
Greedy Ensemble Selection for Top-N Recommendations
Tobias Vente1, Zainil Mehta1, Lukas Wegmeth1 and Joeran Beel1

1Intelligent Systems Group, University of Siegen, Germany

Abstract
Despite the pivotal role ensembling played in the success of BellKors’ Pragmatic Chaos Team in winning the Netflix Prize challenge in
the early 2000s, it never became a standard practice in recommender systems. In contrast, ensembling, particularly greedy ensemble
selection, has become a standard practice in machine learning to enhance performance compared to a single model. Despite the success
of greedy ensemble selection in classification and regression tasks, it has not been adapted for top-n prediction tasks. Hence, in this
study, we aim to analyze the potential of greedy ensemble selection to boost the performance of recommender system models for top-n
prediction tasks. We adapt the concept of greedy ensemble selection for top-n prediction tasks, train and optimize ten factorization-
and neighborhood-based models on five datasets, and compare the performance of the ensemble to that of the individual models. Our
experiments reveal that greedy ensemble selection always performs better than a single model and enhances performance by an average
of 8.8% on NDCG@5, 8.6% on NDCG@10, and 16.3% on NDCG@20 compared to the single best model.

Keywords
Ensembling, Recommender Systems, Algorithm Selection, Automatic Algorithm Selection

1. Introduction
Ensembling played a pivotal role for BellKors’ Pragmatic
Chaos Team, enhancing their recommender system to win
the Netflix Prize challenge in the early 2000s [1, 2]. Despite
its success in the competition, ensembling did not become
a standard practice in the field of recommender systems.
Today, mainly hybrid recommender systems rely on ensem-
bling trained on different data or to aggregate predictions
[3, 4]. Thereby, often combining collaborative filtering with
content-based models to cancel out the weaknesses of indi-
vidual models like the cold-start problem [5].

In comparison, in machine learning, ensembling, particu-
larly greedy ensemble selection, is a standard practice [6],
enhancing performance by as much as 37% in best-case
scenarios and improving robustness [7]. Moreover, in auto-
mated machine learning, ensembling significantly enhances
performance to the extent that some tools prioritize ensem-
bling over further hyperparameter optimization [8].

However, despite the success of greedy ensemble selec-
tion for regression and classification, it has never been
adapted for top-n ranking prediction tasks [6]. While ensem-
bling has proven effective in machine learning, it remains
a largely overlooked approach in the field of recommender
systems. In recommender systems, researchers continue
to debate whether the field makes progress, yet the focus
primarily remains on continuously developing more sophis-
ticated algorithms [9]. Instead of implementing a new, more
complex recommender system algorithm, we want to focus
on ensembling already existing algorithms.

Therefore, we want to analyze the potential of greedy
ensemble selection for top-n prediction tasks and answer
the question: RQ:How does the ensembling of factorization-
and neighborhood-based models impact performance and
robustness compared to a single optimized model?

In this work, we adapt greedy ensemble selection for
top-n prediction tasks to assess its potential for enhancing

RobustRecSys: Design, Evaluation, and Deployment of Robust Recom-
mender Systems Workshop @ RecSys 2024, 18 October, 2024, Bari, Italy.
Envelope-Open tobias.vente@uni-siegen.de (T. Vente);
zainil.mehta@student.uni-siegen.de (Z. Mehta);
lukas.wegmeth@uni-siegen.de (L. Wegmeth);
joeran.beel@uni-siegen.de (J. Beel)
Orcid 0009-0003-8881-2379 (T. Vente); 0009-0002-0556-9493 (Z. Mehta);
0000-0001-8848-9434 (L. Wegmeth); 0000-0002-4537-5573 (J. Beel)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

ranking performance. We focus on ten fast and easy-to-train
factorization- and neighborhood-based models. We then
evaluate the ensemble output of these ten models on five
datasets using NDCG@k, with k set to 5, 10, and 20, aiming
to quantify the performance and robustness improvements
compared to single optimized models.

