
Robust Training of Sequential Recommender Systems with
Missing Input Data⋆

Federico Siciliano1,†, Shoval Lagziel2, Iftah Gamzu2 and Gabriele Tolomei1

1Sapienza University of Rome, Rome, Italy
2Amazon, Israel

Abstract
In the realm of sequential recommender systems, understanding users’ preferences based on their past actions is paramount. Yet, the
susceptibility of these models to input perturbations has limited their practicality. Addressing this, we present an innovative approach
to mitigate the impact of missing input items, a challenge that has been overlooked. Our method involves a novel training process that
anticipates data loss and employs an optimization loss to predict multiple future items. Extensive evaluations on diverse datasets and
recommender models underscore its effectiveness. Notably, our approach enhances NDCG@10 by up to 18% with one missing item and
an impressive 230% with five missing items, underscoring its substantial impact on system resilience and performance. This work sheds
light on the intricate dynamics of sequential recommendation and offers a solution to real-world data limitations.

Keywords
Recommender Systems, Sequential Recommendation, Model Stability

1. Introduction
Sequential recommendation models have raised interest in
recent years for their promising increasing performance in
various domains such as e-commerce, health and education
[1, 2]. However, machine learning models are sensitive to
input perturbations [3], and particularly, sequential recom-
mendation models were shown to be vulnerable to even
a single change in the training data [4, 5, 6]. The robust-
ness of recommender systems to data perturbations is a
desired property and is essential in various domains. Sup-
pose a user regularly uses an e-commerce platform to buy
clothes. The platform collects data on the user’s past pur-
chases and browsing behavior to make personalized recom-
mendations for future purchases. However, the user decides
to take a break from the platform for a few weeks and shops
for clothes elsewhere. During this break, the e-commerce
platform is unable to collect data on the user’s behavior,
resulting in missing data. When the user returns to the plat-
form, the recommender system must take into account the
missing data and still provide personalized recommenda-
tions based on the user’s past purchases. Missing data can
even be dangerous in some domains, such as healthcare [7],
where patients might have been treated at different clinics,
and this might result in incorrect diagnoses or treatments.
Specifically, in sequential recommendation systems, the rec-
ommendation is based on the sequence of user actions, so
the most recent actions might have an even stronger effect
on the generated recommendations. Considering this, we
explore the impact of missing data in the last items of the
sequence and how to mitigate it by training the models
differently. To the best of our knowledge, this is the first
work verifying that existing sequential recommender sys-

RobustRecSys: Design, Evaluation, and Deployment of Robust Recom-
mender Systems Workshop @ RecSys 2024, 18 October, 2024, Bari, Italy.
⋆

This work was partially supported by project FAIR (PE0000013) un-
der the MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU.

†
Work done while at Amazon.
$ siciliano@diag.uniroma1.it (F. Siciliano); shovall@amazon.com
(S. Lagziel); iftah@amazon.com (I. Gamzu); tolomei@di.uniroma1.it
(G. Tolomei)
� 0000-0003-1339-6983 (F. Siciliano); 0000-0002-1657-2076 (S. Lagziel);
0000-0001-7471-6659 (G. Tolomei)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

tems suffer from this effect and applying a method to make
sequential recommender models more robust to this type of
data perturbation. We can summarise our contributions as
follows:

• Our investigation shows that several sequential rec-
ommendation models heavily rely on the last items
in the sequence.

• We apply a modified training method to make the
models more robust to such missing data perturba-
tions.

• Our model outperforms (as measured by Hit Rate
and Normalized Discounted Cumulative Gain) clas-
sical models in cases of missing data while main-
taining or improving performance in the next item
prediction task.

2. Related Work

2.1. Sequential Recommendation
Sequential recommendation is a subfield of recommendation
systems [8] that focuses on recommending items to users
based on their recent interactions. The goal of sequential
recommendation is to predict the next item a user will likely
interact with, given their previous interactions. One of the
earliest sequential recommendation methods is the Markov
Chain model [9, 10, 11], which models users’ interactions
as a Markov process and uses the transition probabilities
between items to make recommendations. Recently, there
has been a growing interest in using deep learning tech-
niques for sequential recommendation. These methods in-
clude using deep neural networks, such as Recurrent Neural
Networks (RNN) [12], Long Short-Term Memory (LSTM)
[13], Gated Recurrent Units (GRUs) [14, 15] and attention
mechanisms [16, 17, 18], to model users’ interactions and
make recommendations, allowing the model to focus on
the most relevant parts of the user’s interaction history
when making recommendations. Additionally, there has
been an increased focus on Explainable AI in sequential
recommenders [19, 20], some of which are based on coun-
terfactuals [21, 22, 23, 24, 25], which are aimed at making
the recommendations more tailored to the user [26, 27, 28]
and providing more transparency into the decision-making

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:siciliano@diag.uniroma1.it
mailto:shovall@amazon.com
mailto:iftah@amazon.com
mailto:tolomei@di.uniroma1.it
https://orcid.org/0000-0003-1339-6983
https://orcid.org/0000-0002-1657-2076
https://orcid.org/0000-0001-7471-6659
https://creativecommons.org/licenses/by/4.0/deed.en

process of the model. Overall, the field of sequential recom-
mendation is rapidly evolving, with a wide range of methods
and techniques being proposed and evaluated[29, 30].

2.2. Robustness of recommender systems
One of the main challenges in the field of recommendation
systems is ensuring the robustness of the models to data
perturbations [31, 32, 33, 34]. Data perturbations refer to
small changes in the input data, such as missing values or
noisy observations, that can significantly impact the model’s
performance. Many common recommendation methods
are sensitive to such perturbations [4, 5, 35] and can lead
to poor performance or even complete failure. Recently,
there has been an increased focus on developing robust se-
quential recommenders that can handle data perturbations.
One approach is to use regularization techniques, such as
dropout [36, 37], to reduce the impact of noise in the input
data. Another approach is to use ensemble methods, such
as bagging [38] and boosting, to combine the predictions
of multiple models. Another area of research on robust-
ness is the use of generative models, such as Variational
Autoencoders (VAEs) [39] or Generative Adversarial Net-
works (GANs) [40], to learn the underlying distribution of
the data and generate new samples, which can be used to
augment the training data [41] and improve the robustness
of the models. Additionally, there has been work on im-
putation techniques [42, 43], to infer the missing data to
improve recommender systems, and on training instability
[44]. Finally, other works focus on methods for evaluating
the robustness of the model without using ranking eval-
uation metrics but rather by assessing the stability of the
generated rankings in the presence of missing items in the
data [4, 5, 6, 35]. Overall, robustness is a critical issue in se-
quential recommendation. There are many ongoing efforts
to develop methods that can handle data perturbations and
improve the performance of the models in practice.

