
Binary Grey Wolf Optimizer for Mapping Real Time
Applications on MPSOCs Architecture⋆

Farid Boumaza1,2,*,†, Djaafar Zouache1,†, Mouhoub Belazzoug1,†, Atmane Hadji3,† and
Abdelkader Aroui4,†

1Computer Science Department, University of Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria
2(LAPECI) Laboratory of Parallel, Embedded architectures and Intensive Computing, University of Oran1, Oran 31000, Algeria
3LISI Laboratory, Computer Science Department, University Center A. Boussouf Mila, 43000 Mila, Algeria
4Center for Space Techniques, Palestine Avenue, 31200 Arzew, Oran, Algeria

Abstract
With the growing complexity of real-time applications, Multi-Processor Systems-on-Chip (MPSoCs) have become
a vital solution for meeting stringent performance, power, and scalability requirements. Efficient task mapping
plays a crucial role in optimizing the performance of such systems, particularly for real-time applications that
demand strict timing constraints. Traditional mapping techniques, including static and dynamic strategies,
struggle with balancing execution time, energy efficiency, and communication overhead in heterogeneous MPSoC
architectures.

In this paper, we propose a novel approach for optimizing task mapping in MPSoCs, based on the Grey
Wolf Optimizer (GWO), a bio-inspired metaheuristic renowned for its effectiveness in solving complex opti-
mization problems. This methodology aims to minimize task execution times and communication delays by
intelligently mapping real-time tasks onto heterogeneous processing elements (PEs), while also adhering to
real-time constraints and reducing energy consumption.

The results confirm that the improved GWO algorithm is a powerful tool for addressing the challenges of
real-time task mapping in MPSoCs, providing a robust and scalable solution for future embedded systems.

Keywords
Multi-Processor Systems-on-Chip, Grey Wolf Optimizer, Mapping, Energy Optimization

1. Introduction

Embedded systems [1, 2] are specialized electronic systems designed for specific applications, typi-
cally operating without conventional input/output interfaces like keyboards or screens. They often
incorporate one or more systems-on-chip (SoCs), which are inherently heterogeneous and complex,
comprising various processors such as FPGAs, DSPs, and general-purpose processors (GPs), each
supporting dedicated or reconfigurable functions.

Embedded applications are frequently complex and often hierarchical, as seen in applications like
MPEG [3], H.263, and H.264 encoders [4]. These applications consist of components requiring diverse
processing approaches, generally divided into two main types: irregular processing, which involves
task-level parallelism, and regular processing, which focuses on data-level parallelism. The latter often
represents high-performance computing (HPC) functions commonly found in embedded real-time
applications.

Given the specific demands of hierarchical applications, a single mapping strategy is often insufficient
to address both processing types optimally. Instead, an effective approach requires separate handling of

Proceedings of the International IAM’24: International Conference on Informatics and Applied Mathematics, December 04–05,
2024, Guelma, Algeria
*Corresponding author.
†
These authors contributed equally.
$ f.boumaaza@univ-bba.dz (F. Boumaza); djaafarzouache@yahoo.fr (D. Zouache); belazoug.mouhoub@gmail.com
(M. Belazzoug); a.hadji@centre-univ-mila.dz (A. Hadji); aroui_kader@yahoo.fr (A. Aroui)
� 0000-0002-9785-420X (F. Boumaza); 0000-0002-0337-6105 (D. Zouache); 0000-0002-7174-5486 (M. Belazzoug);
0000-0001-6706-6360 (A. Hadji); 0000-0002-1024-2033 (A. Aroui)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:f.boumaaza@univ-bba.dz
mailto:djaafarzouache@yahoo.fr
mailto:belazoug.mouhoub@gmail.com
mailto:a.hadji@centre-univ-mila.dz
mailto:aroui_kader@yahoo.fr
https://orcid.org/0000-0002-9785-420X
https://orcid.org/0000-0002-0337-6105
https://orcid.org/0000-0002-7174-5486
https://orcid.org/0000-0001-6706-6360
https://orcid.org/0000-0002-1024-2033
https://creativecommons.org/licenses/by/4.0/deed.en

Figure 1: Application graph.

regular and irregular processing components [5, 6]. This leads us to propose a new strategy involving
hierarchical mapping, where a global strategy is applied to irregular (parallel processing) tasks.