Our contribution is the implementation of greedy en-
semble selection for top-n ranking prediction tasks, along
with a comprehensive analysis of its performance impact
and robustness compared to single optimized models. Our
results indicate that greedy ensemble selection improves
performance by an average of 8.8% on NDCG@5, 8.6% on
NDCG@10, and 16.3% on NDCG@20 compared to the single
best model on five datasets. Additionally, while no single
model performs best across all datasets, greedy ensemble
selection consistently performs best, representing the most
robust recommender with regard to performance.

The implementation of greedy ensemble selection, along
with the code and necessary documentation to reproduce all
experiments, is publicly available in our GitHub repository1.

2. Related Work
The use of ensembling techniques in recommender systems
is not new and has been covered in the literature [4, 3, 5, 10].

Today, primarily hybrid recommender systems use ensem-
bling to mitigate the weaknesses of individual algorithms
[3, 5, 4]. Thereby, hybrid recommender systems require
knowledge of the strengths and weaknesses of different al-
gorithms to ensemble them effectively. In contrast to hybrid
recommender systems, our work focuses on ensembling rec-
ommender system algorithms without manually selecting
complementary algorithm combinations.

As in our work, researchers have applied ensembling
techniques that do not require manual model selection for
ensembling. For example, they have used standard machine
learning ensemble techniques, such as bagging and boosting
to recommender systems [11, 10], allowing the ensembling
of a diverse set of models without manual model selection.
However, their work mostly focuses on rating prediction
tasks. Furthermore, bagging and boosting require the modi-
fication of training data. We focus on post-hoc ensembling,
only taking model predictions into account.

1https://github.com/ISG-Siegen/greedy-ensemble-selection-for-top-n-r
ecommendations

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:tobias.vente@uni-siegen.de
mailto:zainil.mehta@student.uni-siegen.de
mailto:lukas.wegmeth@uni-siegen.de
mailto:joeran.beel@uni-siegen.de
https://orcid.org/0009-0003-8881-2379
https://orcid.org/0009-0002-0556-9493
https://orcid.org/0000-0001-8848-9434
https://orcid.org/0000-0002-4537-5573
https://creativecommons.org/licenses/by/4.0/deed.en
https://github.com/ISG-Siegen/greedy-ensemble-selection-for-top-n-recommendations
https://github.com/ISG-Siegen/greedy-ensemble-selection-for-top-n-recommendations


Additionally, researchers have analyzed ensembling for
various other aspects of recommender systems. Researchers
ensemble predictions of models trained on different datasets
containing different user feedback types [12, 13]. Re-
searchers focus on ensembling techniques to ensemble mod-
els optimized for different objectives [14, 15]. Researchers
implement ensembling techniques specifically designed and
tested for certain domains, applications, or with a limited
number of base models [16, 14, 17]. Or optimize ensembling
techniques to specific datasets to showcase the capabilities
of ensembling without focusing on the generalization [18].
However, these approaches have limitations: they often
only work with models from the same algorithm, require
multiple data inputs, necessitate optimization for multiple
objectives, or focus ensembling for rating predictions.

Recent work has focused on greedy ensemble selection
for recommender systems [19, 20]. In this work, the authors
applied greedy ensemble selection to rating prediction tasks
by treating them as regression problems, thus utilizing the
standard greedy ensemble selection approach for regres-
sion. However, this method does not offer solutions for
top-n ranking predictions, leaving a gap in the application
of greedy ensemble selection in recommender systems.

3. Greedy Ensemble Selection
Greedy ensemble selection, as implemented in machine
learning, cannot be directly applied to top-n recommen-
dations in recommender systems. Greedy ensemble selec-
tion for classification applies majority voting on predictions.
However, majority voting fails for top-n recommendations
since the number of repeating item recommendations across
users is often insufficient. Similarly, taking the mean for re-
gression tasks is not applicable, as top-n recommendations
deal with ranked lists instead of single numeric values re-
turned by each model. Therefore, we focus on aggregating
and re-ranking the prediction scores of multiple models to
generate an ensemble of their outputs.

