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Abstract 
The potential of the human brain to communicate and interact with the environment is promoted by 
advances in neuroscience and computer science, making brain-computer interface (BCI) top 
interdisciplinary study. Addition-ally, with recent developments in machine learning (ML), 
electroencephalogram (EEG)-based BCIs for AI are gaining popularity. This review article offers a 
look at recent research on brain-computer interfaces (BCIs) and how the technology of machine 
learning (ML) is used in BCIs. It highlights the role that ML has had in the execution of various BCI 
tasks and examines the various research methodologies used in this area. Additionally, it discusses 
ML techniques for detecting mental states, classifying mental tasks, classifying emotions, classifying 
electroencephalogram (EEG) signals, classifying event-related potential (ERP) signals, classifying 
motor picture data, and classifying limb movements. This paper aids readers in learning about recent 
advances in BCI and ML as well as upcoming discoveries required to enhance and create better BCI 
applications. 
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1. Introduction 

A brain-computer interface is a method that captures and interprets a person's brain signals in 
order to carry out a desired actuation. However, one of the most used techniques for BCI 
applications is EEG [1, 2]. BCI offers the chance to create a brand-new kind of brain-controlled 
communication technology. Applications can be found in many different domains, such as 
biometrics [41], education [42], entertainment [43], gaming [44], and communications [39]. 
Those who have motor impairment greatly benefit from this sort of mechanism [3]. 
Applications like brain-controlled limbs, chairs, speech systems, etc. may all be created utilizing 
a brain-computer interface, for instance. A humanoid robot interfaced with using this 
communication system opens up various opportunities to mimic human movements. In terms 

                                                      

Proceedings of the International IAM’24: International Conference on Informatics and Applied Mathematics, 
December 04–05, 2024, Guelma, Algeria 
∗ Corresponding author. 
† These authors contributed equally. 

 ferdiahmedyacine@gmail.com (A. Y. Ferdi); ghazek@gmail.com (A. Ghazli)  
 0009-0003-7962-6486 (A. Y. Ferdi); 0009-0001-6620-6621 (A. Ghazli) 

 © 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ghazek@gmail.com
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0002-5385-5761


of both physical appearance and the range of motions it is capable of, a humanoid robot [4,5] 
mimics the human body. A few methods for obtaining brain signals include 
electrocorticography (ECoG), near-infrared spectroscopy (NIRS), and electroencephalography 
(EEG). The detection and analysis of EEG is referred to as electroencephalography where 
electroencephalogram (electro = electrical, encephalo = brain, gram = record). The EEG is a 
recording of electrical impulses produced by brain cells.  Electroencephalograms (EEGs) can be 
recorded using electrodes insert-ed on the scalp or directly through the cortex, which is known 
as an electrocorticogram. Local field potentials are electric fields generated by the cortex.  EEG 
is monitored in reaction to an external or internal stimulation, referred to as event-related 
potential (ERP), as well as in the absence of any stimulus, referred to as spontaneous EEG [6]. 
EEG has long been regarded as a crucial technique in clinical neurology. Bioelectric potentials 
are generated by the electrochemical action of excitable cells found in neurological, muscular, 
or glandular tissue [7]. Rabbit and monkey brain bioelectric potentials were initially seen in the 
1870s by English physiologist Richard Caton, whereas the human EEG was originally identified 
in 1924 by German psychiatrist Hans Berger. Berger believed that during his terrible accident, 
he was in contact with his sister via mental telepathy hundreds of kilometers distant [8]. Volt-
ages are produced by the brain's neuronal activity in response to outside circum-stances, events, 
or stimuli. By examining EEG rhythms, it is possible to use the shift in neural activities for 
clinical diagnosis. EEGs have frequencies between 0.5 and 40 Hz and an amplitude between 10 
and 200V [9]. EEG has been used to identify the following five rhythms: beta (13–30 Hz), alpha 
(8–13 Hz), theta (4–8 Hz), and gamma (over 30 Hz) as in Table 1 are presented. 

Table 1 
Five different brain waves' characteristics 

A Brain-Computer Interface (BCI) system consists of four primary components: signal 
acquisition, preprocessing and feature extraction, classification, and feedback or output, as 
depicted in Fig. 1. Signal acquisition utilizes diverse methods, such as invasive, semi-invasive, 
and non-invasive techniques, to capture brain signals. Invasive and semi-invasive methods 
involve placing devices directly into the brain or skull, whereas non-invasive methods place 
devices on the scalp. After acquisition, signals undergo preprocessing and feature extraction, 
where tasks like noise reduction and artifact correction are performed to improve signal quality. 
The classification stage identifies relevant information in the signal, extracting distinct features 
and organizing them into a vector.  

This extraction process is challenging yet crucial due to concerns about signal overlap and 
distortion. Feature data size is typically reduced to facilitate input into machine learning 
algorithms, simplifying complexity without losing significant information. Effective selection 
of discriminative features is essential for accurate pattern recognition, enabling precise 

Brain wave Scope Amplitude Brain states 
Delta (δ) 0.5–4 Higher Dreamless deep sleep, deepest meditation 
Theta (θ) 4–8 High Drowsiness, dreaming, inward-focused 
Alpha (α) 8–12 Medium Very relaxed, alert, positive attention 
Beta (β) 13–35 Low Active, anxiety dominant, attentive, 

judgment, relaxed 
Gamma (γ) >35 Lower Concentration, integrated thoughts 



interpretation of user intentions. Machine learning algorithms guide the output device, allowing 
users to perform various tasks by translating brain signals into actionable commands. Due to 
its advantages, several studies support the benefits of EEG (e.g. accessibility, etc.).  Here, [34] 
uses EEG data to present a thorough overview of the most recent biometric identification 
systems based on deep learning and machine learning. With a focus on machine learning 
methods, this review aims to present recent work and examine the latest findings in the field of 
EEG-based brain-computer interfaces. In addition, this review provides readers with a 
comprehensive overview of this evolving topic by summarizing the key components and final 
conclusions of several studies rather than reading each one separately. 

 

Figure 1: The typical framework of a BCI system. 

 

2. Methods: Machine Learning Algorithms 

The ability to perform well in terms of accuracy in classification is one of the primary needs for 
classifiers in BCI systems [10]. Consider the situation of a patient who uses a wheelchair that 
is controlled by a BCI. Imagine if they could steer the BCI wheelchair with their thoughts, 
moving it left, right, forward, or backward. Therefore, the BCI system must be able to accurately 
analyse the brain impulses and classify the movement as "move to the left" when they believe 
the wheelchair should move to the left. These classification algorithms' task is to distinguish 
between many categories (in the example given above, left, right, forward, and backward) using 
a variety of features (for example, brain signals) as input. In order for the classification 
algorithm to effectively distinguish between a variety of classes, it is crucial to properly select 
characteristics when carrying out this activity [11]. The employment of various classifiers to 
convert features collected from brain signals into control commands can be used to describe the 
function of classification [12, 13]. Simple linear classifiers and complicated nonlinear classifiers 
are also included in this group. Support Vector Machines (SVM), K-Nearest Neighbors (KNN), 



Decision Trees (DT), K-means and Neural Networks are a few examples of frequently used 
classifiers. Below is a detailed discussion of these classifiers. 

