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Abstract 
This paper presents a study on artificial intelligence (AI) models applied to extract visual saliency from images. In 

particular, the research assesses the accuracy of AI in replicating human-like attention mechanisms by 
comparing AI-generated saliency maps with eye movement data captured through eye-tracking 
technology. A case study is conducted to evaluate landing page engagement with viewers. Saliency 
maps of banners from 4 e-commerce landing pages are extracted with TranSalNet, an AI-based Visual 
Saliency model and compared to eye movements recorded with a webcam-based eye-tracking 
platform. Normalised Scanpath Saliency (NSS), Kullback-Leibler Divergence (KL-Div), and Area Under 
the Curve (AUC) metrics reveal AI models performing well in central regions of visual stimuli while 
exhibiting some false positives and false negatives in peripheral areas. The study offers insights into 
visual attention and e-commerce landing page assessment from a computational viewpoint.  

 

Keywords  
Artificial Intelligence, Visual Saliency, Eye Movements, e-commerce, landing page.1 

1. Introduction 

In recent years, artificial intelligence (AI) [1] has made significant advances in replicating 

human cognitive functions, particularly in visual attention. Visual saliency [2], a critical aspect of 

human visual perception, refers to the ability of the human visual system to selectively focus on 

specific regions within a scene based on their distinct features, such as colour, brightness, or 

contrast. This ability allows humans to efficiently navigate complex visual environments by 

directing attention to the most relevant or noticeable objects. Understanding and predicting 

visual saliency has compelling applications, from image recognition to enhancing user 

experiences in digital interfaces, including websites and mobile apps. 

 

Visual saliency prediction models have evolved from early biologically inspired approaches, 

such as Itti et al.'s saliency map model [3], to more sophisticated AI-based models that leverage 

deep learning to simulate human attention. These models attempt to predict the areas of an 

image or visual scene that likely capture human attention by analysing low-level features (such 

as edges, textures, and colours) and, in some cases, integrating higher-level cognitive elements, 

such as prior knowledge or task relevance. 

 

In e-commerce, understanding what captures users' attention is crucial for optimising 

website design and improving user experience [4]. With the growing complexity of digital 

interfaces, knowing how users interact with visual elements like product images, banners, and 

call-to-action buttons can significantly impact a platform's effectiveness in driving user 

engagement and conversions. Accurate visual attention prediction can help e-commerce sites 

optimise the placement of key elements, ensuring that users quickly find what they are looking 

for and are more likely to engage with the platform. 
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This paper investigates AI's capabilities in predicting human visual attention on e-commerce 

websites through a study that compares AI-generated saliency maps with human attention data 

captured via eye-tracking technology. Using TranSalNet [5], a state-of-the-art saliency prediction 

model, we evaluated how well the model replicates human attention across various e-commerce 

platforms, including Amazon, eBay, Shein, and Vinted. The study focuses on identifying key areas 

of user interest and examines the accuracy of the AI model in predicting attention on visually 

prominent and peripheral elements. 

 

This work aims to contribute to the growing field of AI-driven user experience optimisation 

by exploring the alignment between AI predictions and human attention patterns. The findings 

highlight the strengths and limitations of current AI models in saliency prediction and suggest 

areas for further refinement to capture the complexity of user interactions in digital 

environments. 

2. Related Techniques 

Visual saliency modelling techniques are typically grouped into bottom-up and top-down 

approaches, crucial in predicting where humans look in a visual scene. Bottom-up techniques 

rely on the inherent properties of the image itself, such as colour, contrast, and intensity, to 

determine which areas are more likely to attract attention. These stimulus-driven methods do 

not account for the observer's goals or prior knowledge. In contrast, top-down techniques 

incorporate higher-level cognitive processes, such as task relevance and user intent, influencing 

attention based on expectations and goals rather than purely visual cues. 

