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Abstract
The progress and advances in the field of Artificial Intelligence have significantly contributed to solving complex
challenges. The AI community is currently focusing on the adoption of generative models to accomplish tasks
such as text and code generation, as well as developing chatbots and virtual assistants for customer service. In this
paper, we aim to determine whether a generative approach can effectively serve its purpose in the semiconductor
manufacturing domain, specifically in the classification of defect wafer maps. Recognizing the correct signature
during this step allows engineers to react promptly and take appropriate countermeasures to prevent the diffusion
of defects in subsequent manufacturing steps, thereby increasing the yield and quality of the final product. To
this end, we compared classical ML techniques, DL approaches, and VLM applications to classify defects in wafer
maps. The results are discussed, and relevant highlights are presented to identify use cases where a generative
approach can drive the digital transformation of the manufacturing process. Finally, conclusions are drawn, and
potential future scenarios are outlined.
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1. Introduction

The manufacture of silicon chips is the cornerstone of this century’s digital transformation, enabling
new frontiers in fields such as automotive, robotics and artificial intelligence. In this sector, it has become
essential to maximize productivity to satisfy growing market demand and meet specific quality standards
for the devices produced. The intricacy of semiconductor manufacturing is thoroughly described in the
second chapter of this book [1] for modeling and analysis of semiconductor wafer fabrication facilities.
Defectivity is identified as one of the core processes in chips production. It involves a series of complex
steps for identifying any significant physical defect that can impact the yield of a silicon Wafer, and
consequentially of the Wafer batch, technically defined as Lot. Defectivity control originated as a process
in which the main actors were the inspection equipment and the operator, known as the defectivity
engineer. During the manufacturing flow traversed by the lot, the production line includes several
defectivity inspection steps where all the wafers within a lot, are scanned to verify if the previous
equipment and processes introduced flaws critical for any die on the wafer. Defectivity engineers are
responsible for analyzing the inspection results. Until a few years ago, their job involved manually
reviewing each inspected wafer on a digitally plotted map, classifying the most significant defects found
on the wafer map, and identifying any specific patterns.

To elaborate further, a wafer could be classified as Random if defects are randomly distributed across
its surface, reflecting the state of a regular production chain where, for example, dust can be the cause
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of sparse defects. As another example, during polishing or photolithography phases the wafer can
be affected by the concentration of defects in a particular region of the surface, in addition to the
noise generated by random defects. When the resulting pattern can be assigned to a specific signature
class (properly performing Wafer Map Classification), engineers can take immediate actions, such as
holding the lot, stopping a machine, and generally reducing production waste as much as possible.
Manually performing Wafer Map classification is expensive in terms of both time and resources, and it
is highly dependent on the human experience. These are the reasons that supported the introduction
in the industrial ecosystem of the Automatic Wafer Classification (AWC) process, where machines can
substitute, or at least reduce, the human intervention.

To enhance AWC, several image processing techniques, machine learning or deep learning algorithms
have been analyzed and then applied in the industrial field [2, 3]. Indeed, Batool et al. [4] conducted
a systematic literature review collecting approaches and methods applied to classify and recognize
defect patterns, including standard machine learning approaches [5, 6], autoencoders (AE) [7, 8], and
generative methods such as the Generative Adversarial Networks (GAN) [9, 10]. While these methods
are now widely used in the semiconductor industries to make defectivity recognition, research-and-
development to enhance the process remains an open-ended challenge. On the grounds, and following
the wave of the Generative AI era, the aim of this paper is to show and determine whether a generative
approach based on the adoption of large language models (LLMs), or as in this case, visual language
models (VLMs), can make a significant difference in the semiconductor scenario. To avoid misleading
contexts where a generative approach is proposed as a panacea for all needs (one-size-fits-all problem),
it is important to identify when and where it should be used. The advantages of generative models
based on LLMs or VLMs are evident to all. However, it is crucial to understand the appropriate contexts
and situations for their recommended usage. In this work, given a specific context, we show how
machine learning approaches, deep learning methods, and visual language models strive. To make
a comparative study, we selected as VLM the open model named PaliGemma [11], that is based on
the models of the Gemma family (outstanding models for a large variety of open-world tasks) [12],
and is designed following the PaLI architecture (state-of-the-art architecture for challenges like Visual
Question Answering (VQA) [13], Language Understading, and Image Captioning) [14]. It is important
to notice that the purpose of this paper is not to identify the top-performing visual language model
compared to other VLMs or LLMs. Rather, the goal is to compare artificial intelligence techniques
using state-of-the-art models to demonstrate which strategy is most effective depending on the given
manufacturing context and business requirements.