3. Setting
The setting in question consists of 𝑁𝑈 users and 𝑁𝐼 items.
Each user 𝑢𝑖 has interacted with at least one item 𝐼𝑗 at a
given time 𝑡𝑖,𝑗 . The goal of a recommender system is to
predict the compatibility between a given user and the items
with which it has not yet interacted, knowing the items the
user has interacted with. In the Sequential Recommendation
case, the problem takes the form of predicting the next item
in a sequence: given a sequence of 𝑖 items {𝐼1, 𝐼2, ..., 𝐼𝑖}
with which a user 𝑢 has interacted, the goal is to predict the
𝑖+ 1-th item (𝐼𝑖+1). A sequential neural network takes as
input a sequence of at most 𝐿 elements and performs, for
each time step, the prediction of 𝑁𝐼 values. These represent
the estimated compatibility between user 𝑢, to which the
sequence of items belong, and all items 𝐼 .

3.1. Classic Training Method
The goal of the network, at each timestep 𝑖, is to predict the
next item in the sequence 𝐼𝑖+1. During network training,
if the number of possible items 𝑁𝐼 is too large, it becomes
intractable to calculate predictions for all of them, therefore,
only a chosen few are calculated. In particular, computing
the one corresponding to the next item, called positive item,
and at least one corresponding to an item that is irrelevant,

called negative item, chosen randomly at each epoch. An
attempt is then made to increase the former value at the
expense of the latter. Notably, the negative items are indeed
chosen randomly, but excluding items already in the input
sequence. To achieve this, the loss used for the models
we have considered is the Binary Cross-Entropy; this is
typically used in a classification scenario.

The definition of loss, positive items, and negative items
are defined leads to a specific ranking that the network
should achieve at time step 𝑖 of a sequence of 𝐿 elements.
The ranking can be described to be as follows: first the
positive item 𝐼𝑖+1, followed by, in indifferent order, all the
other items in the sequence 𝐼𝑗 such that 𝑗 ∈ {1, ..., 𝑖, 𝑖 +
2, ..., 𝐿, 𝐿 + 1}, and finally, again in indifferent order, all
the remaining items 𝐼𝑗 such that 𝑗 /∈ {1, 2, ..., 𝐿+1}. This
particular ranking would result in zero loss.

We can simplify, as shown in Figure 1a, the functioning
of the network by imagining that for the sequence [𝐼1], the
model should output item 𝐼2, for the sequence [𝐼1, 𝐼2] it
should output item 𝐼3, and so on.

4. Problem Statement
A sequential recommender system receives as input a se-
quence 𝑆 = {𝐼1, 𝐼2, ..., 𝐼𝑖} and tries to predict the next
item in the sequence, item 𝐼𝑖+1. How would the network
behave if the last item 𝐼𝑖 is missing? If the last item is re-
moved from the sequence [𝐼1, 𝐼2], we would be left only
with the sequence [𝐼1]. Since the network is trained to pre-
dict only item 𝐼2, it will have no preference on predicting
𝐼3. Furthermore, considering an out-of-sequence division
of the dataset (more info on data division in Section 5.4.3),
removing two items from the sequence results in replicating
a training sequence. Thus, the effect of removal may be
even more detrimental if the model is overfitting on the
training set. Lack of user-item interactions in real-world
scenarios pose a challenge for sequential recommenders.
For example, a streaming service offering a movie trilogy
may not have data on a user’s interaction with the second
movie if it was watched on a different platform. This could
result in the recommender suggesting the second movie
as the top recommendation without considering the third.
This issue also applies to non-sequential items like sequels
to movies or books. We start by demonstrating that existing
sequential recommender models suffer from this effect, and
then we devise a method to make them robust to this type
of data perturbation.

5. Methodology

5.1. More Positive Items
We assume that, in a real scenario, an ideal model should
yield, at a given time step 𝑖, a ranking containing, in order,
all future items in the sequence, and only upon finishing
these, all other (negative) items. Therefore, the solution we
have applied is to choose 𝑁𝑝𝑜𝑠 positive items, such that
the network learns to simultaneously predict 𝑁𝑝𝑜𝑠 future
instances. Please note that we are not trying to predict the
whole sequence of future interactions but only the relevance
of the items at time step 𝑖. In this case, the loss would become
as in 1.

...

Model

Model

Model

(a) Simplified visualization of a Sequential Recommender System
functioning. Each 𝐼𝑖 represents the item at time step 𝑖. Each
line represents a different inference.

Model

Model

Model...

(b) Simplified visualization of a Sequential Recommender System
functioning in the case of 𝑁𝑝𝑜𝑠 = 3 positives items. Each
𝐼𝑖 represents the item at time step 𝑖. Each line represents a
different inference.

Figure 1: Simplified visualizations in the two different scenarios

ℓBCE,mp(�⃗� | �⃗�𝑜𝑠, �⃗�𝑒𝑔) = −
∑︁

𝑗∈�⃗�𝑜𝑠

log (𝑥𝑗)−
∑︁

𝑗∈�⃗�𝑒𝑔

log (1−𝑥𝑗)

(1)
where �⃗� represents the output of the network, �⃗�𝑜𝑠 =

{𝑝1, ..., 𝑝𝑁𝑝𝑜𝑠} the identifier of the𝑁𝑝𝑜𝑠 positive items, and
�⃗�𝑒𝑔 = {𝑛1, ..., 𝑛𝑁𝑛𝑒𝑔)} those of the selected 𝑁𝑛𝑒𝑔 nega-
tive items. The loss takes the same form as that presented
in [45]. Although the authors mention the loss function, its
potential for improving the model’s robustness in the face
of missing data has not been explored. Our work fills this
gap by showing how this loss function can be effectively
used to increase the robustness of the model and improve
its performance in the presence of missing data. Replicating
the simplified illustration in Figure 1a, we can visualize the
idea of predicting multiple positive items as in Figure 1b.