2.1. Support Vector Machine 

Support Vector Machine (SVM) is a classical and most important technique for categorizing 
different data points. This approach classifies data points, also called sup-port vectors. The 
support vector's hyperplane is created using the kernel function. Radial, radial-integral, 
polynomial, and linear kernel functions are only a few of the several types of kernel functions. 
A hyperplane is a plane that passes through the centers of the data points. Its job is to generate 
the proper separation classes for the given data set. The area bounded by the hyperplane will 
have the largest margin. The support vectors of subgroups +1 and -1 are closest to the dividing 
hyperplane and the edge of the slab. The margin can be fully expanded by using the right 
methods for identifying support vectors [14, 15]. 

2.2. K-Nearest Neighbors 

KNN is an easy algorithm for supervised machine learning that can be used to ad-dress 
classification and regression issues. It makes use of a database with data points divided into 
various classes, and the method attempts to classify a sample data point that is sent to it as a 
classification issue. KNN is referred to as non-parametric since it makes no assumptions about 
the distribution of the underlying data. The following are KNN's benefits: It is an easy strategy 
to use. The model's construction is inexpensive. It is a very adaptable classification technique 
that works well for classes with several modes of communication. Records have various 
classification labels. It may occasionally be the most effective approach. Classifying unclassified 
records is relatively expensive, which is one of KNN's drawbacks. It needs the calculation of the 
k-nearest neighbors' distance. The size of the training set increases as the method becomes more 
computationally intensive. Accuracy will decrease when there are too many distracting or 
irrelevant elements. It computes distance across k neighbors since it is a slow learner. It 
preserves all of the training data without making any generalizations about it. Large data sets 
are handled, which results in costly calculations. Greater dimensionality in the data will lead to 
a drop-in region accuracy [16]. 

2.3. Decision Trees 

Decision Trees (DT) are trees that classify instances by sorting them based on feature values. 
Each node in a decision tree represents a feature in an instance to be classified, and each branch 
represents a value that the node can assume. Instances are classified starting at the root node 
and sorted based on their feature values [17]. Decision tree learning, used in data mining and 
machine learning, uses a decision tree as a predictive model which maps observations about an 
item to conclusions about the item's target value. More descriptive names for such tree models 
are classification trees or regression trees [18]. Decision tree classifiers usually employ post-
pruning techniques that evaluate the performance of decision trees, as they are pruned by using 
a validation set. Any node can be removed and assigned the most common class of the training 
instances that are sorted to it [17]. 



2.4. K-means 

K-means is one of the easiest unsupervised learning algorithms, according to [19] and [20], that 
resolves the well-known clustering problem. The process uses a predetermined number of 
clusters (let's suppose k clusters) defined a priori to categorize a given data set. When labeled 
data is not available, the K-Means technique is used [21]. A general technique for turning 
imprecise rules of thumb into extremely precise prediction rules. A boosting technique may 
provably generate a single classifier with extremely high accuracy, say, 99%, given a "weak" 
learning process that can regularly identify classifiers ("rules of thumb") at least somewhat 
better than random, say, accuracy of 55% [22]. 

2.5. Neural Networks 

Neural Networks (NN) that may, despite the fact that typically each network only performs one, 
perform many regression and/or classification tasks at once. Therefore, in the great majority of 
cases, the network will have an only one output variable, albeit in the case of many-state 
classification issues, this may represent a number of units of output (the post-processing stage 
taking care of the mappings from output units to output variables).Three key elements, 
including network architecture, the weight of each input link, and the input and activation 
functions of the unit, determine the performance of an artificial neural network (ANN). Since 
the first two factors cannot be changed, the behavior of the ANN is determined by the weights' 
present values. Instances from the training set are regularly presented to the net after the 
weights of the to-be-trained net are first set to values that are random. The value inputs for an 
instance are set up on the input units, and the net's output is compared to the instance's desired 
output. The net's output values are then slightly modified in a way that would bring those 
values closer to the values that are the intended output. A network may be taught using a 
variety of techniques [23]. 

3. Results and Discussion 

Clinical diagnostic and brain-computer interface applications frequently require automated 
removal of artifacts since EEG is nearly always polluted with various artifacts while capturing 
brain signal activity. EEG artifact elimination serves as the primary analytical method in digital 
signal processing and visual evaluation. To overcome this, K.Yasoda et al. [26] introduced a 
novel wavelet ICA (WICA) approach employing a fuzzy kernel support vector machine 
(FKSVM) to automatically remove and categorize EEG traces. Manual removal of the artifact is 
quite time-consuming. Without explicitly introducing the cutoff value, the suggested technique 
offers an effective and reliable system for utilizing automatic categorization and computing 
artifacts from the EEG signal. Additionally, WICA and FKSVM work together well to eliminate 
target artifacts. Additionally, they provide model building techniques that leverage training and 
testing of FKSVM data to categorize artifacts of the EEG signal. These properties include mean, 
standard deviation, variance, kurtosis, and extent. 
Through the use of the analytical elastic wavelet transform (FAWT) technology, Shalu 
Chaudhary et al. [27] in their work suggested a unique method for categorizing various MI tasks 
based on EEG data. Where time-moment-based characteristics are retrieved from the 
subdomains of the FAWT's analysis of the EEG data. To lessen the classifier's bias, they used 