 

In early bottom-up models, such as the one proposed by Itti et al. [3], saliency is determined by 

combining different low-level features through centre-surround mechanisms. The model 

computes the Difference of Gaussian (𝐷𝑜𝐺) for intensity, colour, and orientation to detect 

regions of local contrast. This model assumes that areas of high contrast across these features 

are more likely to attract attention. The (𝐷𝑜𝐺) operation is represented as in equation 1: 

 

𝐷𝑜𝐺(𝑥, 𝑦) = 𝐺𝜎1
(𝑥, 𝑦) − 𝐺𝜎2

(𝑥, 𝑦)     (1) 

 

𝐺𝜎1
(𝑥, 𝑦) and 𝐺𝜎2

(𝑥, 𝑦) are Gaussian functions with standard deviations 𝜎1 and 𝜎2, respectively. 

This difference between the Gaussian functions enables the model to highlight high-contrast 

regions, typically areas that draw human attention. 

 

As research advanced, top-down approaches [6] were introduced to account for the observer's 

intent, task relevance, and context. These models incorporate feedback mechanisms that adjust 

saliency predictions based on high-level cognitive factors. For example, a user searching for a 

specific product in an online store will focus on elements such as product images, search bars, 

and filters, even if these elements are not the most visually salient according to a bottom-up 

approach. By integrating the observer's goals, top-down methods complement bottom-up 

processes and offer a more comprehensive understanding of attention. 

 

In addition to these foundational models, Hou and Zhang [7] introduced a novel frequency-based 

approach to saliency that operates in the frequency domain rather than the spatial domain. Their 

model suggests that the spectral residual, which captures unpredictable or irregular aspects of 

an image, is crucial in determining visual saliency. This approach uses the Fourier transform to 

separate an image's amplitude and phase components, focusing on the spectral residual to 



highlight areas that differ from the surrounding content. The saliency map is then generated 

based on this residual information (see equation 2): 

 

𝑆 (𝑥, 𝑦) = 𝐹−1(𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴(𝜔)) −𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴(𝜔)))    ∙  𝑒𝑖𝜙(𝜔)   (2) 

 

In equation 2 𝐹−1 denotes the inverse Fourier transform, 𝐴(𝜔) the amplitude spectrum of the 

image, and 𝜙(𝜔) the phase spectrum. The spectral residual, 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴(𝜔)) −𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐴(𝜔))   , 

captures the irregularities in the image that contribute to its saliency. 

 

The frequency-based approach can highlight unpredictable elements in an image, making it 

highly effective in identifying salient regions that traditional spatial-based methods may miss. 

As visual saliency research evolved, more sophisticated methods emerged, combining bottom-

up and top-down processes. The Graph-Based Visual Saliency (GBVS) model by Harel et al. [8] 

takes a global approach, representing an image as a fully connected graph where nodes 

represent different regions and edges are weighted by visual similarity. A random walker 

algorithm is applied to identify globally unique areas, offering a more holistic understanding of 

saliency that considers the image's overall structure. 

 

With the advent of deep learning, Convolutional Neural Networks (CNNs) [9] have dramatically 

improved saliency prediction by learning low-level and high-level features directly from data. 

These models combine the strengths of both bottom-up and top-down approaches. They use the 

stimulus-driven nature of bottom-up processes to detect contrasts and edges while leveraging 

high-level information such as object categories, context, and user goals to fine-tune saliency 

predictions. CNNs have proven effective in dynamic environments such as e-commerce 

platforms, where understanding user attention is critical for optimising design and enhancing 

user interaction. 

Tliba et al. [10] proposed SatSal (Self-Attention Saliency), an encoder-decoder deep learning 

model that leverages skip connections during decoding to account for high and low-level features 

from images. SAtSal also relies on convolutional self-attention modules connecting the encoder 

to the decoder branches.  

TranSalNet leverages dense connections and residual networks, which helps the model maintain 

spatial detail while reducing computational complexity. This approach allows the model to 

capture high-level semantic features (such as object categories) and low-level features (like 

colour and contrast), making it well-suited for complex, dynamic environments such as e-

commerce websites. 

In addition to the visual attention domain, saliency models can be used in many applications, 

such as image segmentation [11], video summarisation [12], image content enhancement [13], 

and automatic image cropping [14].  