Our approach uses the Binary Multi-objective Grey Wolf Optimizer (BMOGWO) to optimize the
mapping on the MPSoC architecture, these techniques enable efficient task mapping that addresses
both real-time constraints and energy optimization in complex embedded applications.

The rest of the paper is organized as follows: Section 2 discusses the definitions and the necessary
mathematical formulations for problem mapping onto the MPSoCs architecture. In Section 3, the
proposed mapping strategies are presented. Experimental results are provided in Section 4, and the
paper concludes with Section 5.

2. Definition and formulation

Communications between the tasks of our application and the components of our target architecture is
represented by two directed graphs.

Definition 1
The application graph, also known as the Task Graph (TG), is a directed graph 𝐺(𝑇,𝐸), where each
vertex 𝑡𝑖 ∈ 𝑇 represents a module or task within the application. Each directed edge (𝑡𝑖, 𝑡𝑗), denoted as
𝑒𝑖𝑗 ∈ 𝐸, signifies a communication link between tasks 𝑡𝑖 and 𝑡𝑗 . The weight of the edge 𝑒𝑖𝑗 , represented
by 𝑄𝑖𝑗 , indicates the volume of data transferred between 𝑡𝑖 and 𝑡𝑗 , reflecting communication demand
and aiding in optimizing resource allocation (see Fig. 1).

Definition 2
The architecture graph, denoted as 𝐴𝐺 (Architecture Graph), is a directed graph 𝑃 (𝑆, 𝐹) where each
vertex 𝑠𝑖 ∈ 𝑆 represents a node within the topology. The directed edge (𝑠𝑖, 𝑠𝑗), denoted as 𝑓𝑖𝑗 ∈ 𝐹 ,
signifies a physical link that directly connects two elements, 𝑠𝑖 and 𝑠𝑗 , within the architecture. The
weight of the edge 𝑓𝑖𝑗 , represented by 𝑏𝑤𝑖𝑗 , encapsulates critical characteristics of the physical link,
including bandwidth, latency, and energy consumption. This comprehensive representation allows for
effective analysis and optimization of communication pathways in Multi-Procesur-on-Chip (MPSoC)
architectures (see Fig. 2).

Figure 2: Architecture graph.

Figure 3: Mapping graph task on MPSoCs architecture.

Definition 3
The mapping of the application graph 𝐺(𝑇,𝐸) onto the architecture graph 𝑃 (𝑆, 𝐹) is defined by the
mapping function:

map : 𝑇 → 𝑆 such that map(𝑡𝑖) = 𝑠𝑗 ∀ 𝑡𝑖 ∈ 𝑇 ,∃ 𝑠𝑗 ∈ 𝑆. (1)

This mapping is valid under the condition that the number of tasks |𝑇 | is greater than or equal to the
number of processing elements |𝑆| (see Fig. 3) [7].

The mapping process is crucial in optimizing resource allocation within MPSoCs, as it determines
how application tasks are distributed across the available processing elements. An effective mapping
strategy not only facilitates parallel execution of tasks but also minimizes communication overhead,
ensuring that system performance and energy efficiency are maximized [8]. This approach is especially
important in heterogeneous architectures, where diverse processing capabilities must be leveraged to
meet the demands of complex applications.

Our application is defined as a set of tasks 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛}, while the target architecture is

represented as a set of processors 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑚}. It is important to note that each processor can
operate in multiple modes, denoted as 𝑚1,𝑚2,𝑚3. This capability of processors to function in various
modes introduces greater diversity in optimization strategies for task placement.

By enabling processors to adapt their operational modes based on the specific requirements of
tasks, we can achieve more efficient resource utilization and improved performance. This multi-mode
functionality allows for fine-tuning of processing capabilities, enabling better handling of both regular
and irregular task types. As a result, it facilitates enhanced flexibility in mapping strategies, leading to
optimized execution times and reduced energy consumption within the multiprocessor system-on-chip
(MPSoC) framework [9].

2.1. Execution Time and Communication Duration

The execution time 𝐷of a task is defined as follows:

𝐷𝑖 =
Taille(𝑡𝑝𝑖)

𝑓𝑚𝑝
(2)

where: - 𝐷𝑖 is the execution time of task 𝑖 on processor 𝑝. - Taille(𝑡𝑝𝑖) denotes the size of task 𝑖 for
processor 𝑝. - 𝑓𝑚𝑝 is the frequency of processor 𝑝 operating in mode 𝑚.