feature normalization. Several classifiers employed the FAWT-based features as inputs. The 
best and most potent classifier for differentiating between right-handed (RH) and right-footed 
(RF) MI tasks was subsequently created using the Subspace K-Nearest Neighbor (KNN) classifier 
based on group learning approach. The KNN classifier based on clustering approach produced 
the highest performance parameters when they evaluated the subscale (SB) features on several 
classifiers. The best parameterized results for the fourth SB were 99.33% accuracy, 99% 
sensitivity, 99.6% specificity, F1-Score 0.9925, and 0.9865 kappa value. The KNN subspace 
classifier produced substantial results for other subscales as well. They concluded that their 
proposed work investigated the use of FAWT-based features for identifying EEG data for RH 
and RF MI tasks. Their suggested study also showed the efficiency of using several classifiers 
to categorize MI work-loads. When compared to the most recent approaches, their proposed 
method per-formed better. 
In the field of identifying epileptic seizures by classifying EEG signals into two types of seizures 
and convulsion is a difficult problem since it distinguishes epileptic seizure and epileptic seizure 
states. In the paper of [29] several machine learning-based algorithms for investigating and 
interpreting EEG data for correct categorization have been provided in earlier publications. 
However, because EEG signals are nonlinear and non-static, collecting accurate information 
about these dynamic bio-logical signals is difficult. To solve this issue, Aayesha et al. 
concentrated their efforts on extracting the most recognized and recognizable aspects of 
regulated EEG recordings in order to build a strategy for epileptic seizure identification that 
employs both classical and fuzzy-based machine learning techniques. The proposed framework 
divides unknown EEG signal segments into interictal and interictal categories. They tested the 
model on two standard datasets, the Boone and Children's Hospital Boston-MIT (CHB-MIT) 
datasets. The findings revealed that K-Nearest Neighbor (KNN) and Fuzzy Rough Nearest 
Neighbor (FRNN) had the greatest classification accuracies in both scenarios, with better 
sensitivity and specificity ratios. 
In their work, Abhijit Bhattacharyya et al. [30] developed a unique multi-level method for 
calculating spectral and temporal entropy from a multichannel electro-encephalogram (EEG) 
data. This makes it easy to distinguish between three types of human emotions: positive, 
neutral, and negative. The suggested method is based on the use of the experimental wave 
transforms based on Fourier-Bessels expansion (FBSE-EWT). They enhance the current FBSE-
EWT approach to calculate spectral Shannon and entropy for multichannel signals and 
multivariate fringe Hilbert spectra (MHMS) based on FBSE-EWT. K-NN stands for K-nearest 
neighbor. Multivariate FBSE-EWT breaks down multichannel EEG data into small sub band 
signals. The process of adaptive multivariability in the spectrum domain is dependent on the 
selection of the sub band signals' consecutive instantaneous amplitude and frequency functions. 
They calculated the multiscale K-NN entropy in the time domain from cumulatively 
accumulated multidimensional subscale signals, on the other hand. For sentiment classification, 
the acquired spectral and temporal entropy features were smoothed and input into a sparse 
random forest (ARF) classifier structure based on an autoencoder. The suggested method was 
evaluated using multichannel EEG signals from a publicly accessible database (SJTU EEG 
Emotion Dataset (SEED)). Inputs to their suggested system were bivariate EEG signals from 
separate pairs of channels with distinct spatial placements above the scalp. Their total 
classification accuracy of 94.4% demonstrates that the suggested method is effective for 
categorizing human emotions. They also used the DREAMER emotion EEG public database to 



validate the approach. The approach outperformed the most recently examined methods in 
these datasets. 
Also, Anupam Garg et al. [31] in their work they proposed a model that calibrates music mood 
and human emotion using machine learning methodologies. The pro-posed model is divided 
into three phases: (a) predicting song mood using audio cues, (b) predicting human emotion 
using physiological indicators such as EEG, GSR, ECG, and Pulse Detector, and (c) mapping 
between music mood and human emotion and categorizing them in real time. Extensive studies 
were conducted on various musical temper and human emotion data to extract influencing 
elements, train, test, and evaluate performance. 
In the research of Roy Lee et al. [32] their overarching goal was to offer a novel group learning 
technique for subject-independent EEG-based emotion identification based on MOPSO. In 
contrast to traditional group learning on classification tasks, their technique used group 
learning abilities to regression problems. They also developed a group operator m that employs 
a continuous value to indicate the absolute confidence of input data belonging to a specific class, 
with a value ranging from -1 to 1. They solved the classification problem by using the group 
operator and regression techniques. MOPSO is a swarm intelligence method that can swiftly 
find each sub-model's coefficient while avoiding the local optimal solution. The model selection 
procedure was established in order to find the best base model. SVM, NB, and KNN were chosen 
as the best baseline models based on the studies, and they are the most often used classifiers for 
emotion recognition. To address the issue of model instability and low classification accuracy 
for a single model, they merged MOPSO and classical classification methods to create the 
MOSNK approach. To describe the linear and nonlinear properties of the EEG signals, they 
extracted and merged 13 different types of linear and nonlinear features. To better maintain the 
temporal properties of the EEG signals, a sliding time frame is used. They then ran LOSOCV 
tests on two SEED and DEAP datasets. The experimental findings revealed that their model was 
far more accurate than the individual models. Furthermore, the MOSNK approach outperforms 
four regularly used group learning methods and contemporary methods in terms of recognition 
accuracy. They also employed a database of EEG recording signals gathered by three electrodes 
developed by Peking University of Chinese Medi-cine and tested on healthy or stroke-affected 
participants while exposed to five distinct colored planes. These individuals are known to be 
otherwise healthy or to have suffered from strokes. For 70% of the population, logs were utilized 
to train each algorithm, and performance was evaluated for the remaining 30%. The process is 
then repeated a hundred times when the training and testing sets are switched. The statistical 
data obtained utilizing each strategy for comparison were then considered. Their findings 
revealed that the SVM algorithm is the most accurate in terms of results accuracy, and it can 
predict stroke illness with a reliability of up to 70%. 
 In their study Thejaswini S et al. [35], they applied three standard machine learning models to 
a database they were able to acquire by means of a unique method. They showed virtual reality 
films of eight distinct emotions in order to collect EEG data. Then, 34 characteristics in the time 
and frequency domain were retrieved. They used discrete wavelet four-level transforms to 
decompose the frequency bands. The data were divided into four, three, and two emotional 
states using the feature vectors produced by the SVM, KNN, and ANN algorithm-based 
classifiers. Because of this, the overall accuracy for all four categories using the KNN, SVM, and 
ANN classifiers was 66.75%, 73.50%, and 85.50%, respectively. In comparison to the other models, 
the ANN classifiers performed better in terms of accuracy. 



Table 2 
A Summary of The Prior Research Works Using Machine Learning Algorithms (Publication 
Year, Feature Extraction, Selection Method and Classification Method) 

Using four ML-based algorithms for multiclass human emotion recognition from EEG waves, 
the performance of several frequency bands was compared by Baloju Revanth et al. [36]. Then, 
they separated the five frequency bands delta, theta, alpha, beta, and gamma into which the raw 

Ref. Publication 
Year 

Feature Extraction / 
Selection Method 

Classification Method 

[26] 2020 Wavelet ICA Fuzzy kernel-SVM 
[27] 2020 FAWT Subspace KNN, LDA, SVM, Decision 

Trees, standard KNN 
[45] 2020 Continuous WT Autoencoder, SVM, logistic regression, 

MLP 
[46] 2020 Fisher score, PCA, 

SFS 
SVM, LDA, KNN, Random Forest 

[47] 2020 CSP MLP 
[48] 2020 - Linear regression 
[29] 2021 DWT Fuzzy Rough Nearest Neighbor (FRNN) 
[30] 2021 Multivariate Fourier-