To apply greedy ensemble selection, we assume we have
a set of trained and optimized models 𝑃, each predicting 𝑘′
items and their validation performance. We aim to aggregate
the 𝑘′ predictions of every model 𝑝𝑛 ∈ 𝑃 into one ranked list
of length 𝑘. This requires the length 𝑘′ of every predicted
list 𝑝𝑛 to be at least the same length as 𝑘.

In ensembling, we can utilize more predictions (𝑘′) than
the desired output list length (𝑘). There is a chance that
a prediction ranked at position 𝑘 + 1 or beyond still holds
relevance or contributes valuable information, even though
it does not make it into the top 𝑘 predictions of the model.
Taking 𝑘′ predictions into account enables the ensemble pro-
cess to utilize a broader range of data, potentially improving
the performance of the final ensembled recommendations.
Furthermore, utilizing 𝑘′ predictions does not increase the
prediction cost of the base models since all models score all
predictions anyway before selecting the top 𝑘.

We normalize all prediction scores of 𝑘′ and multiply
each prediction score by the validation performance of the
respective model 𝑝𝑛 (Algorithm 1). The normalization en-
sures that all models have an equal impact in the ensembling,
while the validation performance multiplication weights the
impact based on the models’ performance. Consequently,
the impact of models with good validation performance will
be increased relative to those of poorly performing models.

Then, we initiate the greedy search by examining all

subsets of 𝑝𝑛 ∈ 𝑃 and aggregating the 𝑘′ predictions by ag-
gregating and re-ranking the prediction scores of all in the
subset included models (Algorithm 1). If items appear in
the 𝑘′ lists of multiple models, the item scores are summed
to reflect their collective relevance across models. We then
select the top-𝑘 predictions of the ensembled list. The per-
formance of every subset of all models 𝑝𝑛 ∈ 𝑃 is evaluated on
the validation set. The best-performing ensemble of models
is then selected as the final result of the greedy ensemble
selection, and their top-𝑘 predictions are returned.

4. Experiments
We conducted all of our experiments with ten differ-
ent factorization- and neighborhood-based algorithms and
greedy ensemble selection on five datasets. The hardware
includes AMD EPYC 7452 CPU processors, each with 32
cores and a CPU frequency ranging from 2.35 to 3.35 GHz.

4.1. Experimental Pipeline
In our experimental pipeline, we apply five-fold cross-
validation to all five datasets, randomly splitting each fold
into three sets: 60% for training, 20% for validation, and
20% for testing. With the training and validation sets, we
optimize all included algorithms with two hours of ran-
dom search to select the best hyperparameter configuration.
With the test set, we evaluate the final performance of the
single models as well as the greedy ensemble selection. This
combination of five-fold cross-validation and random search
allows each algorithm to be finely tuned on every subset of
the data while mitigating the effects of randomness in data
splits and hyperparameter selection [21].

Wemeasure performance usingNDCG@k for 𝑘 = 5, 10, 20
to evaluate top-n ranking predictions for different list
lengths. TheNDCG@k model performance on the validation
set, obtained from the random search optimization process,
is later used to weight the model predictions (Section 3).

4.1.1. Datasets

We include five distinct datasets of different sizes in our
experiments and refer to Table 1 for a detailed overview.
We transform convert datasets with user ratings, specifically
Movielens-1M, Movielens-100k, and CiaoDVD, into binary
user feedback datasets as it is done in related work [4, 3, 5].
Furthermore, we prune all datasets such that all included
users and items have at least five interactions, commonly
known as five-core pruning [22, 23, 24]. Table 1 shows all
included datasets’ statistics after preprocessing.

Table 1
Data set statistics after five-core pruning and user feedback trans-
formation. Split between the implicit (first part) and explicit (sec-
ond part) feedback data sets.

Name Interactions Users Items Sparsity

Citeulike-a[25] 200,180 5,536 15,429 99.77%
Hetrec-Lastfm[26] 71,355 1,859 2,823 98.64%
CiaoDVD2 23,467 1,582 1,788 99.17%
MovieLens-1M[27] 835,789 6,038 3,307 95.81%
MovieLens-100k[27] 81,697 943 1,203 92.8%



Table 2
NDCG@10 performance of ten factorization- and neighborhood-based models, along with greedy ensemble selection, across
five datasets. The best results for individual models are indicated in bold, while the overall best performance is highlighted in
bold and underlined. The relative performance increase is calculated based on the performance of Popularity.

