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     Abstract
The aim of this paper is twofold: first, to explore the relationship between Neural Language Models (NLMs) 
and  the  Free  Energy  Principle  (FEP),  and  second,  to  suggest  that  NLMs,  as  undesigned  cognitive 
architectures  seen  through  the  lens  of  FEP  and  Active  Inference  (AIF),  can  be  considered  potential  
candidates for the development of AI architectures that promote long-term sustainability. We argue that 
NLMs can be viewed as “undesigned cognitive architectures”, that reflect principles of cognitive efficiency 
and resource optimisation.  While NLMs were not intentionally designed to model cognition, they share 
significant features with cognitive architectures rooted in the FEP and AIF. These AI systems use generative 
models that optimise tasks such as language understanding and generation by minimising prediction errors. 
By aligning NLMs with the FEP and AIF, we show how these models contribute to sustainable AI by 
balancing performance, transparency and resource use. We also highlight how, despite their passive nature, 
NLMs share core goals with AIF systems, in particular the minimisation of uncertainty. Specifically, the 
structure of the paper is as follows: Section 1 introduces the concept of undesigned cognitive architectures, 
Section  2  explores  the  relationship  between  FEP,  AIF  and  NLMs.  Following,  Section  3  focuses  on 
sustainability considerations, and lastly, Section 4 draws conclusions.
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1. Artificial Systems as Cognitive Architecture

The processes underlying human cognition over the last century have been addressed by artificial 
intelligence (AI) in an attempt to provide cognitive science with an artificial foundation through 
which the mind can be studied more thoroughly [1]. This collaboration has led to various attempts 
[2], and in this regard, the concept of Cognitive Architecture (CA) [3] emerged precisely with the 
intention of creating a solid foundation for studying the cognitive processes of the human mind 
with the help of AI. The goal of unifying human cognitive functions within a single architecture has 
distinguished CA studies from other AI research, as they aim to capture the various forms of human 
intelligence, which today, with the advent of Neural Language Models (NLMs), is referred to as 
Artificial General Intelligence [4]. Historically, research in this area has been guided by the use of 
relatively specific domains, such as vision or language, where the abstraction and simulation of 
underlying system mechanisms could be emulated and studied through an artificial surrogate. The 
opportunity now presented by Deep Learning is to leverage artificial artifacts suitable for studying 
human cognition, with NLMs [5][6] appearing as ideal candidates for this purpose. Even though the 
nature of the Transformer structure [7] closely tied to language processing and was not specifically 
designed with the goal of simulating human cognition. Incorporating this new type of AI within an 
unconventional structure that largely respects the principles of CA [6][7][8] could be seen as the 
creation of a kind of “undesigned” cognitive architecture. The criteria that the CA of an intelligent 
system must possess to be considered as such, involve the presence of certain characteristics [9]
[10], which, according to our proposal, albeit with some contingencies, are part of the abilities 
demonstrated by NLMs when performing various tasks typically used to study human cognitive 
skills [11]. Two fundamental aspects to start with are the presence of recognition ability and 
decision-making (DM). The criterion of recognition in NLMs, i.e., the ability to relate knowledge 
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and be able to infer the correct patterns between agent and object and appropriately categorize 
situations and events,  has been tested in various studies  [12][13].  For  example,  Jin Han and 
colleagues [14] showed how models from the OpenAI family demonstrate property induction, 
extending the properties of some categories to others in particular situations when certain elements 
allow for sharing the same properties and the context is appropriate. Regarding DM ability, that is, 
making appropriate choices and selecting what is considered the best alternative among those 
offered in the environment in which one operates, Thilo Hagendorff and colleagues [11] highlight 
the  adoption of  “machine intuition,”  or  the  emergence of  intuitive  responses  even in  hostile 
contexts, by GPT-3.5 in a battery of tests designed to investigate intuitive DM in humans. The two 
aspects just mentioned, while important, are not sufficient on their own to achieve a status of ability 
to  satisfy  a  CA:  a  broader  range of  criteria  needs  to  be  fulfilled.  Two other  aspects  involve 
perception and situation assessment, abilities largely observed in the new Multimodal NLMs [15], 
where even the purely linguistic ones demonstrate a considerable ability to reason and navigate in 
the surrounding environment [16][17], even based on purely linguistic descriptions. Being able to 
interact in the environment is not enough. Several studies show that NLMs can also solve complex 
problems requiring analogical reasoning [18]; tackle tasks that require problem-solving ability 
using resources external to the system [16]; and exhibit the ability to reason about the behavior of 
other  intelligent  agents  operating in  their  environment  through the demonstration of  higher 
cognitive functions such as Theory of  Mind [19].  Finally,  it  is  worth noting that that in the 
realization of a CA, especially considering the studies on Free Energy Principle (FEP) and Active 
Inference (AIF), some criteria more closely related to the issue of embodiment [20], although largely 
satisfied by current Transformer architectures applied to language processing, could, in any case, be 
completely exhausted in the broadest sense of the term in a very short time, given the rapid 
progress in the implementation of NLMs in the field of robotics [21][22][23]. 