Bessel series 
expansion based 
empirical wavelet 
transform 

Autoencoder based random forest 

[31] 2022 PCA SVM, Random Forest 
[32] 2022 L1-norm 

regularization 
SVM, NB, KNN 

[35] 2023 Notch filter, DWT KNN, SVM, ANN 
[33] 2023 FIR filter, Shannon’s 

entropy 
Random Forest, LR, KNN, SVM, Decision 
Tree, CatBoost 

[38] 2023 ICA Random Forest, SVM 
[37] 2023 Butterworth, 

bandpass filter 
Random forest 

[36] 2023 Band-pass filter ANN, SVM, KNN, RF 
[49] 2023 CAR filters, CSP 

algorithm 
LDA, SVM 

[50] 2023 PREP, ICA, 
Butterworth filter 

SVM with radial basis function kernel 
(rbf-SVM) 

[24] 2024 Power Spectral 
Density (PSD) 

DT, RF, LDA, KNN, SVM 

[25] 2024 DWT, PCA NB, SVM, DT, RF, KNN, NN 
[28] 2024 PLI, Band-pass filter, 

ICA 
XGBoost, CatBoost, LightGBM, 
Ensemble models 

 [40] 2024 DWT NB, SVM, DT, LDA, KNN, NN, Ensemble 
models  



EEG data were initially divided. The statistical, time, and frequency domain features were then 
extracted. They supplied these variables to four ML-based classifiers to classify emotions using 
the SEED dataset into three categories: positive, negative, and neutral. Their research showed 
that ML-based classifiers are more effective than conventional classifiers. As a result, the 
random forest classifier reported a delta domain mean classification accuracy of 95.71%. The 
theta range likewise has the second-highest average accuracy by KNN, 80.32%. Other frequency 
bands have followed a similar pattern. 
In the research of A.M.Mahmud Chowdhury et al. [37], on the basis of captured EEG data, they 
created a software system to automatically identify people. They made use of a general dataset 
created especially for testing biometric EEG methods. Over the course of three successive 
sessions, they gathered data on 21 people and 12 different stimuli. The recorded EEG test pattern 
was compared to the corresponding template kept in the database during validation. Their tests 
revealed that a machine learning model based on random forests could obtain an authentication 
accuracy of about 83.2%. This shows that the EEG may be trusted for identification and 
authentication in a variety of settings.  
Because it can increase knowledge retention compared to conventional learning methods, 
virtual reality (VR) is frequently employed in a variety of educational scenarios. However, due 
to stress, mental distraction, undesired noises/sounds, irrelevant stimuli, etc., distraction is an 
inescapable issue in an educational VR setting. EEG data and eye gaze were combined in an 
investigation by Sarker M. Asish et al. [38] to identify student diversions in a virtual reality 
learning environment. To identify distracted pupils, they created a VR classroom and training 
three machine learning algorithms (Random Forest, CNN-LSTM and SVM). The preliminary 
study's findings demonstrate that CNN-LSTM and Random Forest offer more accuracy (98%) 
than SVM.  
In 2024 [24], an important stage was worked on in a study, which is classification using two 
different types of original databases, open source and available to everyone, with different 
classifications (binary and multi). It relied on the latest and best machine learning algorithms 
used in this field. It also made sure to improve the performance of each algorithm by changing 
and modifying the input data for each of them several times until reaching the best. Then the 
effectiveness of the developed classifiers was evaluated by measuring the accuracy rate and 
then choosing the best and displaying it in the confusion matrix. Decision tree, random forest, 
LDA, KNN, and SVM are the five classifiers used in the work to classify the data. The random 
forest classifier in that study achieved the best results on both databases with 100% accuracy on 
the first and more than 86% on the second. This makes it recommended as a suitable, effective, 
and ready-to-use classifier for researchers interested in working on the same databases used in 
that study. As an idea for subsequent work, the study suggested the possibility of relying on the 
idea of amplifying the data itself to test the efficiency of deep learning techniques on it, and 
then modifying the inputs of the algorithms to improve them as well. 
A machine learning framework for identifying between normal and epileptic EEG recordings is 
presented in a paper by Ali M. Ali et al. [25]. Their methodology comprised feature extraction 
utilizing statistical techniques and the discrete wavelet transform (DWT), feature selection to 
find the most discriminating features, and multiple algorithm classification. In particular, they 
represent time-frequency by transforming discrete waves through the analysis of nonstationary 
data. Robust feature selection is aided by cosine similarity and principal component analysis. 
Signals are classified by supervised classifiers such as support vector machines, k-nearest 



neighbors, neural networks, naive Bayes, decision trees, and forests. Their findings showed that 
neural networks may be used to classify data with 100% accuracy, suggesting the possibility of 
extremely dependable automated categorization. Show which machine learning pipeline is best 
by comparing several methods. This work has led to the development of an EEG categorization 
framework for epilepsy, which shows how artificial intelligence may greatly advance 
neurological illness screening, diagnosis, treatment, and management. 
Early stress detection in students prevents suicidal thoughts and illnesses, and appropriate 
therapy is also offered to enhance learning. EEG characteristics including relative sub potential 
powers and EEG amplitude ratios were taken into consideration to enhance the classification 
model's performance measures. V. G. Rajendran et al. used machine learning techniques in their 
study [40] to create two levels of classification, such as stress and non-stress states. Using an 8-
channel Enobio wireless device, they experimentally performed an EEG signal recorded from 
25 people un-der two conditions: relaxation (non-stress) and during a mental task (stress). The 
EEG features were extracted through the application of the discrete wave transform technique, 
relative sub band power (alpha, theta, and beta energies), and relative band ratios (arousal index, 
heart rate, performance improvement index, cognitive performance attention resources index 
(CPARI), and organ arousal) calculated from the sub band energies of two states. Symmetry and 
the central nervous system. Using a non-parametric technique like the Wilcoxon signed rank 
test, they selected EEG features by statistically significant analysis (p < 0.05) for both data cases. 
They also conducted brain functional connectivity analysis of sub band energies. Ultimately, 
89.74% classification accuracy was attained by the cubic SVM classifier model that was made 
public.  
Jiaqi Fang et al.'s study [28] aims to build a diagnostic framework for triadic classifications while 
examining the mechanisms underlying depressive illness, generalized anxiety disorder, and 
healthy controls (HC). Electroencephalogram (EEG) signals from 42 patients with depressive 
disorders, 45 patients with generalized anxiety disorders, and 38 healthy controls were 
specifically collected as part of the experiment. They measured brain functional connectivity 
using the phase lag index (PLI) and examined variations in functional connectivity among the 
three groups. Additionally, they investigated how classification performance was affected by 
time window feature computations using ensemble models, XGBoost, CatBoost, and LightGBM. 
They put forth a feature optimization approach based on Autogluon Tabular to enhance the 
classification performance. According to their findings, the three groups performed best in the 
classification task within a 12-second time window, with the ensemble model obtaining the 
greatest accuracy of 97.33%. Significant brain remodeling was also found by the research, with 
the frontal lobes and beta rhythm showing the most notable alterations. Their research provided 
credence to the idea that DD and GAD are associated with aberrant brain functional 
connectivity, which may help understand the neurological mechanisms underlying these 
disorders.  
In his paper [47] Haibo Yil created an EEG training suite employing EEG equipment for using 
the suggested methods for systolic matrix multiplication, systolic matrix multiplication, and 
systolic matrix multiplication, he modeled the connection between two variable samples X and 
markers Y based on the fit of a linear equation Y = θX to the training set. Then, using Docker 
technology, he created a development environment. He then used the packaged training set to 
build active EEG modeling in the development environment.  