5.2. Margin Loss
Considering more positive items poses a clear limitation,
as it becomes more challenging for the next item to rank
high in the network’s ranking. This is because the Binary
Cross-Entropy loss does not distinguish between positive
items; a perfect model would rank all 𝑃 positive items in
the first 𝑃 positions, regardless of their order. This might
limit the model performance, as the item may end-up in
the 𝑃 -th position, thus reducing common metrics that take
into account the order of results, such as NDCG. To solve
this problem, we decide to use the Margin Loss. Given pairs
of inputs 𝑥1 and 𝑥2, and a preferred ordering of them 𝑦,
such that 𝑦 = 1 if we assume that the first input should be
ranked higher than the second input, vice-versa for 𝑦 = −1,
the margin loss ℓ takes values according to ℓMRG(𝑥1, 𝑥2, 𝑦 |
𝑚𝑎𝑟𝑔𝑖𝑛) = max(0, 𝑦(𝑥2 − 𝑥1) + 𝑚𝑎𝑟𝑔𝑖𝑛). This tells
us that if the network outputs for the two inputs respect
the expected ordering and are at least 𝑚𝑎𝑟𝑔𝑖𝑛 apart, the
loss is equal to 0; otherwise, it is proportional to the dis-
tance between them. Input pairs are formed between
all pairs of positive items. The expected order is the or-
der in which the user interacted with them: an item at

a time step 𝑖 must come first in ranking than one at a
time step 𝑖 + 𝑘. The Margin Loss formula is ℓMRG,pos(�⃗� |
�⃗�𝑜𝑠,𝑚𝑎𝑟𝑔𝑖𝑛) =

∑︀𝑁𝑝𝑜𝑠

𝑐=1

∑︀𝑁𝑝𝑜𝑠

𝑘=𝑐+1 max(0, 𝑥𝑝𝑘 − 𝑥𝑝𝑐 +
𝑚𝑎𝑟𝑔𝑖𝑛), where �⃗� represents the output of the network,
�⃗�𝑜𝑠 = {𝑝1, ..., 𝑝𝑁𝑝𝑜𝑠)} the identifier of the 𝑁𝑝𝑜𝑠 positive
items and 𝑚𝑎𝑟𝑔𝑖𝑛 the margin value. The equation holds
only if the order of the identifiers of the positive elements
follows the expected order.

5.3. Mixed Loss
The margin loss applied on the positive items is not enough
to train the neural network as we desire. It is always nec-
essary to discourage the model from predicting negative
items. We, therefore, decide to use it in conjunction with
the traditional Cross-Entropy loss. This naturally brings up
the need to add some hyperparameters to weigh the impor-
tance of the two losses. We also separate the components of
the Binary Cross-Entropy loss pertaining to positive items
and negative items. This Mixed Loss formula is ℓMIX(�⃗� |
�⃗�𝑜𝑠, �⃗�𝑒𝑔,𝑚𝑎𝑟𝑔𝑖𝑛) = 𝑙BCE,pos + 𝜆1𝑙BCE,neg + 𝜆2ℓMRG,pos(�⃗� |
�⃗�𝑜𝑠,𝑚𝑎𝑟𝑔𝑖𝑛).

5.4. Experiments
5.4.1. Datasets

We select three datasets that are widely used in this field [46,
47]: MovieLens-1M [48], MovieLens-100K [48] and Amazon
Beauty [49]. The first two are movie ratings taken from
the MovieLens website1 and differ on the period they were
collected and the size of the set. The third dataset2 contains
reviews and metadata from Amazon, spanning May 1996 -
Oct 2018. The three datasets have 165, 106 and 5 interactions
per user, respectively. The statistics for all the considered
datasets are shown in Table 1.

1https://movielens.org
2https://nijianmo.github.io/amazon/index.html

Table 1
Dataset statistics after preprocessing

Dataset Users Items
Actions
/User
Average

Actions
/User
Median

Actions

MovieLens
1M

6040 3706 165 96 1M

MovieLens
100k

943 1682 106 65 100K

Amazon
Beauty

2417 2821 5 5 12K

5.4.2. Models

We select three sequential recommendation models. The
first, GRU4REC [15], is an RNN based on Gated Recurrent
Unit. SASRec [16], on the other hand, is a sequential self-
attention based model that uses an attention mechanism
to make predictions based on a relatively small number of
actions. TiSASRec (Time Interval aware Self-attention based
sequential recommendation) [17] is instead a modification
of this that adds to the input the time intervals between
elements in the sequence.

5.4.3. Preprocessing

Consistent with other work, we use implicit ratings, so
we do not consider the score but simply the existence of an
interaction of a given user with a given product. Given a user
𝑢, the products he interacted with are ordered in a sequence
𝑆𝑢 based on the timestamp. An out-of-sequence split (i.e.
the last two items in each sequence are kept aside to be the
target output of validation and test, respectively, while the
rest of the sequence is used for training) is performed to
partition the data into training, validation and test sets, in
line with what has been done by other works in the same
domain.

5.4.4. Evaluation

In line with what has been done in other works involving
Neural Recommenders [16], in order to avoid to avoid heavy
computation, the evaluation is carried out in the following
way: the prediction made by the network is taken for the
positive item (the next item in the sequence) and 100 items
chosen randomly, not in the input sequence. The predictions
(for 100 negative items + the positive item) are then sorted
according to the values obtained; this represents the final
ranking.

We want to emphasize that while we use multiple positive
items during training, this is not done during the evaluation
phase. The reason for this decision is that changing the eval-
uation method could naturally result in our proposed losses
appearing better, thus rendering the comparison invalid.
By adhering to the traditional evaluation setting, we align
ourselves with the evaluation methods used in other works
in this field. However, we acknowledge that this places
our proposed method at a disadvantage compared to the
baseline method for obvious reasons. We are training the
model to predict multiple items to increase its robustness,
but only one of these items will be used during evaluation.
On the other hand, the baseline model focuses solely on
a single positive item, the same one used for evaluation,
which inherently gives it an advantage. In Section 6, we will

demonstrate how our model still manages to achieve supe-
rior results. In addition to the standard metrics, to evaluate
the sensitivity of the models in cases of input data pertur-
bations, we utilized the recently introduced metric Rank
List Sensitivity (RLS)[4], enabling to compare rankings pro-
duced with and without perturbations. RLS is defined as
𝑅𝐿𝑆 = 1

𝑁

∑︀𝑁
𝑖 𝑠𝑖𝑚 (𝑅𝐴,𝑖, 𝑅𝐵,𝑖). where 𝑁 is the number

of samples, 𝑠𝑖𝑚 is a similarity function, 𝑅𝐴,𝑖 and 𝑅𝐵,𝑖 are
two rankings produced for sample 𝑖. In our specific case, 𝐴
represents the ranking when sample 𝑖 is unaltered, while 𝐵
represents the case when the input sequence is perturbed,
i.e. items are removed. The similarity (𝑠𝑖𝑚) of two rankings
𝑅𝑎 and 𝑅𝑏 can be calculated using the Jaccard similarity
[50], but it does not consider order. On the other hand,
Rank-biased Overlap (RBO) is more valuable for a recom-
mendation system as it considers top-ranked items as more
significant using specific weighting (see Equation 2).