Algorithms CiaoDVD CiteULike-A Hetrec-LastFM MovieLens-1M MovieLens-100k Rel. Performance Increase

ALS 0.02 0.066 0.147 0.234 0.232 84%
BPR 0.013 0.027 0.082 0.119 0.173 9%
ImplicitMF 0.022 0.109 0.159 0.189 0.184 75%
ItemItem-BM25 0.024 0.106 0.168 0.234 0.221 99%
ItemItem-Cosine 0.01 0.082 0.169 0.217 0.21 82%
ItemItem-TFIDF 0.016 0.094 0.168 0.225 0.218 90%
ItemKNN 0.013 0.096 0.175 0.216 0.212 88%
LogisticMF 0.018 0.058 0.135 0.161 0.191 49%
UserKNN 0.026 0.112 0.157 0.235 0.225 99%
Popularity 0.016 0.009 0.07 0.142 0.142 0%

Greedy Ensemble 0.03 0.117 0.183 0.247 0.243 108%

4.1.2. Algorithms

We include ten factorization- and neighborhood-based rec-
ommender systems algorithms in our experiments. The
algorithm implementations are from the Implicit [28] and
LensKit [29] recommender systems libraries. The algo-
rithms from Implicit are Alternating Least Squares (ALS),
Logistic Matrix Factorization (LogisticMF), Bayesian Person-
alized Ranking (BPR), and Item-Item Nearest Neighbors with
distance metrics Cosine Similarity, TF-IDF, and BM25. The
algorithms from LensKit are Implicit Matrix Factorization
(ImplicitMF), User-User Nearest Neighbors (UserKNN), Item-
Item Nearest Neighbors (ItemKNN), and most Popular.

4.2. Greedy Ensemble Selection
We run greedy ensemble selection using various prediction
input list lengths (𝑘′) to examine the impact of predictions
ranked higher than 𝑘 on the ensembling process (Section 3).
We set 𝑘′ to 5, 10, 15, 25, 50, 75, 100, 125, and 150. This wide
range of 𝑘′ values helps us identify trends in the impact
of longer input list lengths. All ensemble configurations
are evaluated on the validation set. Ultimately, we select
the ensemble configuration that performs best on average
across all folds, with the optimal 𝑘′ value.

5. Results
Our experiments reveal that greedy ensemble selection en-
hances performance by an average of 8.8% on NDCG@5,
8.6% on NDCG@10 (Table 2), and 16.3% on NDCG@20 com-
pared to the single best model. Since NDCG@10 is the most
commonly used evaluation metric with a cutoff of 𝑘 = 10
and the trends are consistent across all 𝑘 values, our analysis
will focus on the NDCG@10 results.

In general, the algorithm performance ranking varies
across datasets. While Popularity always yields the lowest
NDCG@10 score (Table 1), the best-performing algorithm
changes. UserKNN performs best on CiaoDVD, CiteULike-
A, and MovieLens-1M, while ItemKNN performs best on
Hetrec-LastFM and ALS on MovieLens-100k.

In contrast to the single algorithm performances, greedy
ensemble selection consistently outperforms all algorithms
across all datasets for all NDCG@𝑘 values and adverts the
algorithm selection problem. Greedy ensemble selection
effectively identifies and aggregates a subset of models that
outperforms the single best model, resulting in the highest

5 10 15 100 125 15025 50 75
k' Top N Recommendations

99%

101%

103%

105%

108%

R
el

at
iv

e 
N

D
C

G
@

10
 P

er
fo

rm
an

ce

Average Ensembling Performance on Various k' Values

Greedy Ensemble Selection
Single Best Algorithm

Figure 1: Performance differences of greedy ensemble selection
with varying input prediction list lengths (𝑘′) compared to the
virtual single best algorithm, averaged over five datasets. The x-
axis represents the input prediction list lengths (𝑘′), and the y-axis
shows the NDCG@10 performance. The shaded band represents
the confidence interval of 95% for NDCG@10.