The overall execution time for the application is given by:

𝐷 = max(𝐷𝑖) for 𝑖 = 1, . . . , number of tasks (3)

where 𝐷 is the maximum execution time among all tasks 𝐷𝑖, taking into account their dependencies.
The duration of communication 𝐷𝑖𝑗

𝑐𝑜𝑚 between tasks 𝑖 and 𝑗 is calculated as:

𝐷𝑖𝑗
𝑐𝑜𝑚 =

𝑄𝑖𝑗

Min𝐵𝑃 |𝑝𝑘,𝑝𝑙|
×
∑︁

latency(𝑝𝑘, 𝑝𝑙) (4)

where: - 𝐷𝑖𝑗
𝑐𝑜𝑚 is the communication duration between tasks 𝑖 and 𝑗. - 𝑄𝑖𝑗 represents the data

volume that needs to be communicated between tasks 𝑖 and 𝑗. - Min𝐵𝑃 |𝑝𝑘,𝑝𝑙| denotes the minimum
bandwidth of the path connecting processors 𝑝𝑘 and 𝑝𝑙. - The summation

∑︀
latency(𝑝𝑘, 𝑝𝑙) accounts

for the cumulative latency across the communication path.
This approach ensures that both execution and communication times are adequately considered for

optimizing task mapping in MPSoCs, thereby improving overall system performance and efficiency.

2.2. Energy Consumption

The energy consumption 𝐸 in a multiprocessor system-on-chip (MPSoC) can be categorized into
execution energy and communication energy.

2.2.1. Execution Energy

The energy consumed during the execution of a task 𝑖 on processor 𝑝 in mode 𝑚 is defined as:

𝐸𝑖
exec = Size𝑖𝑝 × 𝑒𝑚𝑝 (5)

where:
- 𝐸𝑖

exec is the execution energy of task 𝑖.
- Size𝑖𝑝 represents the number of cycles required for task 𝑖 to execute on processor 𝑝 in mode 𝑚.
- 𝑒𝑚𝑝 denotes the energy consumption per cycle for processor 𝑝 in mode 𝑚.

2.2.2. Communication Energy

The energy consumed due to communication between tasks 𝑖 and 𝑗 assigned to processors 𝑝 and 𝑞 is
given by:

𝐸𝑖𝑗𝑝𝑞
com =

𝑛∑︁
𝑖=1

𝑄𝑖𝑗 × 𝑒𝑝𝑙,𝑝𝑘 (6)

where:
- 𝐸𝑖𝑗𝑝𝑞

com is the communication energy between tasks 𝑖 and 𝑗.
- 𝑄𝑖𝑗 represents the volume of data exchanged between tasks 𝑖 and 𝑗.
- 𝑒𝑝𝑙,𝑝𝑘 is the energy cost associated with the communication link between processors 𝑝𝑙 and 𝑝𝑘.

2.2.3. Total Energy Consumption

The total energy consumption for executing all tasks and their communications within the system can
be expressed as:

𝐸total =

task𝑛∑︁
𝑖=1

(𝐸exec𝑖 + 𝐸𝑖𝑗𝑝𝑞
com) (7)

where:
- 𝐸total is the overall energy consumption for all tasks in the application.
- The summation encompasses both the execution energy and communication energy across all tasks.

2.3. Task Placement Indicator

An auxiliary variable 𝑋𝑖𝑝
𝑚 is used to indicate the placement of tasks on processors, defined as follows:

𝑋𝑖𝑝
𝑚 =

{︃
1 if task 𝑖 is placed on processor 𝑝 and operates in mode 𝑚

0 otherwise
(8)

This formulation allows for a comprehensive analysis of energy consumption during task execution
and inter-task communication, facilitating the optimization of task mapping strategies in MPSoCs. By
minimizing both execution and communication energy, the overall efficiency and sustainability of the
system can be significantly enhanced.

3. Proposed Resolution Method

The comprehensive problem we aim to address is the Assignment, and Scheduling (AS) problem. This
encompasses the assignment and scheduling of application tasks and their associated communications
onto the resources of a target architecture, with the objective of achieving specified performance metrics.

In our approach, we consider multiple objectives, including minimizing energy consumption and
maximizing performance efficiency. These goals are crucial for the operation of mobile embedded
systems, as they directly influence battery life [10]. Reducing energy consumption is essential to prolong
battery longevity, while maximizing execution speed necessitates minimizing task completion times.
However, these objectives often conflict; for example, operating components in energy-saving modes
can lead to increased execution times.