Building on this foundation, the purposes of this paper are to investigate the relationship among 
NLMs, FEP and AIF, and to argue that NLMs as undesigned CA under FEP and AIF offer a model for 
sustainable  AI.  Indeed,  by  minimizing prediction errors,  NLMs reflect  principles  of  cognitive 
efficiency that are central to FEP and AIF, making them not only powerful in language tasks but also 
resource-efficient and adaptable to various contexts. For these aims, in the next two sections we 
examine the analogies and differences between NLMs, FEP, and AIF and consider the sustainability 
of NLMs as cognitive architectures, discussing their resource efficiency and adaptability.

2. Neural Language Models in Energy Saving Mode

Having suggested that NLMs can be considered as undesigned CA, we now examine how these 
systems share key features with the FEP and AIF. Indeed, both FEP and AIF emphasise efficiency 
and prediction within complex systems, a concept that is reflected in the way NLMs operate. 
However, there are important differences between NLMs and these frameworks.

The FEP, developed by Karl Friston, is a general principle which states that biological systems – 
both individuals and more complex systems such as communities and societies – exist because 
they can maintain the equilibrium between themselves and the environment by minimising free 
energy [24]. A practical realisation of FEP is the mechanism of predictive processing (PP), i.e., the 
process  by which the  brain minimises  free  energy or  surprise.  Indeed,  the  brain minimises 
prediction errors, namely, signal mismatches between the predicted input and the input actually 
received from the environment [24]. This minimisation can be achieved in a number of ways: by 
immediate inference about the hidden states of the world, which may explain perception; by 
updating a global world model to make better AI predictions, which may explain learning; and 
finally, by acting to sample sensory data from the world that matches the predictions [25]. PP has 
been advocated as a unified account for perception, action and cognition and can be described as 
an approximate Bayesian inference process based on Gaussian inference [25]. This means that in 
order to reduce surprise or uncertainty about their next states, systems use the information gained 
from previous interaction with the environment, using generative models to predict sensory 
inputs and minimise free energy [24]. The free energy minimisation is achieved through AIF and 
internal  autoregulation,  which ensures  a  constant  updating  of  information gained from the 
environment,  leading to  accurate  predictions  of  future  next  states  [24][26].  In  other  words, 
through AIF, an organism (let’s call it an agent) minimises free energy by updating its model of the 



world through observation and inference about the states of the world itself, as well as through 
action. This means that an agent actively modifies its own environment or its behaviour – which is 
defined by its actions – in order to make the environment – and the future – more predictable. In 
summary: FEP is a general theoretical framework that describes how single organisms or more 
complex  systems  minimise  uncertainty  in  order  to  maintain  their  states.  PP  is  the  specific 
mechanism by which the brain reduces this uncertainty, as well as an operational implementation 
of the FEP. AIF is the process by which the organism/system acts to reduce uncertainty by 
integrating perception, action and learning.