Table 3 
A Summary of The Prior Research Works Using Machine Learning Algorithms (Performance 
Measure, Accuracy Level, BCI Task) 

Ref. Performance Measure Accuracy Level BCI Task 
[26] Specificity, Accuracy, 

Sensitivity 
Fuzzykernel-SVM (86.1%) EEG signal categorization 

[27] Accuracy, Specificity, 
Kappa value, F1-score, 
Sensitivity 

SubspaceKNN (99.33%) 
LDA (81.1%) 
SVM (95.72%) 
DT (91.79%) 

Standard KNN (92.8%) 

MI classification 

[45] Accuracy, recall, 
Precision, f-score 

AE (92.09%) 
SVM (88.48%) 
LR (89.25%) 
MLP (95.58%) 

EEG signal categorization 

[46] Accuracy, f1-score Anger (98.02%) 
Joy (100%) 
Surprise (96%) 
Disgust (95%) 
Fear (90.75%) 
Sadness (90.08) 

Emotion classification 

[47] Mean square error, 
accuracy 

(97.82%) EEG signal categorization 

[48] Accuracy (95%) EEG signal categorization 
[29] Accuracy Bonn :  (99.25%)  

CHB-MIT : (96.08%) 
Diseases classification 

[30] Accuracy, F1-score Arousal (85.4%) 
Valence (86.2%) 
Dominance (84.5%) 
SEED (94.4%) 

Emotion classification 

[31] Accuracy SVM (71.8%) 
RF (81.4%) 

Emotion classification 

[32] Accuracy, F1-score, 
Precision, Recall, ROC, 

AUC 

DEAP: 
Arousal (65.7%) 
Valence (64.22%) 
SEED:  
(84.44%) 

Emotion classification 

[35] Accuracy,  
Confusion matrix   

ANN (85.50%) 
SVM (73.50%) 
KNN (66.75%) 

Emotion classification 

[33] Accuracy Best: SVM (70%) Diseases classification 
[38] Accuracy, Precision, 

Recall, F1-scores 
RF (98%) Dispersion classification 



To evaluate the concept, he put together an EEG test suite employing EEG equipment. The 
model's accuracy was 95% after testing. He also talked about how it may be used for EEG 
modeling in BCIs. Then, using the suggested techniques for systolic matrix multiplication, 
systolic matrix inversion, and systolic matrix multiplication, he increased the machine learning 
efficiency. His suggested methodology is based on the conventional equation approach. The 
suggested algorithm should be enhanced to include different machine learning techniques. 
Low accuracy, delayed convergence, and fit in local minima are some drawbacks of 
conventional methods for training NNs, such as gradient ratios and recursive algorithms. In 
order to solve these issues. The combination of particle swarm optimization and gravity search 
method (PSOGSA), which was suggested for their classification issue by Sajjad Afrakhteh et al. 
[48] was used to train MLP-NN in their research. They contrasted this approach with other 

[37] Accuracy, Precision, 
Recall, F1 score 

RF (83.2%) Biometrics classification 

[36] Accuracy ANN (33.2%) 
SVM (64.64%) 
RF (71.02 %) 
KNN (70.66 %) 

Emotion classification 

[49] Accuracy SS-BCI: 
LDA (76.85%) 
SVM (94.20%) 
SI-BCI: 
LDA (80.30%) 
SVM (83.23%) 

MI classification 

[50] Accuracy, specificity, 
sensitivity, F1-score 

(85%) EEG signal categorization 

[24] Accuracy, Confusion 
matrix 

DATA (1): 
DT (100%) 
SVM (75.5%) 
RF (100%) 
KNN (95%) 
LDA (78%) 
DATA (2): 
DT (78.07%) 
SVM (65.09%) 
RF (86.47%) 
KNN (73.37%) 
LDA (65.71%) 

EEG signal categorization 

[25] Accuracy Neural Networks (100%) Diseases classification 
[28] Accuracy, F1-Macro, 

Gmean-Macro, Kappa 
Ensemble model (97.33%) 
XGBoost (96.40%) 
CatBoost (95.53%) 
LightGBM (96.73%) 

Diseases classification 

[40] Accuracy, Sensitivity, 
Specificity, Precision 

Ensemble model (95.83%) Diseases classification 



heuristic algorithms like particle swarm optimization (PSO), gravity search algorithm (GSA), 
and newer iterations of PSO in order to demonstrate the benefits of utilizing PSOGSA to train 
NNs. In their study, convergence velocity and classification accuracy measures are covered. 
Their findings demonstrated that, when compared to the alternatives, the algorithm they 
provided performed better or at least acceptable levels in the majority of the EEG dataset 
participants. 
In [45] the authors propose a new multimodal machine learning (ML)-based approach to 
integrate geometric features of EEG for automatic classification of brain states. Where EEGs 
were obtained from neurological patients with mild cognitive impairment (MCI) or Alzheimer's 
disease (AD) the aim was to distinguish healthy control (HC) patients from patients. 
Specifically, in order to effectively deal with the instability, 19-channel EEG signals were 
rendered in the time-frequency domain (TF) by continuous wavelet transform (CWT) and a set 
of appropriate features (referred to as CWT features) were extracted from the bands. Subtypes 
δ, θ, α1, α2, and β EEG. Furthermore, to exploit the nonlinear phase coupling information of the 
EEG signals, higher order statistics (HOS) were extracted from a bispectrum (BiS) 
representation. BiS generated a second set of features (referred to as BiS features) that were also 
evaluated in the five EEG subscales. CWT and BiS features were entered into a number of ML 
classifiers to perform both 2-way (AD vs HC, AD vs MCI, MCI vs HC) and 3-way (AD vs MCI 
vs HC) classifications. As an experimental standard, they analyzed a balanced EEG dataset that 
included 63 AD, 63 MCI, and 63 HC. Their comparative results showed that when using a 
sequence of CWT and BiS features (which they referred to as multimodal features (CWT + BiS)) 
as input, the classifier is multimodal. Layered (MLP) outperforms all other models, namely, unit 
autoencoder (AE), logistic regression (LR) and support vector machine (SVM). As a result, they 
concluded that the proposed multimodal ML scheme can be considered as a viable alternative 
to the latest computationally intensive deep learning approaches. 
In 2023, Eliana M et al. [49] Their objective was to produce a ready-to-use system that required 
little setup time. As a result, their objective was to create a subject-independent BCI (SI-BCI) 
that could be used by any new user without the limits of individual calibration. They used the 
findings of other research to create comparisons and corroborate our findings. They employed 
a mixture of delta (0.5-4 Hz), alpha (8-13 Hz), and beta + gamma (13-40 Hz) bands to analyze the 
EEG input earlier in the process for feature extraction. They then collected features from a 27-
channel EEG using a combined spatial pattern (CSP) and used linear discriminant analysis 
(LDA) and vector machine classifiers (SVM) to conduct binary classification (MI for right and 
left hand). These analyses were carried out for both the SS-BCI and SI-BCI models. They also 
evaluated their SI-BCI and SS-BCI systems using leave-in-from-single-subject ordering (LOSO) 
and 10-fold validation, respectively. In comparison to two other investigations, theirs was the 
only one that demonstrated a superior accuracy of the LDA classifier in the SI-BCI than the SS-
BCI. In both situations (SI-BCI and SS-BCI), however, the accuracy of LDA was lower than that 
of SVM. Their SS-BCI accuracy was 76.85% using LDA and 94.20% using SVM, while their SI-
BCI accuracy was 80.30% using LDA and 83.23% using SVM. As a result, they determined that 
SI-BCI may be a viable and useful choice. Use it in situations when individuals are unable to 
present themselves for lengthy training sessions or for a rapid assessment of 'BCI illiteracy'. In 
comparison, their technique proved more efficient, yielding the best SI-BCI score when 
compared to the categorization performance of the other three research, even when the 