 

 

 

 

 

 

 

 



3. Method and Materials 

In this study, we aimed to evaluate the performance of an AI model, TranSalNet [5], in 

predicting visual saliency on various e-commerce platforms by comparing its output with human 

eye-tracking data. The experiment involved 97 participants aged between 20 and 35, all with 

prior experience in online shopping. Each participant was asked to use Realeye.io eye tracking 

platform, that will present participants the chosen homepage images for a maximum of 4 seconds 

each. Each participant begins the experiment with a calibration process to ensure the eye tracker 

accurately records their gaze. The calibration involves having the participant look at a series of 

points on the screen to establish a baseline for their eye movements. Once calibrated, 

participants are shown a series of e-commerce homepage images for a maximum of 4 seconds 

each using the realeye.io eye tracking platform. This brief exposure period is designed to 

simulate the real-world scenario where users quickly scan a webpage to form an initial 

impression. 

 

These are the images shown to the participants:  

 

 
 

Figure 1: Amazon’s homepage 

 

 
 

Figure 2: eBay’s homepage 

 



 
 

Figure 3: Shein’s homepage 

 

 
 

Figure 4: Vinted’s homepage 

 

As shown in the images, the stimuli used in this experiment consisted of static images and 

dynamic content from each website's homepage, incorporating visual elements such as product 

listings, banners, call-to-action buttons, and navigation menus. These elements provided diverse 

visual content to test the model's ability to predict user focus in a real-world context. The eye-

tracking data was transformed into heat maps, representing areas of high user attention. The AI 

model’s predicted saliency maps were then compared with these heatmaps to assess the model’s 

accuracy. 

 

The TranSalNet model processes images to predict visual saliency by following a carefully 

structured pipeline. First, input images are preprocessed using padding and resizing to fit the 

required input size of 384x288 pixels. This step ensures consistency across different image 

inputs.  

The model architecture, which can be TranSalNet_Dense or TranSalNet_Res based on the 

defined flag, leverages dense connections and residual networks to extract hierarchical features 

critical for accurate saliency prediction. These features are then processed through the network, 

and the predicted saliency map is generated. 



After generating the saliency maps, they are compared to ensure a one-to-one analysis with 

eye-tracking data. The pipeline used in this study is illustrated in Figure 1, showcasing the steps 

from image preprocessing to final visualisation. 

 

Figure 5: TransalNet’s pipeline  

 

To evaluate the model’s performance, we employed five key metrics: Normalized Scanpath 

Saliency (NSS), Kullback-Leibler Divergence (KL-Div), Area Under the Curve (AUC), the 

Correlation Coefficient (CC) and the Similarity Index Measure (SIM).  

 

The Normalized Scanpath Saliency (NSS) metric was particularly important in assessing the 

correspondence between predicted saliency maps and the actual fixations recorded in the eye-

tracking data. Mathematically, NSS is calculated as: 

 

𝑁𝑆𝑆 =
1

𝑁
∑

𝑆(𝑥𝑖𝑦𝑖)−𝜇𝑆

𝜎𝑆

𝑁
𝑖=1      (3) 

 

where 𝑆(𝑥𝑖𝑦𝑖) represents the saliency score at the fixation point (𝑥𝑖𝑦𝑖), 𝜇𝑆 is the mean 

saliency score across the image, and 𝜎𝑆 is the standard deviation of the saliency scores. This 

metric essentially measures how much the predicted saliency values at fixated locations deviate 

from the mean saliency value, thus providing a direct way to evaluate the model’s accuracy in 

predicting human attention. 

In addition, the Kullback-Leibler Divergence (KL-Div) was used to assess the similarity 

between the predicted saliency distribution and the distribution of fixations recorded during the 

eye-tracking sessions. The formula for KL-Div is: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) 𝑙𝑜𝑔
𝑃(𝑖)

𝑄(𝑖)𝑖       (4) 

 

where 𝑃(𝑖) is the probability distribution of human fixations and 𝑄(𝑖) is the predicted 

saliency distribution. KL-Div measures how much the two distributions diverge from each other, 

with a smaller value indicating a better match between the model’s predictions and the human 

data. 

The Area Under the Curve (AUC) was employed as a general performance metric, evaluating 

the model’s ability to discriminate between fixated and non-fixated areas of the image. A high 

AUC score suggests that the model accurately identifies the regions of interest within the image, 

closely matching the human visual attention patterns observed through the eye-tracking data. 