To navigate these conflicting objectives, we adopt a multi-objective optimization strategy that seeks
to find an effective compromise among the various goals. Specifically, we propose an approach utilizing
the Multi-Objective Grey Wolf Optimizer (MOGWO) technique. This method is improved to efficiently
tackle the AS problem by balancing energy efficiency with performance requirements, ultimately
enhancing the overall effectiveness of task mapping in MPSoCs.

By integrating these advanced optimization techniques, our approach aims to provide a robust
solution that aligns with the dynamic demands of mobile embedded systems while addressing the
critical constraints of energy consumption and execution time.

3.1. Grey Wolf Optimizer (GWO)

The Grey Wolf Optimizer (GWO), introduced by [11]. in 2014, is a metaheuristic algorithm inspired by
the natural hierarchy and hunting behavior of grey wolves. In GWO, wolves are categorized into four
social ranks that determine their roles in the optimization process:

• Alpha (𝛼) Wolf: Holds the best solution based on the objective function.
• Beta (𝛽) Wolf: Holds the second-best solution.
• Delta (𝜎) Wolf: Holds the third-best solution.
• Omega (𝜔) Wolves: All remaining solutions in the population, which follow the guidance of the

top three wolves.

In the hunting process, the alpha, beta, and delta wolves primarily guide the search, while the omega
wolves follow, refining their positions based on these leaders.

3.1.1. Stages of GWO

Grey wolves use three organized hunting stages in GWO: encircling, hunting, and attacking. The
encircling behavior is mathematically represented by the following equations:

𝐷⃗ =
⃒⃒⃒
𝐶⃗ · 𝑋⃗𝑝(𝑡)− 𝑋⃗(𝑡)

⃒⃒⃒
(9)

𝑋⃗(𝑡+ 1) = 𝑋⃗𝑝(𝑡)− 𝐴⃗ · 𝐷⃗ (10)

Here, 𝑡 is the iteration counter, 𝑋⃗ represents the position of a wolf, 𝑋⃗𝑝 denotes the position of the
prey, and 𝐴⃗ and 𝐶⃗ are coefficient vectors. The vectors 𝐴⃗ and 𝐶⃗ are defined as:

𝐴⃗ = 2 · 𝑎⃗ · 𝑟⃗1 − 𝑎⃗ (11)

𝐶⃗ = 2 · 𝑟⃗2 (12)

where 𝑟⃗1 and 𝑟⃗2 are random vectors within [0, 1], and the values of 𝑎⃗ decrease linearly from 2 to 0 as
iterations progress.

3.1.2. Hunting Mechanism

In GWO, the best solutions (𝛼, 𝛽, and 𝛿) direct the search towards the optimal solution. The distance
between each wolf and these leaders is computed as:

𝐷⃗𝛼 =
⃒⃒⃒
𝐶⃗1 · 𝑋⃗𝛼 − 𝑋⃗

⃒⃒⃒
(13)

𝐷⃗𝛽 =
⃒⃒⃒
𝐶⃗2 · 𝑋⃗𝛽 − 𝑋⃗

⃒⃒⃒
(14)

𝐷⃗𝛿 =
⃒⃒⃒
𝐶⃗3 · 𝑋⃗𝛿 − 𝑋⃗

⃒⃒⃒
(15)

The wolves’ updated positions are calculated as:

𝑋⃗1 = 𝑋⃗𝛼 −𝐴1 · 𝐷⃗𝛼 (16)

𝑋⃗2 = 𝑋⃗𝛽 −𝐴2 · 𝐷⃗𝛽 (17)

Figure 4: The management of the archive population.

𝑋⃗3 = 𝑋⃗𝛿 −𝐴3 · 𝐷⃗𝛿 (18)

The next position of a wolf is derived by averaging the three leaders’ positions:

𝑋⃗(𝑡+ 1) =
𝑋⃗1 + 𝑋⃗2 + 𝑋⃗3

3
(19)

3.1.3. Attacking Mechanism

The vector 𝑎⃗ controls the balance between exploration and exploitation, with its elements set within
the range [−𝑎, 𝑎] and gradually reducing from 2 to 0. This is formulated as:

𝑎⃗ = 2− 𝑡 · 2

maxIter
(20)

where maxIter is the maximum number of iterations, and 𝑡 is the current iteration. As the algorithm
progresses, GWO transitions from exploration to exploitation, allowing wolves to converge towards the
prey, representing the optimal solution.

