirect.com/science/article/pii/S0164121202000663
https://www.sciencedirect.com/science/article/pii/S0164121202000663
http://dx.doi.org/https://doi.org/10.1016/S0164-1212(02)00066-3


[23] O. Boiral, M.-C. Brotherton, A. Yuriev, D. Talbot, Through the smokescreen of the dieselgate
disclosure: Neutralizing the impacts of a major sustainability scandal, Organization & Environment
35 (2022) 175–201. doi:10.1177/10860266211043561.

http://dx.doi.org/10.1177/10860266211043561

	1 Introduction
	2 Research Aim and Impact
	2.1 Research Questions and Justifications

	3 Related Work
	4 Research Method
	5 Implementation Plan and Timeline
	6 Future work
	7 Contribution of the Thesis