𝐽𝐴𝐶(𝑅𝐴, 𝑅𝐵) =
|𝑅𝐴 ∩𝑅𝐵 |
|𝑅𝐴 ∪𝑅𝐵 |

𝑅𝐵𝑂(𝑅𝑎, 𝑅𝑏) = (1− 𝑝)

𝑘∑︁
𝑖=1

𝑝𝑖−1 |𝑅𝐴[1 : 𝑖] ∩𝑅𝐵 [1 : 𝑖]|
𝑖

(2)

5.4.5. Hyperparameter Optimization

The hyper-parameters to be optimised are the number of
positive items to be used, the number of negative items to
be used and the Mixed Loss parameters. The number of
positive items 𝑁𝑝𝑜𝑠 and negative items 𝑁𝑛𝑒𝑔 varies in the
set {1, 3, 10}, and the Mixed Loss parameters 𝜆1 and 𝜆2 in
the set {1, 10−1, ..., 10−5}.

5.4.6. Implementation

All code is written in Python 3. In particular, with Pytorch
and Pytorch Lightning.

6. Results
In this section, we present experimental results showing the
strong reliance of sequential recommender models on the
last items in the sequence as well as the performance of the
proposed training method to mitigate this effect.

6.1. Last Items Importance
Figure 2a visualizes the effect of removing an item at differ-
ent positions in the sequence on the model outputs, using
the SASRec model and the MovieLens-1M dataset, has on
the ranking of the top item. We identify this item with the
term previous top-ranked item: that item which, prior to
the input data perturbation, was at the top of the ranking.
In the case of the base model, removing the last item can
push the previously top-ranked item by over 25 positions on
average. While SASRec is trained using dropout, this does
not seem to be sufficient to make it robust to missing data.
In contrast, when the model is trained with more positive
items, the removal of the last item results in a significantly
lower drop in the ranking of the previous top item: 5 posi-
tions or less. We also observe that the difference between
the different models becomes less pronounced as we move
towards the earlier items in the sequence. These results

Table 2
Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS with Jaccard or RBO) for
GRU4Rec model and the considered datasets, varying the number of items removed from the end of the sequence. To assist
visualization leading zeroes are removed.

Dataset
Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .4227 .4706 .4795 .6618 .7098 .7134 — — — — — —
1 .3898 .4368 .4498 .6356 .6843 .6873 .0489 .0867 .0794 .0313 .0550 .0489
2 .3635 .4101 .4180 .6162 .6579 .6606 .0442 .0752 .0676 .0293 .0475 .0403
3 .3482 .3983 .4044 .5881 .6452 .6475 .0392 .0672 .0604 .0252 .0415 .0358
4 .3257 .3748 .3737 .5642 .6214 .6167 .0376 .0628 .0552 .0241 .0398 .0334
5 .3099 .3608 .3611 .5440 .6081 .6038 .0347 .0568 .0502 .0219 .0346 .0298

ML-100k

0 .3621 .4004 .3976 .6182 .6607 .6713 — — — — — —
1 .3182 .3730 .3772 .5705 .6288 .6490 .1216 .2284 .2292 .0809 .1689 .1680
2 .3253 .3459 .3558 .5779 .6161 .6193 .1181 .2123 .2214 .0756 .1547 .1606
3 .3145 .3381 .3364 .5493 .5875 .5938 .1102 .2047 .2060 .0712 .1524 .1517
4 .2843 .3323 .3352 .5154 .5907 .5843 .1084 .1947 .1959 .0689 .1433 .1435
5 .2833 .3252 .3410 .5080 .5663 .5832 .0967 .1826 .1801 .0624 .1304 .1312

Amazon
Beauty

0 .4683 .4656 .4687 .5114 .5077 .5060 — — — — — —
1 .4539 .4517 .4623 .5072 .4969 .5056 .7110 .6633 .6780 .4987 .4858 .4676
2 .4471 .4499 .4531 .5027 .4990 .5064 .6472 .5829 .6100 .4793 .4550 .4386
3 .3500 .3955 .3938 .4059 .4688 .4737 .4059 .4026 .3827 .2947 .3185 .2915
4 .1325 .2774 .2626 .1849 .3620 .3562 .2413 .3298 .2390 .1400 .2017 .1783
5 .1191 .2662 .1966 .1676 .3442 .2892 .1583 .2092 .1164 .0773 .1122 .0930

Table 3
Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS with Jaccard or RBO) for SASRec
model and the considered datasets, varying the number of items removed from the end of the sequence. To assist visualization
leading zeroes are removed.

Dataset
Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .5969 .5772 .5874 .8222 .8142 .8207 — — — — — —
1 .5572 .5490 .5570 .7925 .7925 .7962 .4116 .6157 .5584 .2754 .4370 .3964
2 .5292 .5274 .5326 .7768 .7748 .7783 .3625 .5348 .4849 .2441 .3875 .3460
3 .5090 .5028 .5108 .7647 .7594 .7634 .3276 .4731 .4287 .2218 .3443 .3080
4 .4838 .4906 .4931 .7452 .7425 .7520 .2933 .4215 .3741 .1997 .3072 .2693
5 .4691 .4752 .4795 .7316 .7344 .7411 .2676 .3778 .3368 .1823 .2779 .2422

ML-100k

0 .4559 .4456 .4527 .7349 .7349 .7455 — — — — — —
1 .4200 .4219 .4357 .7243 .6988 .7232 .2734 .6457 .5411 .1668 .4636 .3732
2 .4196 .4113 .4282 .6999 .6978 .7179 .2565 .6217 .5179 .1599 .4458 .3615
3 .3792 .4032 .4008 .6607 .6861 .6935 .2441 .5916 .4920 .1508 .4268 .3448
4 .3878 .3855 .4036 .6755 .6734 .6925 .2350 .5565 .4707 .1450 .4083 .3333
5 .3632 .3764 .3896 .6511 .6670 .6797 .2226 .5261 .4369 .1409 .3869 .3106

Amazon
Beauty

0 .4682 .4597 .4643 .5038 .5075 .5067 — — — — — —
1 .4499 .4496 .4502 .4959 .5032 .5037 .5730 .6087 .6164 .4076 .4332 .4238
2 .4474 .4500 .4461 .5034 .5053 .5077 .5123 .5314 .5375 .3827 .4152 .3954
3 .3850 .4273 .4257 .4510 .5108 .5086 .3967 .4531 .4442 .3043 .3585 .3335
4 .2317 .3582 .3640 .3055 .4759 .4879 .2987 .3934 .3800 .2193 .2909 .2818
5 .2193 .3549 .3593 .2931 .4763 .4878 .2579 .3718 .3602 .1806 .2522 .2563

Table 4
Results in terms of ranking evaluation (NDCG@10 and HR@10) and robustness metrics (RLS with Jaccard or RBO) for TiSASRec
model and the considered datasets, varying the number of items removed from the end of the sequence. To assist visualization
leading zeroes are removed.