Moreover, the Correlation Coefficient (CC) measures the linear correlation between the 

predicted saliency map and the observed eye-tracking data. A value of 1 indicates a perfect 

correlation, while a value of 0 indicates no correlation. The formula for CC is: 

 

𝐶𝐶 =  
∑(𝑃(𝑖)−𝑃̅)(𝑄(𝑖)−𝑄̅)

√∑(𝑃(𝑖)−𝑃̅)2 ∑(𝑄(𝑖)−𝑄̅)2
                                (5) 

 

where 𝑃(𝑖) and 𝑄(𝑖) represent the predicted and observed saliency values, respectively, and 

𝑃̅ and 𝑄̅ are the mean saliency values of the two distributions. 

 



The Similarity Index Measure (SIM) evaluates the similarity between the predicted and 

observed saliency maps. It compares the two distributions of saliency values, producing a score 

between 0 and 1, where 1 indicates a perfect match. The SIM is calculated using the following 

formula: 

 

𝑆𝐼𝑀 = ∑ min (𝑃(𝑖), 𝑄(𝑖))                           (6) 

 

where 𝑃(𝑖) and 𝑄(𝑖) represent the predicted and observed saliency distributions, 

respectively. 

 

4. Experimental Results 

In this experiment, we aimed to explore how effectively TranSalNet, an AI model designed for 

saliency prediction, could replicate human visual attention patterns when applied to e-

commerce websites. The central focus is to check how well the model performed in predicting 

areas of interest, such as product images, banners, and call-to-action buttons, which are critical 

elements in an online shopping experience. Using eye-tracking data as the ground truth, we 

compared the model's predicted saliency maps to actual user fixations, analysing performance 

across multiple platforms. Each e-commerce site presented different visual layouts, offering a 

variety of challenges for the model in identifying primary and secondary areas of user interest. 

 

Figure 6: Heatmap generated by the code for the Amazon homepage  

Table 1: Amazon’s Metrics 

AUC 0.79 

NSS 1.30 

KL-Div 0.00 

CC 1.00 
SIM 0.99 

 

 

The Amazon platform results showed an AUC of 0.79 and an NSS score of 1.30, indicating good 

predictive performance. The KL-Div score was 0.00, with a perfect CC of 1.00 and a SIM score of 

0.99≈1, confirming the model's reliability. The heatmap generated for Amazon highlighted 

product images and call-to-action buttons as the main focal points, indicating that the algorithm 



can capture key elements that attract users' attention. However, some less prominent areas, such 

as product description sections, were underestimated, suggesting the need for further 

optimisation for a more comprehensive detection of areas of interest. That means the saliency 

model's output accounts for some false negatives. 

 

Figure 7: Heatmap generated by the code for the eBay homepage  

Table 2: eBay’s Metrics 

AUC 0.87 

NSS 1.83 

KL-Div 0.00 

CC 0.99 

SIM 0.99 

 

In the case of eBay, the predictive saliency model achieved an AUC rate of 0.87 and an NSS 

score of 1.83, demonstrating high accuracy. The KL-Div score was 0.00, with a CC of 1.00 and a 

SIM score of 0.99≈1, underscoring the model's effectiveness in capturing users’ attention 

accurately. The heatmap generated for eBay showed good alignment with the central areas of 

the page, where the most viewed products are located. However, there are discrepancies in the 

peripheral regions and navigation sections, where the model's predictions do not fully match the 

eye-tracking data. That suggests that while the algorithm performs well for the main areas of 

interest, it may require improvements to capture the entire spectrum of user fixations, including 

secondary elements that could influence the browsing experience. 