limitation of utilizing different datasets in evaluating the four studies was taken into 
consideration. 
Michael Lacey and others [50] recently assessed the capacity of numerous EEG measurements 
to distinguish between levels of upper limb disability in a proven machine learning architecture. 
Within 72 hours after the stroke, EEG data from 28 acute stroke survivors were obtained, 
coupled with the Fugl-Meyer Upper Limb Assessment Scale (FMAUE) motor subscore. They 
collected 221 characteristics from the EEG signals' spectral and conductivity domains and chose 
the best predictive features using two feature-ranking algorithms (ReliefF and Minimum 
Related Frequency). The support vector machine classifier was given sets of the top performing 
features, which were then tuned in terms of hyperparameters. The best-performing model 
attained an accuracy of more than 85% in categorizing individuals into high and low FMAUE 
using cross-validation. The brain symmetry score and its derivatives were key indications of a 
patient's motor condition. They anticipate that this discovery may open the way for automated, 
EEG-based recording of motor dysfunction following a stroke. 
In their article, Oana Bălan et al. [46] suggested a comparison of various deep learning and 
machine learning methods, with or without feature selection, to binary classify the six basic 
emotions anger, disgust, fear, happiness, sorrow, and surprise into two related categories 
(emotion and no). The DEAP data (a dataset for emotion analysis utilizing EEG, physiological 
cues, and video inputs) contains subjective judgments of arousal, valence, and dominance as 
well as physiological records of emotion. According to their findings, the highest accuracy 
ratings for each emotion were as follows: Anger: 98.02%, Joy: 100%, Disgust: 95%, Fear: 90.75%, 
Surprise: 96%, and Sadness: 90.08%. Without feature selection, classification accuracy for four 
emotions (anger, fear, disgust, and sorrow) was greater. They found that their method of 
considering emotion. 

4. Emerging trends and future challenges 

As a emerging trend in deep learning for feature learning, recent developments, especially 
convolutional neural networks (CNNs) and recurrent neural networks (RNNs), enable the 
automatic extraction of features from EEG data. It offers features for choosing an extraction 
procedure and a classifier for the dataset, eliminating the hassle of choosing a segmentation 
process [51]. This reduces the reliance on manual feature engineering and improves 
performance in applications such as emotion recognition, motion imaging, and cognitive state 
detection. We can also talk about transfer learning and domain adaptation, where transfer 
learning techniques are increasingly being adopted to address the problem of interpersonal 
variability in EEG signals. By reusing knowledge from pre-trained models, researchers can 
achieve better generalization and efficiency, especially with small datasets. In the context of 
explainable AI, there is an increasing focus on interpretability in brain-computer interface 
applications. Techniques such as SHAP (SHapley Additive Explanations) and LIME (Locally 
Uninterpretable Model Explanations) are being used to interpret machine learning models, 
which is particularly important for critical applications such as medical diagnosis. 
As for future challenges, data quality and artifacts are one of the most important, as EEG signals 
are susceptible to noise and artifacts (e.g., muscle movements, eye blinks). Developing robust 
preprocessing techniques and artifact removal algorithms is crucial to improving the reliability 
of BCIs. Also, inter-subject variability as the highly individual nature of EEG signals remains a 



major hurdle. Despite advances in domain adaptation, achieving universal models that work 
consistently across different users remains a challenge. In addition to scalability and 
accessibility, current EEG-based BCI systems often require expensive hardware and specialized 
expertise, limiting their widespread adoption. Affordable, easy-to-use, and scalable solutions 
are essential for mainstream applications.   With the reliance on AI and its tools, the issue of 
privacy remains an ever-present issue. With the increasing use of brain-computer interfaces to 
monitor and control human behavior, issues related to privacy, data security, and the ethical 
use of EEG data have become of paramount importance. Establishing robust frameworks for 
ethical compliance is essential. Continuous use of EEG-based brain-computer interfaces can 
also lead to user fatigue, both physically (due to wearing the devices) and mentally (due to 
cognitive load). Improving usability and comfort is critical for long-term adoption. 

5. Conclusion 

A The most popular machine learning techniques for handling classification and regression 
issues in EEG-based BCI systems are reviewed in this work. The content of 21 recent scientific 
articles (from 2020 to 2024) was discussed and the results of machine learning algorithms were 
highlighted in each research. Additionally, a few of the most well-known and common machine 
learning approaches are described. It is necessary to highlight the concerns associated with the 
employment of the rank algorithm. Although it is obvious that classification algorithms have 
helped to characterize task-related brain states, using these methods by non-experts may lead 
to a number of difficulties. The major cause of problems is overfitting of the algorithms as well 
as bias and variation in the estimated error of the algorithms. The classifier will only be able to 
categorize training data or comparable data if it is overfitted. By keeping categorization 
techniques simple, over-fitting may be avoided. In summary, this study aims to inform future 
research by offering guidance on experimental protocols, choosing appropriate 
instrumentation, and employing AI methodologies. It equips readers with information enabling 
them to identify optimal machine learning algorithms suited to their particular problem-solving 
contexts, thereby fostering the advancement and utilization of EEG-based BCI systems. 

Declaration on Generative AI 

While preparing this work, the authors used quillbot in some paragraphs for paraphrasing 
and rewording. After using this tool, the authors reviewed and edited the content as needed and 
bear full responsibility for the content of the publication. 

References 

[1] S. Mantri, V. Dukare, S. Yeole, D. Patil, and V. M. Wadhai, “A survey: Fundamental of EEG,” 
International Journal of Advance Research in Computer Science and Management Studies, 
vol. 1, pp. 83–89, 2013.   