3.2. GWO for Mullti-Objective Problems (MOGWO)

Despite the initial design of the Grey Wolf Optimizer (GWO) for single-objective problems, The authors
in [12] (2016) extended the algorithm to address multi-objective optimization, introducing the Multi-
Objective Grey Wolf Optimizer (MOGWO) as the first adaptation of GWO for multi-objective tasks.
MOGWO integrates two crucial mechanisms for handling multiple objectives:

• An archive, or storage, maintains a set of non-dominated solutions during the optimization
process, preserving diversity and facilitating Pareto front convergence.

• A leader selection strategy selects the first (𝛼), second (𝛽), and third (𝛿) leader solutions from
the archive to guide the search.

The archive includes a control mechanism that determines whether new solutions should be added,
which ensures it only holds relevant non-dominated solutions. At each iteration, newly obtained
non-dominated solutions are compared with those already stored, updating the archive to reflect the
best trade-offs achieved so far, as illustrated in Figure 4. In the multi-objective domain, comparing
solutions is complex due to the Pareto front concept, where solutions are not directly comparable by a
single measure [13]. To address this, MOGWO extends the GWO’s hierarchy of the best three wolves
(alpha, beta, and delta) by selecting leaders from the least crowded regions of the objective space. This
selection mechanism directs the rest of the wolves towards promising regions, improving exploration

Figure 5: Managing solution diversity.

across the Pareto front and guiding convergence toward global optimality [14]. Figure 5 demonstrates
how MOGWO prioritizes solutions from sparsely populated regions to ensure a well-distributed front.

MOGWO employs a roulette-wheel selection approach based on probabilities assigned to each
segment or hypercube of the objective space:

𝑃𝑗 =
𝑚

𝐻𝑗
(21)

Where 𝐻𝑗 is the number of non-dominated solutions in the 𝑗-th segment, and 𝑚 is a constant greater
than 1. This approach ensures a bias toward selecting solutions from less crowded regions, fostering
diversity and enhancing the search effectiveness across the Pareto front.

3.3. Binary Grey Wolf Optimizer for Multi-Objective Problems (BMOGWO)

The MOGWO was initially developed for continuous optimization tasks and thus cannot directly address
the mapping challenges on MPSoCs architectures. To adapt MOGWO for such discrete multi-objective
mapping tasks, a binary version was developed by introducing a sigmoid-based activation function to
transform continuous position vectors into binary values.

In the original MOGWO, candidate solutions move continuously within the real-valued search space.
However, to facilitate binary movement, the continuous position update equation must be adapted.
This modified position update equation for binary space is defined as:

𝑥𝑡+1
𝑑 =

{︃
1 if sigmoid

(︀
𝑥1+𝑥2+𝑥3

3

)︀
≥ rand

0 otherwise
(22)

Here, 𝑥𝑡+1
𝑑 represents the binary position in dimension 𝑑 at iteration 𝑡, while rand is a uniformly

distributed random value between [0,1], and the sigmoid function is defined as:

sigmoid(𝑎) =
1

1 + 𝑒−10(𝑎−0.5)
(23)

The intermediate variables 𝑥1, 𝑥2, and 𝑥3, originally defined in equations (16), (17), and (18), are
transformed to binary space as follows:

Figure 6: Proposed solution model for task mapping onto MPSoCs in embedded systems.

𝑥𝑑1 =

{︃
1 if

(︀
𝑥𝑑𝛼 + 𝑏𝑠𝑡𝑒𝑝𝑑𝛼

)︀
≥ 1

0 otherwise
(24)

𝑥𝑑2 =

{︃
1 if

(︁
𝑥𝑑𝛽 + 𝑏𝑠𝑡𝑒𝑝𝑑𝛽

)︁
≥ 1

0 otherwise
(25)

𝑥𝑑3 =

{︃
1 if

(︀
𝑥𝑑𝛿 + 𝑏𝑠𝑡𝑒𝑝𝑑𝛿

)︀
≥ 1

0 otherwise
(26)

where 𝑏𝑠𝑡𝑒𝑝𝑑𝛼,𝛽,𝛿 is determined by:

𝑏𝑠𝑡𝑒𝑝𝑑𝛼,𝛽,𝛿 =

{︃
1 if 𝑐𝑠𝑡𝑒𝑝𝑑𝛼,𝛽,𝛿 ≥ rand

0 otherwise
(27)

Here, rand is a random number drawn from a uniform distribution [0, 1], and 𝑐𝑠𝑡𝑒𝑝𝑑𝛼,𝛽,𝛿 represents
the continuous step size for dimension 𝑑, which is computed using a sigmoid transformation as follows:

𝑐𝑠𝑡𝑒𝑝𝑑𝛼,𝛽,𝛿 =
1

1 + 𝑒−10(𝐴𝑑
1𝐷

𝑑
𝛼,𝛽,𝛿−0.5)

(28)

Figure 6 provides an overview of the proposed BMOGWO methodology.

Figure 7: Global description of our solution.

3.4. Description of Our Approach

In our design flow, the placement and scheduling phase is crucial as it directly influences the application’s
implementation on a specialized architecture. This phase takes the following inputs:

• Application model: A detailed representation of the application, outlining its structure and
dependencies.

• Target architecture model: A model of the hardware architecture, defining the available
resources and their interconnections.

• Performance and energy constraints: Specific requirements that the implementation must
meet, including limits on execution time and energy consumption.

• Objective functions: Metrics to be optimized, such as minimizing latency, energy usage.

The output of this phase is a mapped assignment of tasks and communications to physical resources,
with an optimized scheduling of tasks across these resources to meet the specified performance and
energy constraints. The figure 7 present the global description of our approach.

4. Experimentation and Results

Our approach was implemented using the JAVA programming language, and all experiments were
conducted on a system with an Intel(R) Core(TM) i5-7300HQ CPU running Windows 10. Following
the execution of our binary MOGWO-based mapping solution, configured with the properties and
parameters detailed in Table 1, we obtained the following results:

4.1. Comparison of BMOWGO, MOPSO, and NSGA-II

In validating our proposed solution for mapping applications on MPSoCs, we implemented the Binary
Multi-Objective Grey Wolf Optimizer (BMOGWO) and compared it with two other widely used multi-
objective optimization techniques: Multi-Objective Particle Swarm Optimization (MOPSO) and Non-
dominated Sorting Genetic Algorithm II (NSGA-II). We conducted the comparison on a set of examples of
average size, evaluating execution time and energy consumption across varying numbers of processors
and task quantities.

Table 1
The basic paprameters of BMOGWO

Algorithm Basic parameters

Binary MOGWO

- Number of tasks 21
- Number of processors 8
- Architecture type Star topology

- Latency 1 unit
- Population size 20
- Archive size 20

- number of Grid 3
- 𝛼 0.1
- 𝛽 4
- 𝛾 2

- Number of iterations 20

The table 2 summarizes the performance of the three methods, highlighting BMOGWO’s effective-
ness in optimizing both execution time and energy consumption. The study offers insight into each
algorithm’s performance under different MPSoC configurations, demonstrating the adaptability and
efficiency of BMOGWO for discrete mapping challenges in MPSoC environments.

Table 2
Comparison of BMOGWO, MOPSO, and NSGA-II on MPSoC Mapping

Processors Tasks BMOGWO MOPSO NSGA-II
Exec
Time (s)

Energy
(J)

Exec
Time (s)

Energy
(J)

Exec
Time (s)

Energy
(J)

4 10 0.9 5.2 1.2 5.6 1.1 5.4
6 15 1.5 6.8 1.7 7.1 1.6 7.0
8 20 2.1 8.3 2.5 8.9 2.4 8.7
10 25 2.8 10.2 3.3 10.8 3.0 10.6
12 30 3.5 12.1 4.0 12.6 3.8 12.4
14 35 4.2 14.5 4.8 15.0 4.5 14.8
16 40 5.0 16.3 5.7 17.0 5.5 16.8
18 45 5.7 18.0 6.5 18.7 6.2 18.5
20 50 6.5 19.9 7.3 20.5 7.0 20.3

The results illustrate that BMOGWO consistently delivers lower execution times and energy con-
sumption compared to MOPSO and NSGA-II, particularly in configurations with higher task loads and
processor counts. This demonstrates BMOGWO’s potential as a highly effective solution for application
mapping in MPSoC environments, particularly where discrete and energy-efficient mapping is critical.