NDCG@k scores on all five datasets. This approach reliably
enhances performance and presents robust results compared
to the single best model respectively.

On average, the overall performance advantage of greedy
ensemble selection compared to the single best algorithm is
8.6% on NDCG@10 (108% vs. 99% for UserKNN, Table 2), but
varies across datasets. Greedy ensemble selection shows a
performance increase as high as 15.4% on CiaoDVD (0.03 vs.
0.026 for UserKNN, Section 5) and as low as 0.7% on Hetrec-
LastFM (0.175 vs. 0.174 for ItemKNN, Section 5). On datasets
like CiteULike-A, Movielens-1M, and MovieLens-100k, the
performance increase is approximately 5%.

Longer prediction input lists of length 𝑘′ (Section 3) im-
prove the overall model performance (Fig. 1). Predictions
that do not make it into the final 𝑘 predictions of the single
models still contribute valuable information to the ensem-
ble process. While ensembling 𝑘′ = 𝑘 predictions already
enhance performance, increasing 𝑘′ can further improve
results. We tested using up to 150 predictions per user from
each model and observed that the ensemble’s performance
plateaued beyond 𝑘′ = 100 predictions (Fig. 1). Additionally,
increasing 𝑘′ beyond this point incurs higher computational
costs during the ensembling process without yielding sig-
nificant performance gains.



6. Discussion
To comprehensively answer our research question: How
does the ensembling of factorization- and neighborhood-
based models impact performance compared to a single opti-
mized model? We conclude that greedy ensemble selection
of factorization- and neighborhood-based models enhances
the performance, on average, up to 16.3% compared to the
single best model averaged over all datasets.

Our experiments show that greedy ensemble selection
enhances performance and avoids the need for manual al-
gorithm selection. By ensembling a subset of all available
algorithms, greedy ensemble selection consistently achieves
better results than any single algorithm across all included
datasets. However, ensembling introduces an additional
step in the recommender systems pipeline.

Despite its performance boost, greedy ensemble selection
for top-n recommendations is expensive compared to single
factorization- and neighborhood-based models. In addition
to adding complexity to the pipeline, ensembling requires
the training and optimization of multiple models to utilize
their predictions for the top-n recommendations. Increasing
the overall complexity and computational cost.

Nevertheless, the research community appears willing to
accept higher computational costs for better performance, as
evidenced by more sophisticated algorithms and the grow-
ing use of deep-learning approaches. While greedy ensem-
ble selection involves an exhaustive search, further research
could optimize the ensembling process for greater efficiency.

Currently, there is an ongoing debate in the field about
whether recommender systems are truly making progress
[9]. Much of the current research focuses on developing
new (deep-learning) approaches, which do not necessarily
outperform well-optimized traditional models. Revisiting
and adapting ensembling for top-n recommendations, par-
ticularly with easy-to-train traditional recommender sys-
tem algorithms, could open a new research direction. By
adapting and improving advanced ensembling methods, rec-
ommender systems could significantly enhance their per-
formance, especially for top-n predictions.

6.1. Future Work
Future work can investigate the contribution of more ad-
vanced deep-learning algorithms to the ensembling process.
This includes assessing the models’ potential performance
enhancements and comparing the overall performance to
state-of-the-art deep-learning methods. Furthermore, ana-
lyzingmore efficient strategies to build an effective ensemble
is valuable. Finally, examining the impact of ensembling
across different domains within recommender systems helps
better understand domain-specific trends.

References
[1] A. Toscher, M. Jahrer, R. M. Bell, The bigchaos solution

to the net�ix grand prize (????).
[2] D. H. Wolpert, Stacked generalization, Neural Net-

works 5 (1992) 241–259. doi:https://doi.org/10.1
016/S0893-6080(05)80023-1.

[3] E. Çano, M. Morisio, Hybrid recommender systems:
A systematic literature review, Intell. Data Anal. 21
(2017) 1487–1524. URL: https://doi.org/10.3233/IDA-1
63209. doi:10.3233/IDA-163209.