In summary, this paper investigates the following research question: “Generative AI is a hot topic,
but what is the actual potential of Visual Language Models when applied to the Defect Wafer Map
Classification task?”.

The remainder of the paper is structured as follows: the description of the leveraged datasets,
together with the definition of our proposed methods for Defect Wafer Map Classification, are reported
in Section 2. Outcomes of the experimental phase is reported in Section 3. Finally, in Section 4, we draw
our conclusions and we suggest some potential future improvements.

2. Materials and Methods

2.1. Datasets Overview

In this work, we used two different datasets concerning semiconductors industry. Both are publicly
available: WM811K [15, 16] and WMPR [17]. Datasets description is reported below.

2.1.1. Dataset 1: WM811K

WM811K is one of the largest known wafer map dataset available to the public [15]. It is used primarily
for research in the field of semiconductor manufacturing, for enabling the exploration of machine
learning methods for defect pattern recognition and classification. As its name is suggesting, it contains



(a) WM811K (b) WMPR

Figure 1: Typical wafer maps for any class in datasets (a) WM811K, and (b) WMPR.

811,457 wafer maps, defined as a 2D representation of a semiconductor wafer. In other words, wafer
maps are represented as a single channel image with 3 possible values: 0 is the background (area external
to the wafer), 1 is identifying good dies on the wafer, and 2 the defective ones, instead. WM811K provides
high variability in wafer maps size, as there are 632 different sizes ranging from 6×21 to 300×202
pixels.

WM811K is also including labels for 8 defect types. The list of the defects, together with their
count percentage, is the following: Edge-Ring (37.9%), Edge-Loc (20.3%), Center (16.8%), Loc (14.1%),
Scratch (4.7%), Random (3.4%), Donut (2.1%), Near-full (0.6%). As can be seen, distribution of the
defect classes is skewed and high unbalanced. However, even if the dataset counts 811,457 wafer maps,
only the 3% of them is actually labeled with one of the 8 before mentioned classes. In our benchmark,
for validation purpose, we will leverage this reduced labeled portion of WM811K, that is counting
25,519 labeled wafer maps. An example of typical wafer maps for this dataset is shown in Figure 1(a).

2.1.2. Dataset 2: WMPR

WMPR is another wafer map dataset available to the public [17], similar to WM811K. Its name stands
for Wafer Map for Pattern Recognition1. As in WM811K, wafer maps are represented as a single channel
image with 3 possible values: 0 is the background, 1 is identifying good dies on the wafer, and 2 the
defective ones, instead. Wafer maps size is the same for all the images in the dataset, set to 51×51
pixels.

Originally, WMPR was tought for addressing Mixed-Type Defect Patterns in wafer maps. Indeed,
authors included up to 29 classes with multiple defects. However, for the scope of our work, and for
enabling a coherent comparison with WM811K, we focused only of the single-type defect classes, which
are the same defined previously in WM811K. The list of the defects, together with their count percentage,
is the following: Edge-Ring (14.3%), Edge-Loc (14.3%), Center (14.3%), Loc (14.3%), Scratch (14.3%),
Donut (14.3%), Random (12.3%), Near-full (1.9%). Distribution of the defect classes is more balanced
than WM811K, but there are two classes (Random and Near-full) with lesser samples than the other
ones. The dataset counts 7,015 wafer maps with a single defect. An example of typical wafer maps for
this dataset is shown in Figure 1(b).

2.2. Methods Overview

In this work, we compared several classification approaches with the main purpose of assessing the
potential impact of GenAI on the Defect Wafer Map Classification task. We designed a benchmark for
this task, where we compared methods based on: pure Machine Learning (ML), Deep Learning (DL),
and GenAI-Visual Language (VLM) models. The comprehensive list of all the benchmarked models is
reported in Table 1.
1Note that Wang et al. [17] did not specifically named the dataset as WMPR, but for simplicity we just called it in this way.



Table 1
Benchmarked models for Defect Wafer Map Classification.