[2] G. Pfurtscheller et al., “Current trends in Graz brain-computer interface (BCI) research,” 
IEEE Transactions on Rehabilitation Engineering, vol. 8, no. 2, pp. 216–219, 2000. 
doi:10.1109/86.847821.   

[3] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces: A review,” Sensors, vol. 
12, no. 2, pp. 1211–1279, 2012. doi:10.3390/s120201211.   



[4] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of Honda humanoid 
robot,” in Proceedings of the 1998 IEEE International Conference on Robotics and 
Automation (Cat. No.98CH36146), 1998. doi:10.1109/robot.1998.677288.   

[5] R. A. Brooks, C. Breazeal, M. Marjanović, B. Scassellati, and M. M. Williamson, “The Cog 
project: Building a humanoid robot,” in Computation for Metaphors, Analogy, and Agents, 
vol. 1562, Lecture Notes in Computer Science, Springer, Heidelberg, 1999, pp. 52–87. 
doi:10.1007/3-540-48834-0_5.   

[6] K. Blinowska and P. Durka, "Electroencephalography (EEG)," Wiley Encyclopedia of 
Biomedical Engineering, 2006. doi: 10.1002/9780471740360.ebs0418.   

[7] E. Başar, "Brain oscillations in neuropsychiatric disease," Dialogues in Clinical 
Neuroscience, vol. 15, no. 3, pp. 291–300, 2013. doi: 10.31887/dcns.2013.15.3/ebasar.   

[8] D. Millett, "Hans Berger: From Psychic Energy to the EEG," Perspectives in Biology and 
Medicine, vol. 44, no. 4, pp. 522–542, 2001. doi: 10.1353/pbm.2001.0070.   

[9] M. Abo-Zahhad, S. M. Ahmed, and S. N. Abbas, "A New EEG Acquisition Protocol for 
Biometric Identification Using Eye Blinking Signals," International Journal of Intelligent 
Systems and Applications, vol. 7, no. 6, pp. 48–54, 2015. doi: 10.5815/ijisa.2015.06.05.   

[10] G. Müller-Putz, R. Scherer, C. Brunner, R. Leeb, and G. Pfurtscheller, "Better than random: 
A closer look on BCI results," International Journal of Bioelectromagnetism, vol. 10, no. 1, 
pp. 52–55, 2008.   

[11] S. H. Ebenuwa, M. S. Sharif, M. Alazab, and A. Al-Nemrat, "Variance Ranking Attributes 
Selection Techniques for Binary Classification Problem in Imbalance Data," IEEE Access, 
vol. 7, pp. 24649–24666, 2019. doi: 10.1109/access.2019.2899578.   

[12] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi, "A review of classification 
algorithms for EEG-based brain–computer interfaces," Journal of Neural Engineering, vol. 
4, no. 2, pp. R1–R13, 2007. doi: 10.1088/1741-2560/4/2/r01.   

[13] D. J. Krusienski et al., "A comparison of classification techniques for the P300 Speller," 
Journal of Neural Engineering, vol. 3, no. 4, pp. 299–305, 2006. doi: 10.1088/1741-
2560/3/4/007.   

[14] D. Garrett, D. A. Peterson, C. W. Anderson, and M. H. Thaut, "Comparison of linear, 
nonlinear, and feature selection methods for EEG signal classification," IEEE Transactions 
on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp. 141–144, 2003. doi: 
10.1109/tnsre.2003.814441.   

[15] M. R. N. Kousarrizi, A. A. Ghanbari, M. Teshnehlab, M. A. Shorehdeli, and A. Gharaviri, 
"Feature Extraction and Classification of EEG Signals Using Wavelet Transform, SVM and 
Artificial Neural Networks for Brain Computer Interfaces," in 2009 International Joint 
Conference on Bioinformatics, Systems Biology and Intelligent Computing, 2009. doi: 
10.1109/ijcbs.2009.100.   

[16] S. Ray, "A Quick Review of Machine Learning Algorithms," in 2019 International 
Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 
2019. doi: 10.1109/comitcon.2019.8862451.   

[17] S. B. Kotsiantis, "Supervised machine learning: A review of classification techniques," in 
Proceedings of Conference on Emerging Artificial Intelligence Applications in Computer 
Engineering, pp. 249–268, 2007.   

[18] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, 2nd ed., Springer, Heidelberg, 2009.   



[19] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 
1995. doi: 10.1604/9780198538646.   

[20] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, "A 
local search approximation algorithm for k-means clustering," Computational Geometry, 
vol. 28, no. 2–3, pp. 89–112, 2004. doi: 10.1016/j.comgeo.2004.03.003.   

[21] S. Alex and S. V. N. Vishwanathan, Introduction to Machine Learning, Cambridge 
University Press, Cambridge, 2008.   

[22] R. Schapire, "Machine learning algorithms for classification," Princeton University, vol. 10, 
2015.   

[23] C. Neocleous and C. Schizas, "Artificial Neural Network Learning: A Comparative Review," 
in Methods and Applications of Artificial Intelligence, pp. 300–313, Springer, Heidelberg, 
2002. doi: 10.1007/3-540-46014-4_27.   

[24] F. A. Yassine and G. Abdelkader, "Enhancing EEG-based brain-computer interface systems 
through efficient machine learning classification techniques," Indonesian Journal of 
Electrical Engineering and Computer Science, vol. 34, no. 3, pp. 2045–2054, 2024. doi: 
10.11591/ijeecs.v34.i3.pp2045-2054.   

[25] A. M. Ali, S. Nashwan, A. Al-Qerem, A. Almomani, M. A. Sakhnini, and A. Aldweesh, 
"Machine Learning Models for Brain Signal Classification: A Focus on EEG Analysis in 
Epilepsy Cases," 2024. doi: 10.1109/iccr61006.2024.10532919.   

[26] Yasoda, K., Ponmagal, R.S., Bhuvaneshwari, K.S., Venkatachalam, K.: Automatic detection 
and classification of EEG artifacts using fuzzy kernel SVM and wavelet ICA (WICA). Soft 
Computing 24(21), 16011–16019 (2020). doi: 10.1007/s00500-020-04920-w 

[27] Chaudhary, S., Taran, S., Bajaj, V., Siuly, S.: A flexible analytic wavelet transform-based 
approach for motor-imagery tasks classification in BCI applications. Computer Methods 
and Programs in Biomedicine 187, 105325 (2020). doi: 10.1016/j.cmpb.2020.105325 

[28] Fang, J., et al.: Exploring abnormal brain functional connectivity in healthy adults, 
depressive disorder, and generalized anxiety disorder through EEG signals: A machine 
learning approach for triple classification. Brain Sciences 14(3), 245 (2024). doi: 
10.3390/brainsci14030245 