As emphasised above, PP operates as an approximate Bayesian inference process, as the brain 
uses predictions based on prior experience to minimise the error between predicted inputs and 
actual  sensory  data.  And  this  ongoing  process  of  prediction  error  correction  is  central  to 
maintaining cognitive efficiency and reducing uncertainty about  the environment.  Similarly, 
NLMs employ pre-trained generative architectures that perform tasks such as speech generation, 
comprehension, and context prediction by minimising errors in predicting next word sequences. 
Although NLMs are not explicitly designed to model uncertainty in the same way as biological 
systems, they exhibit behaviour consistent with PP. Indeed, just as the brain adjusts its predictions 
based on incoming sensory data to minimise prediction errors, NLMs adjust their word predictions 
based on large amounts of prior data to produce contextually appropriate output. Although their 
mechanism is based on statistical learning rather than explicit Bayesian inference, the overarching 
principle of reducing prediction error is similar to the goal of PP. Thus, although NLMs are not 
explicitly designed to minimise uncertainty in the same way as systems based on FEP, they exhibit 
behaviours consistent with the principles of error minimisation and efficient prediction inherent 
in PP. In contrast to the passive nature of NLMs, AIF systems engage in active exploration of the 
environment,  constantly  updating  their  predictions  based  on  interactions  with  the  world. 
Giovanni Pezzulo and colleagues [27] have argued that AIF generative models are characterised by 
being active,  i.e.,  they incorporate action as  a  core mechanism for  reducing uncertainty.  In 
contrast, NLMs are generative models that operate passively – they generate predictions based on 
pre-existing data rather than through interaction with a dynamic environment. This difference is 
crucial:  while  NLMs are  powerful  in  terms of  language  processing,  they lack  the  adaptive, 
environment-driven characteristics  inherent  in  the  AIF  model.  Thus,  the  primary difference 
between NLMs and FEP and AIF models lies in their interaction with uncertainty. NLMs are 
trained on static data and passively generate responses based on previous inputs, whereas AIF 
models  actively  seek  to  minimise  uncertainty  through  dynamic  interaction.  Despite  these 
differences, both systems share the overarching goal of minimising error, which makes NLMs 
conceptually  related  to  FEP  and  AIF  in  their  prediction  mechanisms.  In  terms  of  practical 
implementations  of  AIF,  they  are  particularly  valuable  in  uncertain  environments,  such  as 
robotics, where estimation, adaptive control and human-robot collaboration rely on constant 
updates to predict and adapt based on sensory input. For example, models using PP have been 
applied to enable robots to learn and infer their body configurations from multisensory data [28]. 
In robotic applications, AIF-based systems have been shown to use active vision, selecting the 
most informative viewpoints to reduce uncertainty in dynamic environments. This adaptability is 
particularly valuable in tasks where the distribution over the environment is not predefined, as 
seen in recent simulations where robotic agents choose actions based on expected free energy to 
optimise task performance [29].

AIF  models  also  promote  transparency  and  traceability,  making  DM  processes  more 
understandable and ethically accountable. Unlike more complex models, such as deep neural 
networks based on feedforward architectures,  AIF’s reliance on Bayesian networks provides 
clearer, more interpretable processes, improving accountability and fairness. This transparency 
ensures that stakeholders can trust the DM process and that the system’s actions can be easily 
traced, which is also a core principle of ethical AI [30]. In addition, AIF-based systems are highly 
adaptive, continuously updating and refining their models to respond to changing environments 
and contexts.  This dynamic approach makes DM processes more robust and context-aware, 
allowing systems to balance short-term and long-term objectives. This adaptability, combined 
with the transparency and continuous improvement of AIF, provides a strong foundation for the 
development of sustainable and accountable AI systems [31].

In summary, although NLMs and AIF models have several differences, both share the goal of 
minimising prediction error, which links them to the principles of FEP and PP. In particular, AIF-



based AI offers advantages in terms of accountability, transparency and sustainability, providing a 
robust framework for building systems that actively reduce uncertainty and dynamically adapt to 
their environment.

3. Undesigned but Sustainable Cognitive Architectures

So far, we explored how NLMs can be considered as undesigned CA and examined the links 
between NLMs, the FEP and AIF. All that considered, now we analyse why NLMs can also be 
considered sustainable CA through the lens of AIF-based sustainable models.

Sustainability in AI is a multifaceted concept. It includes sustainability in terms of the goals of 
the technology – such as creating tools that address sustainability challenges – and sustainability 
in terms of resource efficiency, both computationally and energetically [32]. There is also the 
dimension of social sustainability to consider: socially sustainable AI is also ethical AI, ensuring 
accountability and transparency [30]. AIF models promote transparency by making DM processes 
traceable from start to finish, allowing stakeholders to understand and trust these systems. In 
addition, AIF models are highly adaptable, dynamically adjusting to changing environments and 
requirements, which is critical in real-world scenarios where conditions can change rapidly. This 
adaptability results in DM processes that are more resilient and context-aware, rather than driven 
solely by immediate benefits. The continuous learning and updating capabilities of AIF further 
enhance their predictive capabilities, enabling these systems to refine strategies and optimise 
performance over time. AIF models are also equipped to operate across multiple time scales, 
balancing short-term and long-term objectives to improve overall system efficiency [31].