5. Conclusion

In this paper, we introduced a novel approach leveraging the multi-objective variant of the Grey Wolf
Optimizer (GWO) to tackle the challenging problem of mapping hierarchical real-time applications onto
a hierarchical MPSoC architecture. Our approach was further refined by adapting GWO with a binary en-
coding scheme, enabling effective optimization of both execution time and energy consumption—critical
factors in real-time embedded systems.

The results obtained from our experimental analysis were benchmarked against two well-established
metaheuristic algorithms, demonstrating that our proposed solution consistently surpassed these
alternatives in both execution time and energy efficiency. These promising findings underscore the
efficacy of our approach for optimizing task mapping in MPSoC environments.

With additional experiments and simulations, we are confident that our method will continue to prove
effective in addressing similar multi-objective optimization challenges within real-time and embedded
systems, contributing valuable insights to this field.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] T. Noergaard, Embedded systems architecture: a comprehensive guide for engineers and program-
mers, Newnes, 2012.

[2] R. Zurawski, Embedded Systems Handbook: Embedded systems design and verification, CRC
press, 2018.

[3] P. Noll, Mpeg digital audio coding, IEEE signal processing magazine 14 (1997) 59–81.
[4] J. Bialkowski, M. Barkowsky, A. Kaup, Overview of low-complexity video transcoding from h. 263

to h. 264, in: 2006 IEEE International Conference on Multimedia and Expo, IEEE, 2006, pp. 49–52.
[5] F. Boumaaza, A. E. H. Benyamina, Mapping multi objectifs d ‘application intensive sur architecture

mpsoc (2012).
[6] A. E. H. Benyamina, P. Boulet, Multi-objective mapping for noc architectures., J. Digit. Inf. Manag.

5 (2007) 378–384.
[7] K. Laredj, M. Belarbi, A. E. Benyamina, Metrics for real-time solutions design, in: Intelligent

Computing: Proceedings of the 2018 Computing Conference, Volume 2, Springer, 2019, pp. 411–425.
[8] A. Aroui, P. Boulet, K. Benhaoua, A. K. Singh, et al., Novel metric for load balance and congestion

reducing in network on-chip, Scalable Computing: Practice and Experience 21 (2020) 309–321.
[9] W. Wolf, A. A. Jerraya, G. Martin, Multiprocessor system-on-chip (mpsoc) technology, IEEE

transactions on computer-aided design of integrated circuits and systems 27 (2008) 1701–1713.
[10] A. Mehran, S. Saeidi, A. Khademzadeh, A. Afzali-Kusha, Spiral: A heuristic mapping algorithm for

network on chip, IEICE Electronics Express 4 (2007) 478–484.
[11] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Advances in engineering software 69

(2014) 46–61.
[12] S. Mirjalili, S. Saremi, S. M. Mirjalili, L. d. S. Coelho, Multi-objective grey wolf optimizer: a novel

algorithm for multi-criterion optimization, Expert systems with applications 47 (2016) 106–119.
[13] F. Boumaza, A. E. H. Benyamina, D. Zouache, L. Abualigah, A. Alsayat, An improved harris

hawks optimization algorithm based on bi-goal evolution and multi-leader selection strategy for
multi-objective optimization., Ingénierie des Systèmes d’Information 28 (2023).

[14] Q. Al-Tashi, S. J. Abdulkadir, H. M. Rais, S. Mirjalili, H. Alhussian, M. G. Ragab, A. Alqushaibi,
Binary multi-objective grey wolf optimizer for feature selection in classification, IEEE Access 8
(2020) 106247–106263.

	1 Introduction
	2 Definition and formulation
	2.1 Execution Time and Communication Duration
	2.2 Energy Consumption
	2.2.1 Execution Energy
	2.2.2 Communication Energy
	2.2.3 Total Energy Consumption

	2.3 Task Placement Indicator

	3 Proposed Resolution Method
	3.1 Grey Wolf Optimizer (GWO)
	3.1.1 Stages of GWO
	3.1.2 Hunting Mechanism
	3.1.3 Attacking Mechanism

	3.2 GWO for Mullti-Objective Problems (MOGWO)
	3.3 Binary Grey Wolf Optimizer for Multi-Objective Problems (BMOGWO)
	3.4 Description of Our Approach

	4 Experimentation and Results
	4.1 Comparison of BMOWGO, MOPSO, and NSGA-II

	5 Conclusion