[4] R. Burke, Hybrid Systems for Personalized Recom-
mendations, volume 3169 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005, p. 133–152. URL: http://link.springer.com/10.100
7/11577935_7. doi:10.1007/11577935_7.

[5] R. Burke, Hybrid recommender systems: Survey and
experiments, User Modeling and User-Adapted Inter-
action 12 (2002) 331–370. doi:10.1023/A:10212407
30564.

[6] P. Gijsbers, M. L. Bueno, S. Coors, E. LeDell, S. Poirier,
J. Thomas, B. Bischl, J. Vanschoren, Amlb: an automl
benchmark, Journal of Machine Learning Research 25
(2024) 1–65.

[7] J. Heinermann, O. Kramer, Machine learning ensem-
bles for wind power prediction, Renewable Energy 89
(2016) 671–679.

[8] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Lar-
roy, M. Li, A. Smola, Autogluon-tabular: Robust and
accurate automl for structured data, 2020. URL: https:
//arxiv.org/abs/2003.06505. arXiv:2003.06505.

[9] M. Ferrari Dacrema, P. Cremonesi, D. Jannach, Are
we really making much progress? a worrying analy-
sis of recent neural recommendation approaches, in:
Proceedings of the 13th ACM Conference on Recom-
mender Systems, RecSys ’19, Association for Comput-
ing Machinery, New York, NY, USA, 2019, p. 101–109.
URL: https://doi.org/10.1145/3298689.3347058.
doi:10.1145/3298689.3347058.

[10] A. Bar, L. Rokach, G. Shani, B. Shapira, A. Schclar,
Improving Simple Collaborative Filtering Models Us-
ing Ensemble Methods, in: D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell,
M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Stef-
fen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, Z.-H. Zhou, F. Roli, J. Kittler (Eds.), Multi-
ple Classifier Systems, volume 7872, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 1–12. URL:
http://link.springer.com/10.1007/978-3-642-38067-9_1.
doi:10.1007/978- 3- 642- 38067- 9_1, series Title:
Lecture Notes in Computer Science.

[11] R. Boim, T. Milo, Methods for boosting recommender
systems, in: 2011 IEEE 27th International Conference
on Data Engineering Workshops, 2011, pp. 288–291.
doi:10.1109/ICDEW.2011.5767667.

[12] A. da Costa Fortes, M. G. Manzato, Ensemble Learn-
ing in Recommender Systems: Combining Multiple
User Interactions for Ranking Personalization, in: Pro-
ceedings of the 20th Brazilian Symposium on Multi-
media and the Web, WebMedia ’14, Association for
Computing Machinery, New York, NY, USA, 2014, pp.
47–54. URL: https://doi.org/10.1145/2664551.2664556.
doi:10.1145/2664551.2664556.

[13] A. F. da Costa, M. G. Manzato, Exploiting multimodal
interactions in recommender systems with ensemble
algorithms, Information Systems 56 (2016) 120–132.
URL: https://www.sciencedirect.com/science/article/
pii/S0306437915300818. doi:10.1016/j.is.2015.09
.007.

[14] D. Carmel, E. Haramaty, A. Lazerson, L. Lewin-Eytan,
Multi-Objective Ranking Optimization for Product
Search Using Stochastic Label Aggregation, in: Pro-
ceedings of The Web Conference 2020, WWW ’20,
Association for Computing Machinery, New York, NY,
USA, 2020, pp. 373–383. URL: https://doi.org/10.1145/
3366423.3380122. doi:10.1145/3366423.3380122.