ML
Machine Learning

DL
Deep Learning

VLM
GenAI – Visual Language Models

XGBoost [18]
LightGBM [19]

Logistic Regression
Random Forest
Decision Tree

SimpleNet [20]
VGG16 [21]
ResNet [22]

PaliGemma-3b-pt-224 [11]
PaliGemma-3b-pt-448 [11]
PaliGemma-3b-pt-896 [11]

(a) Region Density (b) Radon

Figure 2: Examples of features based on (a) Region Density and (b) Radon, in WMPR.

2.3. Data Preprocessing

Accordingly to the different classification methods described in Section 2.2, we defined proper prepro-
cessing steps, as described below.

2.3.1. ML Preprocessing

For Machine Learning based classification, we followed the features extraction preprocessing initially
thought for WM811K [15, 16]. Specifically, it consists of three main feature categories:

• 13 Region Density Based Features, defined dividing the wafer map into 13 not-overlapped regions
and then computing fail density of each region.

• 40 Radon Based Features, defined generating a 2D representation of the wafer map applying
the Radon Transform, and computing the so called sinogram. For handling possible different
wafer map size, Radon Transform values are further processed through a cubic interpolation to
obtain fixed dimension feature values for row mean and row standard deviation from sinograms.
For both row mean and row standard deviation, the dimension of this resampling is fixed to 20
(giving a total of 40 Radon Based Features);

• 6 Geometry Based Features, defined identifying the most salient area (i.e., the area in the wafer
map with the highest amount of adjacent defects), and then computing geometrical and statistical
features like region area, perimeter, length of major axes, length of minor axes, solidity and
eccentricity.

Thus, each wafer map will be processed extracting a total of 59 visual features, that can be used for
training ML based classification models. Examples of these preprocessed features for WM811K can be
retrieved directly from the dataset references [15, 16], while, for WMPR wafer maps previously shown
in Figure 1(b), some examples are given in Figure 2.



2.3.2. DL Preprocessing

For Deep Learning based classification, in order to make homogeneous wafer maps in both WM811K and
WMPR, we applied a rescaling of all the wafer maps to the fixed size of 448×448 pixels (interpolating
with Nearest modality, for avoiding to introduce non-binary values in the images). We choose this
resolution as it is higher than any image in both datasets. We removed from the datasets the concept of
background level (i.e., pixel values equal to 0), remapping good dies from 1 to 0, and defective dies from
2 to 1. Through this preprocessing for Deep Learning based methods, we ensured that same resolution
is adopted for both the benchmarked datasets, and that input layers of all the trained Convolutional
Neural Networks could be configured similarly in terms of height, width and number of channels for
input images.

2.3.3. VLM Preprocessing

For VLM based classification, we leveraged three pretrained (pt) versions of PaliGemma-3b, namely: pt-
224, pt-448 and pt-896, where the version number indicates which was the image size used for pretraining
a specific model [11]. Thus, we prepared rescaled wafer maps of WM811K and WMPR to 224×224,
448×448, and 896×896 pixels, for each PaliGemma model, respectively. As done in Section 2.3.2, we
interpolated with Nearest modality. Moreover, since PaliGemma is leveraging a dynamic range within
[−1,1], we remapped binary values of our wafer maps accordingly.

Finally, we preprocessed each dataset for having the expected structure for fine-tuning PaliGemma:
[text, image, suffix]. In our work, text is always equal to “Which defect do you see in this wafermap?”, and
it represents the textual query made by the user when prompting the VLM for the task of VQA [13].
For what is concerning the other two fields, image is the binary representation of the rescaled wafer
map, and suffix is the label defining the defect class of the wafer map.

3. Experimental Results

Our experiments were executed on a Standard_NC24ads_A100_v4 Azure virtual machine, equipped
with 24 CPU cores, and one A100 80GB PCIe GPU card. Experiment Settings and Experiment Outcomes
are reported below.

3.1. Experiment Settings

In our experiments, we splitted our datasets with a ratio of 60/20/20 percentage for Training, Validation
and Test Sets, respectively. Then, a K-Folding Cross Validation was applied with 𝐾=4. Any split and
fold are ensured to be stratified, in order to have always the same proportion of defect classes. For
what is concerning the benchmarking of ML-based models, we leveraged the AutoML feature available
on Databricks, a cloud data analysis platform2. A Grid-Search for Fine Tuning the Hyper-parameters
was conducted for all the methods. We set meaningful ranges for DL and VLM methods, while for
ML methods we leveraged automatic Grid-Search through AutoML. Finally, PaliGemma models were
fine-tuned with Parameter Efficient Fine Tuning (PEFT) and Quantized Low Rank Adapters (QLoRA),
configured with quantization at 4 bits and rank set to 8 [23].