Dataset
Missing
Items

NDCG@10 HR@10 RLS-JAC@10 RLS-RBO@10
Base MP MP+ML Base MP MP+ML Base MP MP+ML Base MP MP+ML

ML-1M

0 .5494 .5348 .5402 .7823 .7760 .7773 — — — — — —
1 .5159 .5086 .5148 .7523 .7522 .7550 .3622 .5714 .5605 .2373 .4069 .3946
2 .4906 .4920 .4997 .7387 .7386 .7444 .3070 .4968 .4769 .2000 .3592 .3396
3 .4667 .4743 .4808 .7166 .7242 .7311 .2685 .4401 .4202 .1747 .3215 .3028
4 .4522 .4584 .4662 .7043 .7144 .7194 .2348 .3891 .3669 .1536 .2880 .2649
5 .4338 .4436 .4517 .6889 .7070 .7126 .2072 .3488 .3270 .1347 .2590 .2369

ML-100k

0 .4154 .3984 .4044 .6935 .6702 .6670 — — — — — —
1 .3665 .3922 .3972 .6394 .6426 .6490 .2704 .5377 .5238 .1638 .3869 .3708
2 .3632 .3792 .3761 .6108 .6225 .6246 .2406 .4855 .4735 .1424 .3547 .3394
3 .3477 .3637 .3642 .6182 .6172 .6182 .2194 .4546 .4418 .1292 .3360 .3186
4 .3413 .3568 .3535 .5938 .6161 .6151 .2020 .4227 .4113 .1194 .3145 .2959
5 .3321 .3481 .3529 .5822 .6034 .6076 .1965 .4004 .3858 .1163 .3021 .2819

Amazon
Beauty

0 .4670 .4700 .4693 .4994 .5106 .5077 — — — — — —
1 .4467 .4564 .4600 .4911 .5077 .5056 .5819 .6580 .6559 .3931 .4641 .4575
2 .4426 .4553 .4542 .4944 .5101 .5101 .5402 .6353 .6403 .3765 .4598 .4563
3 .3667 .4297 .4286 .4241 .5097 .5130 .4135 .5438 .5512 .3096 .3784 .3676
4 .1606 .3453 .3469 .2122 .4886 .4878 .2567 .4031 .3969 .2155 .2892 .2655
5 .1483 .3409 .3345 .1953 .4882 .4866 .1926 .3183 .3013 .1831 .2338 .2015

123
Location from the end of the sequence of the removed item

0

5

10

15

20

25
Ra

nk
Cross entropy 1 positive item
Cross entropy 3 positive items
Mixed loss 3 positive items

(a) Rank of the previous top-ranked item when removing an item
from the input sequence in a specific position

1 2 3 4 5
Removed items per sequence

0.20

0.25

0.30

0.35

0.40

RL
S-

RB
O@

10

Base model
More positives
More positives + Mixed Loss

(b) Rank List Sensitivity using Rank-Biased Overlap@10 for SAS-
Rec Model on MovieLens-1M dataset with different number of
missing items

Figure 2: The effect of removing the last items in a sequence with three training methods

0 1 2 3 4 5

0.33

0.35

0.38

0.40

0.43

0.45

0.48

ND
CG

@
10

M
L-

1M

GRU4Rec

0 1 2 3 4 5

0.48

0.50

0.52

0.54

0.56

0.58

0.60
SASRec

0 1 2 3 4 5

0.44

0.46

0.48

0.50

0.52

0.54

TiSASRec

0 1 2 3 4 5
0.28

0.30

0.32

0.34

0.36

0.38

0.40

ND
CG

@
10

M
L-

10
0k

0 1 2 3 4 5
0.36

0.38

0.40

0.42

0.44

0.46

0 1 2 3 4 5

0.34

0.36

0.38

0.40

0 1 2 3 4 5
Removed items per sequence

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ND
CG

@
10

Am
az

on
 B

ea
ut

y

0 1 2 3 4 5
Removed items per sequence

0.25

0.30

0.35

0.40

0.45

Base model MP model MP+ML model

0 1 2 3 4 5
Removed items per sequence

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 3: NDCG@10 with different number of missing items for each model-dataset pair

demonstrate that incorporating more positive items in the
training process and using our proposed Mixed Loss can
help to mitigate the impact of missing data and improve the
robustness of Sequential Recommender Systems.

6.2. Performance of Different Training
Methods in Cases of Missing Last Items

NDCG@10 score is used to gauge the impact of the modified
training method on the performance of the models. Figure
3 provides a visualization of the results. The results are also
expressed integrally in Tables 2, 3 and 4.

6.2.1. A Clear Advantage in Handling Missing Data

One striking observation is that the models trained with
more positive items and the Mixed Loss consistently outper-
form the base model when it comes to dealing with missing
data. Although the base model performs slightly better in
the absence of missing data, the new models are able to
sustain their performance even as the number of missing
items increases. This is especially evident in the case of the
Amazon Beauty dataset, where the new training method
is able to maintain acceptable performance as the missing
data becomes more prominent.

As mentioned in Section 5.4.4, the slight predominance of
the base model in the absence of missing data is expected be-
cause the evaluation setting naturally favors the base model:
both the loss function and the evaluation technique consider

123
Location from the end of the sequence of the removed item

0

5

10

15

20

25
Ra

nk
Cross entropy 1 positive item
Cross entropy 2 positive items
Cross entropy 3 positive items
Cross entropy 5 positive items
Cross entropy 10 positive items

(a) Rank of the previous top-ranked item when removing an item
from the input sequence in a specific position

0 1 2 3 4 5
Removed items per sequence

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

ND
CG

@
10

Cross entropy 1 positive item
Cross entropy 2 positive items
Cross entropy 3 positive items
Cross entropy 5 positive items
Cross entropy 10 positive items

(b) NDCG@10 for SASRec Model on MovieLens-1M dataset with
different number of missing items

Figure 4: Study on the Number of Positives

only a single item. We emphasize the significance that our
model, trained in a manner that deviates slightly from the
traditional evaluation setting, is able to retain minimal per-
formance loss in the same setting while gaining robustness
to missing data.