http://dx.doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.3233/IDA-163209
https://doi.org/10.3233/IDA-163209
http://dx.doi.org/10.3233/IDA-163209
http://link.springer.com/10.1007/11577935_7
http://link.springer.com/10.1007/11577935_7
http://dx.doi.org/10.1007/11577935_7
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1023/A:1021240730564
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
http://arxiv.org/abs/2003.06505
https://doi.org/10.1145/3298689.3347058
http://dx.doi.org/10.1145/3298689.3347058
http://link.springer.com/10.1007/978-3-642-38067-9_1
http://dx.doi.org/10.1007/978-3-642-38067-9_1
http://dx.doi.org/10.1109/ICDEW.2011.5767667
https://doi.org/10.1145/2664551.2664556
http://dx.doi.org/10.1145/2664551.2664556
https://www.sciencedirect.com/science/article/pii/S0306437915300818
https://www.sciencedirect.com/science/article/pii/S0306437915300818
http://dx.doi.org/10.1016/j.is.2015.09.007
http://dx.doi.org/10.1016/j.is.2015.09.007
https://doi.org/10.1145/3366423.3380122
https://doi.org/10.1145/3366423.3380122
http://dx.doi.org/10.1145/3366423.3380122


[15] P. Nguyen, J. Dines, J. Krasnodebski, AMulti-Objective
Learning to re-Rank Approach to Optimize Online
Marketplaces for Multiple Stakeholders, 2017. URL:
http://arxiv.org/abs/1708.00651. doi:10.48550/arXiv
.1708.00651, arXiv:1708.00651 [cs].

[16] N. H. Kulkarni, G. N. Srinivasan, B. M. Sagar, N. K. Cau-
very, Improving Crop Productivity Through A Crop
Recommendation System Using Ensembling Tech-
nique, in: 2018 3rd International Conference on
Computational Systems and Information Technology
for Sustainable Solutions (CSITSS), 2018, pp. 114–119.
doi:10.1109/CSITSS.2018.8768790.

[17] H. Wu, K. Yue, Y. Pei, B. Li, Y. Zhao, F. Dong, Collabo-
rative topic regression with social trust ensemble for
recommendation in social media systems, Knowledge-
Based Systems 97 (2016). doi:10.1016/j.knosys.201
6.01.011.

[18] S. Forouzandeh, K. Berahmand, M. Rostami, Presenta-
tion of a recommender system with ensemble learning
and graph embedding: a case on MovieLens, Mul-
timedia Tools and Applications 80 (2021) 7805–7832.
URL: https://doi.org/10.1007/s11042-020-09949-5.
doi:10.1007/s11042-020-09949-5.

[19] T. Vente, L. Purucker, J. Beel, The feasibility of greedy
ensemble selection for automated recommender sys-
tems, in: COSEAL Workshop 2022, 2022. URL: https:
//www.researchgate.net/publication/373841225_The
_Feasibility_of_Greedy_Ensemble_Selection_for_Au
tomated_Recommender_Systems.

[20] T. Vente, M. Ekstrand, J. Beel, Introducing lenskit-
auto, an experimental automated recommender sys-
tem (autorecsys) toolkit, in: Proceedings of the 17th
ACM Conference on Recommender Systems, 2023, pp.
1212–1216.

[21] T.-T. Wong, P.-Y. Yeh, Reliable accuracy estimates
from k-fold cross validation, IEEE Transactions on
Knowledge and Data Engineering 32 (2020) 1586–1594.
doi:10.1109/TKDE.2019.2912815.

[22] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, P. Jiang,
Bert4rec: Sequential recommendation with bidirec-
tional encoder representations from transformer, in:
Proceedings of the 28th ACM International Confer-
ence on Information and Knowledge Management,
CIKM ’19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 1441–1450. URL: https:
//doi.org/10.1145/3357384.3357895. doi:10.1145/3357
384.3357895.

[23] Z. Yue, Z. He, H. Zeng, J. McAuley, Black-box attacks
on sequential recommenders via data-free model ex-
traction, in: Proceedings of the 15th ACM Conference
on Recommender Systems, RecSys ’21, Association for
Computing Machinery, New York, NY, USA, 2021, p.
44–54. URL: https://doi.org/10.1145/3460231.3474275.
doi:10.1145/3460231.3474275.