 



 

Figure 8: Heatmap generated by the code for the Shein homepage 

 

Table 3: Shein’s Metrics 

AUC 0.82 

NSS 1.25 

KL-Div 0.00 

CC 1.00 

SIM 1.00 

 

For Shein, the predictive model achieved an AUC value of 0.82, indicating a high accuracy rate 

in distinguishing salient from non-salient regions. The NSS score was 1.25, showing a moderate 

alignment between the predicted saliency and actual user attention. Similarly, the KL-Div score 

was 0.00, the CC was 1.00, and the SIM score was 1.00, reflecting a substantial similarity between 

the predictive model and the eye-tracking data. The results reflected the quality of the predictive 

map, which revealed significant attention to product listings and promotional images, which are 

crucial elements for a fashion-focused e-commerce site. However, the predictive maps did not 

highlight some areas, such as search filters and navigation sections. That suggests that the 

algorithm could benefit from further optimisation to better capture the various visual 

preferences of users, especially in a dynamic context like fashion. 

 



 

Figure 9: Heatmap generated by the code for the Vinted homepage  

Table 4: Vinted’s Metrics 

 

 

 

 

 

 

 

Finally, for Vinted, the predictive saliency maps are well-aligned with the eye-tracking 

data in sections where user-generated content is displayed, such as product images uploaded by 

users. AUC reaching 0.95 and NSS scoring 3.36 indicate a strong correlation with the eye-tracking 

data. The KL-Div score remained at 0.0, while the CC was 0.99≈1, and the SIM score was 1.0, 

further validating the model's accuracy. However, some discrepancies emerge in areas with 

mixed content, where the model's predictions only partially align with the user fixation data. 

That indicates that while the algorithm effectively predicts the main areas of interest, it may 

require further optimisation to better process the complexity of mixed content. 

 

As observed, even though the algorithm used was not fine-tuned to capture the most salient 

parts of the sites, it still performed well by identifying the critical areas of interest. In fact, as we 

can see from these metrics, the high AUC and NSS scores and the perfect or near-perfect CC and 

SIM scores indicate that the models are highly effective in replicating actual user attention 

patterns. However, the moderate NSS scores for platforms like Amazon and Shein suggest that 

while the models perform well, there is still room for improvement in fine-tuning the predictions 

to better capture all nuances of user behaviour. That demonstrates the algorithm's robustness 

in highlighting essential elements, such as product images and call-to-action buttons, which are 

crucial for user engagement. 

 

The differences in the salient areas can be attributed to the diverse nature of the e-commerce 

sites analysed. Each site caters to different product categories and thus employs distinct site 

structures and design elements. For example, fashion-focused sites like Shein emphasise product 

listings and promotional images. In contrast, a marketplace like eBay may have a broader focus 

that includes search filters and navigation tools. 

 

AUC 0.95 

NSS 3.36 

KL-Div 0.00 

CC 0.99 

SIM 1.00 



These variations in site design and content emphasis naturally lead to differences in what is 

considered visually salient for users. Despite not being fine-tuned explicitly for each site, the 

algorithm's ability to adapt to these different contexts highlights its potential for general 

applicability across various types of e-commerce platforms. That underscores the importance of 

considering different product categories' unique characteristics and user behaviours when 

developing and optimising predictive saliency models.  

 

Moreover, I have analysed the results of the eye-tracking experiment. Fixation points, where 

the gaze is held steadily for around 200-300 milliseconds (Rayner, 1998), indicate areas of 

interest and attention, revealing which elements on the webpage attract the user's focus. 

Saccades, which are rapid movements between fixation points, help identify the scanning 

behaviour and how users navigate the visual information. The heatmaps obtained provide a 

detailed representation of user fixations on various e-commerce sites, offering a more 

comprehensive analysis of users' visual habits. 

 

Figure 10: Fixation points (blue circles) overlaid with saliency map for Amazon homepage  

For Amazon, the eye-tracking data showed a substantial concentration of fixations on product 

images and call-to-action buttons, confirming the importance of these elements in capturing 

users' attention. However, the heatmaps also revealed significant interest in product description 

sections and user reviews, which were not as well highlighted by the predictive saliency maps. 

 

 



 

Figure 11: Fixation points (blue circles) overlaid with saliency map for eBay homepage  

 

In the case of eBay, user fixations spread in the central areas with the most viewed products 

but with more significant dispersion in the peripheral regions compared to the model's 

predictions. That suggests that users also explore navigation sections and search filters, which 

are crucial for the shopping experience but are not always captured by the predictive maps. The 

eye-tracking heatmaps thus indicate a more complex and distributed exploration behaviour, 

highlighting the importance of optimising all sections of the page to improve overall user 

interaction. 