6.2.2. Length of sequences

It is worth noting that the average sequence length of the
three datasets is vastly different (see Section 5.4.1). The
results in Figure 3 indicate that the impact of missing data is
much less severe for datasets with longer sequences, such as
ML-1M. The model trained with the classic training method
is even able to compensate for this deficiency, particularly
in the case of SASRec. However, as the average sequence
length decreases, such as in the ML-100k dataset, the ro-
bustness to missing data seems to decline rapidly, and the
difference between the models becomes more pronounced
when the number of missing items increases. This trend
is especially evident in the Amazon Beauty dataset, where
the difference between the models is particularly noticeable
when the number of missing items is higher than 2, probably
because the average length of the sequences for this dataset
is 5.

6.3. Rank List Stability
The robustness of the models in the face of item removal at
the end of the input sequence is illustrated through the Rank
List Stability with Rank-biased Overlap metric in Figure 2b.
It is evident that the new models exhibit higher stability,
with Cross-Entropy with more positive items proving to
be even more robust than the Mixed Loss model. We ob-
served a similar trend for all datasets and models, so only
one plot is presented; further results can be found in the
additional repository. While the multiple positive model
(MP) provides in most cases higher performance in the Rank
List Stability metrics compared to the model with multiple
positive and the mixed loss (MP+ML), it is worth noting that
MP+ML provides higher performance on the HR@10 and
NDCG@10. This can be explained by the fact that MP is not
optimized using the ranks of the positive items as done by
the mixed loss (MP+ML model). However, for precisely the
same reason, MP benefits from higher stability.

More specifically, both models are trained to predict, at
time 𝑡 and for a given input sequence, 𝑁𝑝𝑜𝑠 positive items,

specifically [𝑝𝑡, 𝑝𝑡+1, ..., 𝑝𝑡+𝑁𝑝𝑜𝑠]. However, the MP model
is trained with a loss function that does not consider the
order of the positive items: the same sequence in reverse
order would yield the same loss value. As discussed in
Section 5.4.4, in the classic evaluation setting, only 𝑝𝑡 is
used during evaluation. If the loss function treats 𝑝𝑡 equally
important as the other positive items [𝑝𝑡+1, ..., 𝑝𝑡+𝑁𝑝𝑜𝑠], it
is more likely to be ranked lower, thus reducing metrics
such as NDCG and Recall. On the other hand, the model
using the Mixed Loss, which aims to prioritize the position
of 𝑝𝑡 at the top of the ranking, has an advantage in achieving
higher metrics in this regard.

6.4. Study on the Number of Positives
To understand the impact of the number of positive items
used for training, experiments were performed using differ-
ent numbers of positive items for just one model, SasRec,
and one dataset, MovieLens-1M, due to the computational
time required. As seen in Figure 4a, as the number of pos-
itive items increases, the change in ranking for previous
top-ranked items decreases significantly. However, Figure
4b shows that the performance in the absence of missing
data degrades as the number of positive items increases.
This trend begins to change as the number of missing items
increases, and the gap between the new models and the base
model narrows, with the latter’s performance deteriorating
more.

7. Implications of the Research
Findings

The findings of this study hold both theoretical and prac-
tical implications that contribute to the advancement of
sequential recommender systems and their application in
real-world scenarios. By addressing the specific challenges
posed by missing input data, our research offers a novel
perspective on enhancing the robustness and reliability of
these systems.

7.1. Theoretical Implications
1. Uncovering Last-ItemDependence: Our research

uncovers the strong reliance of sequential recom-
mender systems on the last items in the input se-

quence. This revelation contributes to a deeper un-
derstanding of the dynamics within these systems,
emphasizing the need for strategies that can miti-
gate the performance degradation caused by missing
items.

2. New Training Paradigm: The introduction of a
training approach that anticipates data loss and sim-
ulates prediction of multiple future items presents
a paradigm shift in the methodology for handling
missing input data. This approach establishes a the-
oretical foundation for designing more resilient rec-
ommender systems.

7.2. Practical Implications
1. Real-World Data Challenges: In real-world sce-

narios, complete user action sequences are often not
available due to various constraints. Our research
highlights the practical significance of addressing
this data scarcity and provides a concrete solution
to mitigate the negative effects of missing items, im-
proving the usability of recommender systems.

2. Enhanced System Resilience: The proposed train-
ing method significantly improves the performance
of sequential recommender systems when faced with
missing items. This directly translates into a more
reliable and user-centric experience, thus benefit-
ing various domains, such as e-commerce, content
recommendation, and personalized services.

3. Impact on User Satisfaction: The performance
enhancement demonstrated by our approach can
lead to improved user satisfaction by providing more
accurate and relevant recommendations, even when
there are gaps in the available data. This practical
outcome can foster greater user engagement and
loyalty.

4. General Applicability: The effectiveness of our
method across various datasets and recommender
models underscores its general applicability. This
widens its potential adoption and impact, making
it a valuable tool for researchers and practitioners
alike.

8. Discussion and Conclusions
Our findings show that the last items in a sequence have
a significant impact on the predictions of sequential rec-
ommenders, and their removal results in unstable rankings.
However, by incorporating multiple future items in the train-
ing process, model robustness can be improved. Our results
demonstrate that the proposed training methods improve
rankings stability (RLS metric) and performance (HR and
NDCG) on various popular sequential recommender models
(SasRec[16], TiSasRec[17], and GRU4Rec[15]) and datasets.
In contrast, the performance without missing data is not
noticeably affected but even improves for specific model-
s/datasets. Using more positive items with Cross-Entropy
loss improves robustness of sequential recommenders to
removal of elements at the end of the input sequence. How-
ever, increasing the number of future items excessively can
lead to stability increase at the cost of decreased perfor-
mance. Mixed Loss, combining Cross-Entropy with Margin
Loss, can prioritize the next item over other positives. Our
method opens up opportunities for further research in the

field. Future work may focus on the development of a loss
function that balances performance and robustness as the
number of positive items increases, as well as modifying
the method for models that use bi-directional connections
(e.g., [18]). Moreover, out proposal is easily extendable to
other approaches, as it is solely tied to a different training
method and not to a specific architecture. To summarize,
our work represents a step forward in improving the robust-
ness of sequential recommender models. We demonstrate
the strong influence of the last items in a sequence and the
effectiveness of our method in mitigating the impact of miss-
ing data. Overall, we expect that our findings and proposed
methods will be a valuable tool in the field of sequential
recommender systems.

References
[1] M. Quadrana, P. Cremonesi, D. Jannach, Sequence-

aware recommender systems, ACM Computing Sur-
veys (CSUR) 51 (2018) 1–36.

[2] I. Brilhante, J. A. Macedo, F. M. Nardini, R. Perego,
C. Renso, Tripbuilder: A tool for recommending sight-
seeing tours, in: Advances in Information Retrieval:
36th European Conference on IR Research, ECIR 2014,
Amsterdam, The Netherlands, April 13-16, 2014. Pro-
ceedings 36, Springer, 2014, pp. 771–774.