3.2. Experiment Outcomes and Discussion

Outcomes for Defect Classification Benchmark are shown in Table 2. The performances of the trained
models are compared accordingly to the F1-Score computed over the Test Set (that is always the same
for each fold). Since we applied K-Fold Cross Validation, we reported Mean ± Standard Deviation of
F1-Score over the 𝐾 defined folds, together with the best (the maximum) F1-Score. In Table 2, Training
Time and the most important Hyper-parameters for the best models are also shown.

2https://docs.databricks.com/en/machine-learning/automl/index.html (Last Visited on September 2024)



Table 2
Experimental Results for Defect Classification Benchmark. Best performances for Model Type is
highlighted in bold, while overall best performance per dataset is also underlined. GPU was leveraged
for VLM and DL models, while ML were executed on CPU. Training Time is reported accordingly to
GPU or CPU usage.

F1 Score (%) Train
Dataset Type Model Mean Best Time Hyper Params for Best Model

WM811K

VLM
PaliGemma-3b-pt-224 94.21(±0.19) 94.42 ∼ 25ℎ LR: 1e-4, Epochs: 15 Batch: 1
PaliGemma-3b-pt-448 94.15(±0.20) 94.34 ∼ 35ℎ LR: 1e-4, Epochs: 15, Batch: 1
PaliGemma-3b-pt-896 94.17(±0.22) 94.36 ∼ 120ℎ LR: 1e-4, Epochs: 15, Batch: 1

DL
SimpleNet 77.48(±0.75) 78.44 ∼ 5𝑚 LR: 1e-5, Epochs: 50, Batch: 10
VGG16 91.16(±0.50) 91.85 ∼ 41𝑚 LR: 1e-5, Epochs: 20, Batch: 10
ResNet 90.75(±0.52) 91.53 ∼ 22𝑚 LR: 1e-4, Epochs: 40, Batch: 10

ML

XGBoost 88.52(±4.38) 91.91 ∼ 13𝑚 LR: 5e-1, N_Trees: 497,MaxDepth: 10
LightGBM 75.34(±20.23) 91.36 ∼ 20𝑚 LR: 1e-1, N_Leaves: 113, N_Trees: 23
Logistic Regression 87.08(±2.31) 88.55 ∼ 1𝑚 C: 71, Mode: multinomial
Random Forest 45.99(±15.95) 71.24 ∼ 4𝑚 N_Trees: 426, MaxDepth: 6,MinSplit: 8e-2
Decision Tree 60.73(±5.25) 68.93 ∼ 2𝑚 MaxDepth: 5,MinSplit: 1e-1,MinLeaf: 5e-2

WMPR

VLM
PaliGemma-3b-pt-224 98.96(±0.24) 99.24 ∼ 7ℎ LR: 1e-4, Epochs: 15, Batch: 1
PaliGemma-3b-pt-448 98.91(±0.19) 99.07 ∼ 10ℎ LR: 1e-4, Epochs: 15, Batch: 1
PaliGemma-3b-pt-896 99.12(±0.26) 99.46 ∼ 46ℎ LR: 1e-4, Epochs: 15, Batch: 1

DL
SimpleNet 81.66(±2.66) 85.57 ∼ 1𝑚 LR: 1e-4, Epochs: 5, Batch: 10
VGG16 98.33(±0.55) 98.96 ∼ 21𝑚 LR: 1e-5, Epochs: 10, Batch: 10
ResNet 98.62(±0.42) 99.05 ∼ 17𝑚 LR: 1e-4, Epochs: 20, Batch: 10

ML

XGBoost 98.35(±1.21) 99.28 ∼ 4𝑚 LR: 2e-1, N_Trees: 463,MaxDepth: 2
LightGBM 84.82(±25.58) 99.00 ∼ 6𝑚 LR: 1e-1, N_Leaves: 644, N_Trees: 643
Logistic Regression 94.52(±15.66) 98.58 ∼ 2𝑚 C: 5e-2, Mode: multinomial
Random Forest 44.33(±28.22) 94.73 ∼ 2𝑚 N_Trees: 272, MaxDepth: 4,MinSplit: 4e-2
Decision Tree 55.38(±25.44) 85.16 ∼ 2𝑚 MaxDepth: 5,MinSplit: 7e-2,MinLeaf: 6e-2