 

Figure 12: Fixation points (blue circles) overlaid with the saliency map for the Shein homepage  

 

Regarding Shein, the eye-tracking data revealed greater attention to search filters, navigation 

sections, and product listings. That suggests that users find these areas equally important, an 

aspect that the predictive saliency code did not fully capture. The heatmaps indicate that, besides 

products, users frequently interact with search and filter tools to customise their shopping 

experience. Future method optimisations should tackle the abovementioned aspects. 



 

 

Figure 13: Fixation points (blue circles) overlaid with saliency map for Vinted homepage  

Finally, for Vinted, the eye-tracking heatmaps aligned strongly with the predictive maps in 

sections with user-generated content, such as product images. However, the heatmaps also 

highlighted significant interest in navigation sections and product details. Those areas that were 

not highlighted as well as by the predictive saliency maps. That suggests that while the algorithm 

effectively predicts the main areas of interest, it must be refined to capture the full spectrum of 

users' visual interactions with higher accuracy. 

 

The eye-tracking heatmaps provide invaluable insights into user fixations across various e-

commerce platforms, revealing a nuanced picture of users' visual habits. They highlight not only 

the primary areas of interest, such as product images and call-to-action buttons, but also 

secondary elements, like product descriptions, user reviews, and navigation tools, that are 

equally crucial for a comprehensive user experience. While the predictive saliency maps 

performed well in identifying critical focal points, the eye-tracking data uncovered additional 

areas of interest that the algorithm did not fully capture. This discrepancy underscores the 

importance of integrating eye-tracking data into the development and refinement of predictive 

models. By doing so, we can ensure a more holistic understanding of user behaviour and 

optimise e-commerce sites to enhance user interaction and satisfaction across different product 

categories and site structures. 

5. Conclusions 

This research explored the integration of artificial intelligence (AI) into the field of visual 

saliency modelling, specifically within the context of e-commerce. The primary objective was to 

enhance the understanding of how AI models can replicate human attention mechanisms, 

thereby improving user interaction and engagement with online platforms. Visual saliency plays 

a crucial role in identifying areas of interest in visual scenes, both in human vision and AI 

systems. This study focused on assessing how AI-driven models, like TranSalNet, could predict 

user attention and saliency across various e-commerce websites. 

 

The findings revealed that the model effectively identified central areas of visual interest, 

particularly product images and promotional content. However, some discrepancies were 



observed in peripheral elements, such as navigation tools and search filters. That suggests that 

while AI-driven models can replicate core areas of user focus, further improvements are needed 

to capture more subtle or peripheral elements equally important for user interaction. Including 

top-down processes, which integrate user intent and cognitive context, could significantly 

enhance the predictive power of these models. 

 

Another key insight from the study was the role of personalisation in saliency modelling. 

Individual user preferences, browsing behaviour, and cultural differences contribute to 

variations in visual attention patterns. AI models that incorporate real-time user data and 

adaptive mechanisms have the potential to provide personalised predictions, ensuring that 

websites are optimised for different user groups. Future work in this area could focus on 

developing models that dynamically adjust to specific user profiles, enhancing the overall user 

experience. 

 

Moreover, as e-commerce platforms continue to integrate dynamic and interactive content, it 

becomes essential for saliency models to handle both spatial and temporal dynamics. The results 

suggest that optimised for static images, the current models could benefit from advancements in 

handling time-based interactions, such as scrolling, animations, and videos. Future research 

should prioritise developing models capable of processing these temporal aspects to provide a 

more comprehensive understanding of user attention. 

 

In conclusion, this research highlights the potential of AI models like TranSalNet in optimising 

the design of e-commerce platforms by predicting user attention patterns. While significant 

progress has been made, there remains room for improvement, particularly in terms of 

personalisation, peripheral element detection, and the incorporation of temporal dynamics. The 

continued advancement of AI-driven saliency models will improve user experiences and provide 

valuable insights for enhancing web design and user interface optimisation across various 

industries. 
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