[3] S. Gupta, A. Gupta, Dealing with noise problem in
machine learning data-sets: A systematic review, Pro-
cedia Computer Science 161 (2019) 466–474.

[4] S. Oh, B. Ustun, J. McAuley, S. Kumar, Rank list sensi-
tivity of recommender systems to interaction perturba-
tions, in: Proceedings of the 31st ACM International
Conference on Information & Knowledge Manage-
ment, 2022, pp. 1584–1594.

[5] S. Oh, S. Kumar, Robustness of deep recommendation
systems to untargeted interaction perturbations, arXiv
preprint arXiv:2201.12686 (2022).

[6] B. Filippo, S. Federico, M. Pushkar, S. Fabrizio,
Investigating the robustness of sequential recom-
mender systems against training data perturbations,
in: Advances in Information Retrieval: 46th Eu-
ropean Conference on Information Retrieval (ECIR
2024), Springer, 2024, pp. 205–220. URL: https://
doi.org/10.1007/978-3-031-28241-6_14. doi:10.1007/
978-3-031-28241-6_14, first Online: 16 March
2024.

[7] T. N. T. Tran, A. Felfernig, C. Trattner, A. Holzinger,
Recommender systems in the healthcare domain: state-
of-the-art and research issues, Journal of Intelligent
Information Systems 57 (2021) 171–201.

[8] F. Ricci, L. Rokach, B. Shapira, Introduction to recom-
mender systems handbook, in: Recommender systems
handbook, Springer, 2011, pp. 1–35.

[9] F. Fouss, S. Faulkner, M. Kolp, A. Pirotte, M. Saerens,
et al., Web recommendation system based on a markov-
chainmodel., in: ICEIS (4), 2005, pp. 56–63.

[10] G. Shani, D. Heckerman, R. I. Brafman, C. Boutilier, An
mdp-based recommender system., Journal of Machine
Learning Research 6 (2005).

[11] Y. Ren, M. Tomko, F. D. Salim, J. Chan, C. L. Clarke,
M. Sanderson, A location-query-browse graph for
contextual recommendation, IEEE Transactions on
Knowledge and Data Engineering 30 (2017) 204–218.

[12] B. Hidasi, A. Karatzoglou, Recurrent neural networks

https://doi.org/10.1007/978-3-031-28241-6_14
https://doi.org/10.1007/978-3-031-28241-6_14
http://dx.doi.org/10.1007/978-3-031-28241-6_14
http://dx.doi.org/10.1007/978-3-031-28241-6_14

with top-k gains for session-based recommendations,
in: Proceedings of the 27th ACM international con-
ference on information and knowledge management,
2018, pp. 843–852.

[13] L. Yang, Y. Zheng, X. Cai, H. Dai, D. Mu, L. Guo, T. Dai,
A lstm based model for personalized context-aware
citation recommendation, IEEE access 6 (2018) 59618–
59627.

[14] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empiri-
cal evaluation of gated recurrent neural networks on
sequence modeling, arXiv preprint arXiv:1412.3555
(2014).

[15] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk,
Session-based recommendations with recurrent neural
networks, arXiv preprint arXiv:1511.06939 (2015).

[16] W.-C. Kang, J. McAuley, Self-attentive sequential rec-
ommendation, in: 2018 IEEE international conference
on data mining (ICDM), IEEE, 2018, pp. 197–206.

[17] J. Li, Y. Wang, J. McAuley, Time interval aware self-
attention for sequential recommendation, in: Pro-
ceedings of the 13th international conference on web
search and data mining, 2020, pp. 322–330.

[18] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, P. Jiang,
Bert4rec: Sequential recommendation with bidirec-
tional encoder representations from transformer, in:
Proceedings of the 28th ACM international conference
on information and knowledge management, 2019, pp.
1441–1450.

[19] I. Nunes, D. Jannach, A systematic review and taxon-
omy of explanations in decision support and recom-
mender systems, User Modeling and User-Adapted
Interaction 27 (2017) 393–444.

[20] Y. Zhang, X. Chen, et al., Explainable recommenda-
tion: A survey and new perspectives, Foundations and
Trends® in Information Retrieval 14 (2020) 1–101.

[21] A. Ghazimatin, O. Balalau, R. Saha Roy, G. Weikum,
Prince: Provider-side interpretability with counterfac-
tual explanations in recommender systems, in: Pro-
ceedings of the 13th International Conference on Web
Search and Data Mining, 2020, pp. 196–204.

[22] J. Tan, S. Xu, Y. Ge, Y. Li, X. Chen, Y. Zhang, Counter-
factual explainable recommendation, in: Proceedings
of the 30th ACM International Conference on Informa-
tion & Knowledge Management, 2021, pp. 1784–1793.

[23] K. H. Tran, A. Ghazimatin, R. Saha Roy, Counterfac-
tual explanations for neural recommenders, in: Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, 2021, pp. 1627–1631.

[24] Z. Chen, F. Silvestri, J. Wang, Y. Zhang, G. Tolomei,
The dark side of explanations: Poisoning recom-
mender systems with counterfactual examples, arXiv
preprint arXiv:2305.00574 (2023).

[25] Z. Chen, F. Silvestri, J. Wang, Y. Zhang, Z. Huang,
H. Ahn, G. Tolomei, Grease: Generate factual and
counterfactual explanations for gnn-based recommen-
dations, arXiv preprint arXiv:2208.04222 (2022).

[26] X. Wang, Y. Chen, J. Yang, L. Wu, Z. Wu, X. Xie, A
reinforcement learning framework for explainable rec-
ommendation, in: 2018 IEEE international conference
on data mining (ICDM), IEEE, 2018, pp. 587–596.

[27] Z. Wang, J. Zhang, H. Xu, X. Chen, Y. Zhang, W. X.
Zhao, J.-R. Wen, Counterfactual data-augmented se-
quential recommendation, in: Proceedings of the 44th
International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2021, pp. 347–
356.

[28] S. Zhang, D. Yao, Z. Zhao, T.-S. Chua, F. Wu, Causerec:
Counterfactual user sequence synthesis for sequential
recommendation, in: Proceedings of the 44th Interna-
tional ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, 2021, pp. 367–377.

[29] A. Sbandi, F. Siciliano, F. Silvestri, Mitigating ex-
treme cold start in graph-based recsys through re-
ranking, in: Proceedings of the 33rd ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’24, Association for Computing
Machinery, New York, NY, USA, 2024, p. 4844–4851.
URL: https://doi.org/10.1145/3627673.3680069. doi:10.
1145/3627673.3680069.