NLMs  align  with  these  sustainability  principles  through  their  inherent  versatility  and 
efficiency. Unlike traditional AI systems designed for specific tasks, NLMs are general-purpose 
models that can handle a wide range of applications – from text generation to translation – 
without requiring extensive retraining for each new task. This flexibility reduces the need for 
specialised models, saving both computational and human resources. The emergent capabilities of 
NLMs allow them to scale across domains, making them valuable tools for general problem 
solving, while maintaining a level of resource efficiency in line with sustainability goals. Once 
trained,  NLMs  operate  efficiently  across  multiple  tasks  with  minimal  additional  energy 
requirements, in contrast to the high cost of continuously retraining task-specific models.

Concerning practical examples of the relationship between FEP and AIF and NLMs, we can refer 
to medical applications: AIF has been employed to enhance the precision and contextual relevance 
of LLM responses, particularly in guiding the development of models that generate more accurate 
and contextually relevant results. For example, researchers have integrated AIF principles to 
enhance the efficacy of NLM-guided medical interventions, wherein models, informed by AIF, act 
as human therapists. The aforementioned systems comprise a “therapist agent” who responds to 
patients’ queries and a “supervisor agent” who assesses the veracity and dependability of these 
responses. This method employs AIF to iteratively minimise prediction errors and enhance the 
quality of NLM-generated advice in intricate medical scenarios, particularly in the context of 
conditions such as insomnia therapy [33].

Another interesting example lies in the field of education, where the combination of AIF and 
NLMs facilitates the simulation of more active and embodied learning experiences. NLMs can be 
incorporated into educational settings, such as Montessori classrooms, where the tenets of AIF 
inform active  learning.  In  this  instance,  LLMs are  employed to  facilitate  interactions,  assist 
students in formulating hypotheses, test them and reduce prediction errors. This hybrid approach 
emphasises exploration and engagement with material environments, in accordance with the 
predictive processing frameworks that drive human learning [34]. These examples illustrate how 
AIF  enhances  the  real-world  application  of  NLM by introducing  an  active,  feedback-driven 
process that aligns with human cognitive and interactive dynamics.

However,  we cannot neglect the sustainability challenges posed by NLMs, in particular the 
significant energy consumption during the initial training phase. As Joan Kwisthout and Iris van 
Rooij [35] note, systems based on Bayesian inference – including those aligned with FEP – become 



exponentially  more  computationally  demanding  as  the  number  of  variables  increases.  This 
complexity also affects NLMs, where large-scale models require significant resources. Mitigating 
this energy demand remains a critical challenge for the future development of sustainable AI. 
However, advances in hardware optimisation and more energy-efficient architectures can further 
reduce the environmental impact of NLMs training and contribute to the overall sustainability of 
these models.

Despite  these  challenges,  NLMs offer  a unique opportunity  for  advancing sustainable  AI 
through their flexibility and explainability in virtue of the opportunity to compare their abilities 
based on tests used to study human cognition. Generative models such as NLMs can be traced, 
making  their  decision  processes  more  interpretable  than  those  of  other  AI  systems.  This 
traceability fosters ethical accountability, which is a critical component of sustainability. In this 
way, NLMs represent a compelling intersection of efficiency, adaptability, and functionality, key 
elements of sustainable AI. All the above considered, although NLMs and AIF differ in their 
approach to handling uncertainty and interaction with the environment,  NLMs still  exhibit 
features that make them viable candidates for sustainable AI architectures. Their generality, 
resource efficiency, and potential for transparency position them as critical models for future AI 
development, balancing performance with sustainability goals.

4. Conclusions

In this paper, we have explored the conceptual parallels between NLMs, FEP, and AIF, considering 
NLMs as undesigned CA. Through an examination of their shared characteristics – such as 
prediction error minimization and resource efficiency – alongside their differences in interaction 
with the environment, we have argued that NLMs represent a unique form of undesigned CA that 
offers new perspectives on both artificial cognition and sustainability in AI. By their very nature, 
NLMs do not follow explicit cognitive designs, yet they exhibit emergent behaviours consistent 
with the principles of the FEP and AIF. These models show a remarkable ability to generalise 
across  tasks,  minimising  the  need  for  highly  specialised  architectures.  As  a  result,  NLMs 
inherently promote sustainability goals within AI by optimising the use of data, computation and 
energy. Their versatility,  coupled with resource-efficient operation,  reflects the adaptive and 
resilient characteristics required for long-term sustainability.  This analysis  suggests  that  the 
future of AI development should increasingly consider undesigned CA as viable pathways for 
creating systems that balance high performance with sustainable resource use.
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