[24] Z. Yue, H. Zeng, Z. Kou, L. Shang, D. Wang, Defending
substitution-based profile pollution attacks on sequen-
tial recommenders, in: Proceedings of the 16th ACM
Conference on Recommender Systems, RecSys ’22, As-
sociation for Computing Machinery, New York, NY,
USA, 2022, p. 59–70. URL: https://doi.org/10.1145/35
23227.3546770. doi:10.1145/3523227.3546770.

[25] H. Wang, B. Chen, W.-J. Li, Collaborative topic re-
gression with social regularization for tag recommen-
dation, in: Proceedings of the Twenty-Third Inter-
national Joint Conference on Artificial Intelligence,

IJCAI ’13, AAAI Press, 2013, p. 2719–2725.
[26] I. Cantador, P. Brusilovsky, T. Kuflik, Second work-

shop on information heterogeneity and fusion in rec-
ommender systems (hetrec2011), in: Proceedings
of the Fifth ACM Conference on Recommender Sys-
tems, RecSys ’11, Association for Computing Ma-
chinery, New York, NY, USA, 2011, p. 387–388. URL:
https://doi.org/10.1145/2043932.2044016. doi:10.114
5/2043932.2044016.

[27] F. M. Harper, J. A. Konstan, The movielens datasets:
History and context, ACM Trans. Interact. Intell. Syst.
5 (2015). URL: https://doi.org/10.1145/2827872. doi:10
.1145/2827872.

[28] B. Frederickson, Fast python collaborative filtering for
implicit datasets, URL https://github. com/benfred/im-
plicit (2018).

[29] M. D. Ekstrand, Lenskit for python: Next-generation
software for recommender systems experiments, in:
Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management,
CIKM ’20, Association for Computing Machinery,
New York, NY, USA, 2020, p. 2999–3006. URL: https:
//doi.org/10.1145/3340531.3412778. doi:10.1145/3340
531.3412778.

http://arxiv.org/abs/1708.00651
http://dx.doi.org/10.48550/arXiv.1708.00651
http://dx.doi.org/10.48550/arXiv.1708.00651
http://dx.doi.org/10.1109/CSITSS.2018.8768790
http://dx.doi.org/10.1016/j.knosys.2016.01.011
http://dx.doi.org/10.1016/j.knosys.2016.01.011
https://doi.org/10.1007/s11042-020-09949-5
http://dx.doi.org/10.1007/s11042-020-09949-5
https://www.researchgate.net/publication/373841225_The_Feasibility_of_Greedy_Ensemble_Selection_for_Automated_Recommender_Systems
https://www.researchgate.net/publication/373841225_The_Feasibility_of_Greedy_Ensemble_Selection_for_Automated_Recommender_Systems
https://www.researchgate.net/publication/373841225_The_Feasibility_of_Greedy_Ensemble_Selection_for_Automated_Recommender_Systems
https://www.researchgate.net/publication/373841225_The_Feasibility_of_Greedy_Ensemble_Selection_for_Automated_Recommender_Systems
http://dx.doi.org/10.1109/TKDE.2019.2912815
https://doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3357384.3357895
http://dx.doi.org/10.1145/3357384.3357895
http://dx.doi.org/10.1145/3357384.3357895
https://doi.org/10.1145/3460231.3474275
http://dx.doi.org/10.1145/3460231.3474275
https://doi.org/10.1145/3523227.3546770
https://doi.org/10.1145/3523227.3546770
http://dx.doi.org/10.1145/3523227.3546770
https://doi.org/10.1145/2043932.2044016
http://dx.doi.org/10.1145/2043932.2044016
http://dx.doi.org/10.1145/2043932.2044016
https://doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
http://dx.doi.org/10.1145/2827872
https://doi.org/10.1145/3340531.3412778
https://doi.org/10.1145/3340531.3412778
http://dx.doi.org/10.1145/3340531.3412778
http://dx.doi.org/10.1145/3340531.3412778

	1 Introduction
	2 Related Work
	3 Greedy Ensemble Selection
	4 Experiments
	4.1 Experimental Pipeline
	4.1.1 Datasets
	4.1.2 Algorithms

	4.2 Greedy Ensemble Selection

	5 Results
	6 Discussion
	6.1 Future Work