[30] F. Betello, A. Purificato, F. Siciliano, G. Trappolini,
A. Bacciu, N. Tonellotto, F. Silvestri, A reproducible
analysis of sequential recommender systems, IEEE
Access 13 (2025) 5762–5772. doi:10.1109/ACCESS.
2024.3522049.

[31] R. Burke, M. P. O’Mahony, N. J. Hurley, Robust collab-
orative recommendation, in: Recommender systems
handbook, Springer, 2015, pp. 961–995.

[32] M. O’Mahony, N. Hurley, N. Kushmerick, G. Silvestre,
Collaborative recommendation: A robustness analysis,
ACM Transactions on Internet Technology (TOIT) 4
(2004) 344–377.

[33] Y. Deldjoo, T. Di Noia, E. Di Sciascio, F. A. Merra, How
dataset characteristics affect the robustness of collabo-
rative recommendation models, in: Proceedings of the
43rd international ACM SIGIR conference on research
and development in information retrieval, 2020, pp.
951–960.

[34] V. Guarrasi, F. Siciliano, F. Silvestri, Robustrecsys
@ recsys2024: Design, evaluation and deployment
of robust recommender systems, in: Proceedings
of the 18th ACM Conference on Recommender Sys-
tems, RecSys ’24, Association for Computing Ma-
chinery, New York, NY, USA, 2024, p. 1265–1269.
URL: https://doi.org/10.1145/3640457.3687106. doi:10.
1145/3640457.3687106.

[35] F. Betello, F. Siciliano, P. Mishra, F. Silvestri, Finite
rank-biased overlap (frbo): A new measure for stability
in sequential recommender systems, in: Proc. of the
14th Italian Information Retrieval Workshop, volume
3802, 2024, pp. 78–81.

[36] Y. Gal, Z. Ghahramani, Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning, in: international conference on machine
learning, PMLR, 2016, pp. 1050–1059.

[37] Y. Li, W. Ma, C. Chen, M. Zhang, Y. Liu, S. Ma,
Y. Yang, A survey on dropout methods and experimen-
tal verification in recommendation, arXiv preprint
arXiv:2204.02027 (2022).

[38] J. Vinagre, A. M. Jorge, J. Gama, Online bagging for rec-
ommender systems, Expert Systems 35 (2018) e12303.

[39] D. Liang, R. G. Krishnan, M. D. Hoffman, T. Jebara,
Variational autoencoders for collaborative filtering, in:
Proceedings of the 2018 world wide web conference,
2018, pp. 689–698.

[40] Q. Wu, Y. Liu, C. Miao, B. Zhao, Y. Zhao, L. Guan, Pd-
gan: Adversarial learning for personalized diversity-
promoting recommendation., in: IJCAI, volume 19,
2019, pp. 3870–3876.

[41] D. Liu, Y. Sun, X. Zhao, G. Zhang, R. Liu, Adversarial

https://doi.org/10.1145/3627673.3680069
http://dx.doi.org/10.1145/3627673.3680069
http://dx.doi.org/10.1145/3627673.3680069
http://dx.doi.org/10.1109/ACCESS.2024.3522049
http://dx.doi.org/10.1109/ACCESS.2024.3522049
https://doi.org/10.1145/3640457.3687106
http://dx.doi.org/10.1145/3640457.3687106
http://dx.doi.org/10.1145/3640457.3687106

training for session-based item recommendations, in:
2020 IEEE 9th Joint International Information Tech-
nology and Artificial Intelligence Conference (ITAIC),
volume 9, IEEE, 2020, pp. 1162–1168.

[42] S.-Y. Ihm, S.-E. Lee, Y.-H. Park, A. Nasridinov, M. Kim,
S.-H. Park, A technique of recursive reliability-based
missing data imputation for collaborative filtering, Ap-
plied Sciences 11 (2021) 3719.

[43] W. Xia, L. He, J. Gu, K. He, Effective collaborative
filtering approaches based on missing data imputation,
in: 2009 Fifth International Joint Conference on INC,
IMS and IDC, IEEE, 2009, pp. 534–537.

[44] J. Tang, Y. Drori, D. Chang, M. Sathiamoorthy,
J. Gilmer, L. Wei, X. Yi, L. Hong, E. H. Chi, Improving
training stability for multitask ranking models in rec-
ommender systems, arXiv preprint arXiv:2302.09178
(2023).

[45] J. Tang, K. Wang, Personalized top-n sequential rec-
ommendation via convolutional sequence embedding,
in: Proceedings of the eleventh ACM international
conference on web search and data mining, 2018, pp.
565–573.

[46] J. Y. Chin, Y. Chen, G. Cong, The datasets dilemma:
How much do we really know about recommendation
datasets?, in: Proceedings of the Fifteenth ACM Inter-
national Conference on Web Search and Data Mining,
2022, pp. 141–149.

[47] K. Ong, S.-C. Haw, K.-W. Ng, Deep learning based-
recommendation system: An overview on models,
datasets, evaluation metrics, and future trends, in:
Proceedings of the 2019 2nd International Conference
on Computational Intelligence and Intelligent Systems,
2019, pp. 6–11.

[48] F. M. Harper, J. A. Konstan, The movielens datasets:
History and context, Acm transactions on interactive
intelligent systems (tiis) 5 (2015) 1–19.

[49] J. Ni, J. Li, J. McAuley, Justifying recommendations us-
ing distantly-labeled reviews and fine-grained aspects,
in: Proceedings of the 2019 conference on empirical
methods in natural language processing and the 9th
international joint conference on natural language
processing (EMNLP-IJCNLP), 2019, pp. 188–197.

[50] P. Jaccard, The distribution of the flora in the alpine
zone. 1, New phytologist 11 (1912) 37–50.

	1 Introduction
	2 Related Work
	2.1 Sequential Recommendation
	2.2 Robustness of recommender systems

	3 Setting
	3.1 Classic Training Method

	4 Problem Statement
	5 Methodology
	5.1 More Positive Items
	5.2 Margin Loss
	5.3 Mixed Loss
	5.4 Experiments
	5.4.1 Datasets
	5.4.2 Models
	5.4.3 Preprocessing
	5.4.4 Evaluation
	5.4.5 Hyperparameter Optimization
	5.4.6 Implementation

	6 Results
	6.1 Last Items Importance
	6.2 Performance of Different Training Methods in Cases of Missing Last Items
	6.2.1 A Clear Advantage in Handling Missing Data
	6.2.2 Length of sequences

	6.3 Rank List Stability
	6.4 Study on the Number of Positives

	7 Implications of the Research Findings
	7.1 Theoretical Implications
	7.2 Practical Implications

	8 Discussion and Conclusions