Starting our discussion from outcomes on WM811K, we can see that the best proposed performing
models per model type (VLM, DL and ML) are PaliGemma-3b-pt-224, VGG16 and XGBoost, respectively.
They are tight each other in terms of performances, reaching F1-Score values higher than 91% in the
best 𝑘 fold, improving from 81% of Wu et al. [15]. In particular, PaliGemma models reach the highest
F1-Scores (94.42% in the best case). The three available resolution settings for PaliGemma have low
impact on final performances, but heavy impact in terms of Training Time, particularly if compared
with the other methods: fine-tuning a VLM on GPU requires hours, while training a Convolutional
Neural Network (still on GPU) or even a ML model from scratch (in CPU) with WM811K requires just a
bunch of minutes (and sometimes seconds!). Indeed, this is a key-finding: PaliGemma can be really
powerful if fine-tuned, and looks capable of addressing the Defect Wafer Map Classification task better
than DL and ML models. Finally, among the Cross-Validation performances, VLM and DL models are
more stable around the best performances (that is, low F1-Score Standard Deviation values), while ML
models tend to higher variability.

When assessing how well PaliGemma performed on WMPR, we can draw similar conclusions.
Considering that wafer maps in WMPR always have a native size of 51×51 pixels, the three available
resolution settings for PaliGemma were already expected to have low impact on final performances.
Indeed, they are similar each others. Similarly to WM811K, PaliGemma performed slightly better than
the best DL and ML models. Again, there is a considerable overhead in terms of required Training Time
for fine-tuning PaliGemma. Based on the specific manufacturing business need, the trade-off between
required Training Time and performances may justify costs related to higher computational time and
resources necessary for enabling VLM fine-tuning.

The drill-down with respect to each defect class in both WM811K and WMPR is shown in Figure 3,
accordingly to the best models discussed before and reported in Table 2. Generally, the most complex
class to be recognized is Near-full, often confused with Random. For WM811K, Donut and Scratch are
also challenging classes, while for WMPR, Edge-Ring and Edge-Loc are often confused between each
other (indeed they look similar, as visible in Figure 1(b)).



Figure 3: F1-Score for each defect class in WM811K and WMPR, accordingly to the best identified model for
VLM, DL and ML Models (refer to Table 2).

4. Conclusions

Defect identification is one of the core processes in semiconductor manufacturing. It involves a series
of complex steps to identify every significant physical defect that can affect the yield of a silicon wafer.
Manual inspection on the wafer map is expensive in terms of both time and resources, and is highly
dependent on human experience. These are the reasons behind the introduction of Automatic Wafer
Classification (AWC) into the industrial ecosystem, where machines can replace or at least reduce
human intervention.

Given the context, in this work we made a comparative study among machine learning approaches
(ML), deep learning methods (DL), and visual language models (VLMs). The main purpose of this
paper was not to identify the top-performing VLM model compared to other VLMs. Rather, the goal
was to compare artificial intelligence techniques using state-of-the-art models to demonstrate which
strategy is most effective depending on the given manufacturing context and business requirements.
We benchmarked several models on two publicly available datasets: WM811K [15] and WMPR [17].
For both datasets, VLM, ML and DL models got similar performances. In particular, the selected VLM,
PaliGemma, demonstrated to be really powerful if fine-tuned, and capable of addressing the Defect
Wafer Map Classification task better than DL and ML models (+2.5% and +0.2% F1-Scores for WM811K
and WMPR, respectively). However, fine-tuning PaliGemma on GPU required hours, a Training Time
significantly higher if compared to DL and ML, that instead requires minutes or even few seconds.
Driven by the manufacturing business, balancing between the required training time and performances
may justify the costs associated with the increased computational time and resources needed for
enabling VLM fine-tuning and reaching a slightly higher F1-Score. In some industrial scenarios, even a
+0.1% of improvement can be crucial.

As next steps, we are planning to extend the presented benchmark adding other VLMs, like Florence-
2 [24]. We also planned to address the open-set issue in defect classification. Indeed, it cannot be
ensured that all the classes identified in the dataset used for training the classification models will
remain the same. The root causes that brought to a defect can be many (i.e., mechanical issues, human
factor, chemical or electrical reason, and even catastrophic events). Thus, new defects may appear over
time when performing inference on the deployed classification models. We will investigate how to



endows our AI system to be able to perform continuous model retraining when an unknown defect is
discovered to promptly react if the unknown model is impacting the quality and the yield.
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