[29] Aayesha, Qureshi, M.B., Afzaal, M., Qureshi, M.S., Fayaz, M.: Machine learning-based EEG 
signals classification model for epileptic seizure detection. Multimedia Tools and 
Applications 80(12), 17849–17877 (2021). doi: 10.1007/s11042-021-10597-6 

[30] Bhattacharyya, A., Tripathy, R.K., Garg, L., Pachori, R.B.: A novel multivariate-multiscale 
approach for computing EEG spectral and temporal complexity for human emotion 
recognition. IEEE Sensors Journal 21(3), 3579–3591 (2021). doi: 10.1109/jsen.2020.3027181 

[31] Garg, A., Chaturvedi, V., Kaur, A.B., Varshney, V., Parashar, A.: Machine learning model 
for mapping of music mood and human emotion based on physiological signals. 
Multimedia Tools and Applications 81(4), 5137–5177 (2022). doi: 10.1007/s11042-021-11650-
0 

[32] Li, R., Ren, C., Zhang, X., Hu, B.: A novel ensemble learning method using multiple 
objective particle swarm optimization for subject-independent EEG-based emotion 
recognition. Computers in Biology and Medicine 140, 105080 (2022). doi: 
10.1016/j.compbiomed.2021.105080 



[33] Han, X., et al.: Efficiency comparison of machine learning algorithms for EEG 
interpretation. In: 2023 IEEE 5th International Conference on Artificial Intelligence 
Circuits and Systems (AICAS), Published (2023). doi: 10.1109/aicas57966.2023.10168626 

[34] Yassine, F.A., Abdelkader, G.: EEG-based biometric authentication using machine and deep 
learning approaches: A review. Published (2024). doi: 10.1109/ispa59904.2024.10536762 

[35] S., T., N., R.B., R., M.K.: Machine learning algorithm to detect EEG-based emotion states 
using virtual-video stimuli. In: 2023 International Conference on Advances in Electronics, 
Communication, Computing and Intelligent Information Systems (ICAECIS), Published 
(2023). doi: 10.1109/icaecis58353.2023.10170069 

[36] Revanth, B., Gupta, S., Dubey, P., Choudhury, B., Kamble, K., Sengupta, J.: Multi-channel 
EEG-based multi-class emotion recognition from multiple frequency bands. In: 2023 2nd 
International Conference on Paradigm Shifts in Communications Embedded Systems, 
Machine Learning and Signal Processing (PCEMS), Published (2023). doi: 
10.1109/pcems58491.2023.10136120 

[37] A.M.M. Chowdhury and M.H. Imtiaz, "A Machine Learning Approach for Person 
Authentication from EEG Signals," in 2023 IEEE 32nd Microelectronics Design & Test 
Symposium (MDTS), 2023, doi: 10.1109/mdts58049.2023.10168149. 

[38] S.M. Asish, A.K. Kulshreshth, and C.W. Borst, "Detecting Distracted Students in an 
Educational VR Environment Utilizing Machine Learning on EEG and Eye-Gaze Data," in 
2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops 
(VRW), 2023, doi: 10.1109/vrw58643.2023.00194. 

[39] N. Birbaumer, "Breaking the silence: Brain–computer interfaces (BCI) for communication 
and motor control," Psychophysiology, vol. 43, no. 6, pp. 517–532, 2006, doi: 10.1111/j.1469-
8986.2006.00456.x. 

[40] V.G. Rajendran, S. Jayalalitha, K. Adalarasu, and R. Mathi, "Machine learning based human 
mental state classification using wavelet packet decomposition—an EEG study," 
Multimedia Tools and Applications, 2024, doi: 10.1007/s11042-024-18725-8. 

[41] A.Y. Ferdi and A. Ghazli, "Authentication with a one-dimensional CNN model using EEG-
based brain-computer interface," Computer Methods in Biomechanics and Biomedical 
Engineering, pp. 1–12, 2024, doi: 10.1080/10255842.2024.2355490. 

[42] M. Serrhini and A. Dargham, "Toward Incorporating Bio-signals in Online Education: Case 
of Assessing Student Attention with BCI," in Advances in Intelligent Systems and 
Computing, pp. 135–146, 2016, doi: 10.1007/978-3-319-46568-5_14. 

[43] R. Folgieri, C. Lucchiari, M. Granato, and D. Grechi, "Brain, Technology and Creativity. 
BrainArt: A BCI-Based Entertainment Tool to Enact Creativity and Create Drawing from 
Cerebral Rhythms," in Springer eBooks, pp. 65–97, 2014, doi: 10.1007/978-1-4939-0965-0_4. 

[44] A. Nijholt, J.B.F. Van Erp, and D.K.J. Heylen, "BrainGain: BCI for HCI and Games," pp. 32–
35, 2008, [Online]. Available: 
https://wwwhome.ewi.utwente.nl/~anijholt/artikelen/aisb_bci2008.pdf. 

[45] C. Ieracitano, N. Mammone, A. Hussain, and F.C. Morabito, "A novel multi-modal machine 
learning-based approach for automatic classification of EEG recordings in dementia," 
Neural Networks, vol. 123, pp. 176–190, 2020, doi: 10.1016/j.neunet.2019.12.006. 

[46] O. Bălan, G. Moise, L. Petrescu, A. Moldoveanu, M. Leordeanu, and F. Moldoveanu, 
"Emotion classification based on biophysical signals and machine learning techniques," 
Symmetry, vol. 12, no. 1, p. 21, 2019, doi: 10.3390/sym12010021. 



[47] H. Yi, "Efficient machine learning algorithm for electroencephalogram modeling in brain–
computer interfaces," Neural Computing and Applications, vol. 34, no. 11, pp. 9233–9243, 
2020, doi: 10.1007/s00521-020-04861-3. 

[48] S. Afrakhteh, M.-R. Mosavi, M. Khishe, and A. Ayatollahi, "Accurate classification of EEG 
signals using neural networks trained by hybrid population-physic-based algorithm," 
International Journal of Automation and Computing, vol. 17, no. 1, pp. 108–122, 2018, doi: 
10.1007/s11633-018-1158-3. 

[49] E.M. dos Santos, R. San-Martin, and F.J. Fraga, "Comparison of subject-independent and 
subject-specific EEG-based BCI using LDA and SVM classifiers," Medical & Biological 
Engineering & Computing, vol. 61, no. 3, pp. 835–845, 2023, doi: 10.1007/s11517-023-02769-
3. 

[50] M. Lassi et al., "Classification of upper limb impairment in acute stroke patients using 
resting-state EEG markers and machine learning," in 11th International IEEE/EMBS 
Conference on Neural Engineering (NER), pp. 1–4, 2023, doi: 
10.1109/ner52421.2023.10123720. 

[51] F.A. Yassine and G. Abdelkader, "Hybrid CNN-SVM Classifier for Emotion Recognition 
using Brain Waves," 2024 4th International Conference on Embedded & Distributed 
Systems. Published (2024). doi: 10.1109/EDiS63605.2024.10783403 


