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Abstract
Position bias poses a persistent challenge in recommender systems, with much of the existing research focusing on refining ranking
relevance and driving user engagement. However, in practical applications, the mitigation of position bias does not always result in
detectable short-term improvements in ranking relevance. This paper provides an alternative, practically useful view of what position
bias reduction methods can achieve. It demonstrates that position debiasing can spread visibility and interactions more evenly across
the assortment, effectively reducing a skew in the popularity of items induced by the position bias through a feedback loop. We offer
an explanation of how position bias affects item popularity. This includes an illustrative model of the item popularity histogram and
the effect of the position bias on its skewness. Through offline and online experiments on our large-scale e-commerce platform, we
show that position debiasing can significantly improve assortment utilization, without any degradation in user engagement or financial
metrics. This makes the ranking fairer and helps attract more partners or content providers, benefiting the customers and the business
in the long term.
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1. Introduction
From a long-term strategy standpoint, a modern e-
commerce platform aims to be a one-stop shop for all
platform-related shopping needs. That requires offering
vast product selections, making it challenging for customers
to find products aligned with their preferences and current
needs. To address this challenge, e-commerce platforms de-
ploy personalized recommender and ranking systems that
nowadays play a central role in the customer shopping ex-
perience [1]. Yet, there is an obstacle down this path: the ef-
fectiveness of those personalization systems is reduced by a
naturally present feedback loop [2]. As items ranked higher
receive more user attention, the production recommender
model creates a skew in the collected user interaction data
in favor of itself. This skew then impacts subsequent models
as they are trained on the collected data, creating a repeti-
tive cycle and reinforcing suboptimal model behaviors. For
example, it makes filter bubbles [3] and echo chambers in
e-commerce [4] more persistent.

Note that the key driver behind the described feedback
loop is the tendency of users to attend to some positions in
the layout more than to others. This phenomenon is referred
to as position bias [2, 5]. Position bias can lead to a lack of
interaction with highly relevant items that are ranked low.

The literature on position bias largely focuses on improv-
ing the relevance of ranking and the associated theories and
experiments predict gains in user engagement when the
respective methods are deployed [6, 7]. We argue however
that depending on the strength of the position bias and the
effectiveness of the respective debiasing method, one may
not observe such gains in the short term. On one hand,
the strength of the position bias might not be sufficient to
impact relevance significantly. On the other – mitigating
position bias is known to be difficult as the associated meth-
ods often lack robustness to data sparsity [8], exhibit high
variance [9, 10], or suffer from interleaving biases [11].

Yet, as this paper shows, debiasing has another poten-
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tial benefit apart from driving engagement. Namely, it can
spread visibility and interactions more evenly across the
assortment, reducing the extra skew in the popularity of
items incurred by the position bias.

Most relevant to our work are studies that have looked
into how the feedback loop impacts popularity [12, 13, 14].
In simulations, they show that the feedback loop tends to
make already popular items even more popular and less
popular items even less popular, creating a “rich get richer”
effect. Effectively, it means that recorded sets of user inter-
actions become more homogeneous [15, 16].

In this paper, we offer a theoretical view of how the feed-
back loop driven by the position bias affects item popularity.
We propose a model to quantify the skew in the popularity
of items and the effect of the position bias on that skew.
Through offline and online experiments on our e-commerce
platform, we demonstrate that position debiasing can effec-
tively spread visibility and interactions more evenly across
the assortment while leaving user engagement and financial
metrics intact.

2. Recommender system and
popularity of items

Consider a recommender system serving a stream of incom-
ing user requests. In response to each of those requests, the
system displays a sequence of recommended items taken
from a larger item vocabulary (assortment). Presented with
that sequence, the user observes some of its elements and
interacts with those observed items that he or she finds
relevant. Over any fixed time frame, this process generates
a number of interactions. Naturally, different items in the
vocabulary receive different number of interactions. We
use the term popularity to refer to the share of interactions
accumulated by a given item.

If we rank the items in the vocabulary by their popularity
and then plot the popularity as in Figure 1a (starting from
the most popular item), we will obtain a histogram that can
be typically approximated with a long-tailed distribution.

In this and subsequent sections, we will consider the cases
with and without the presence of the position bias and argue
about its effect on the skew of the popularity histogram.

First, consider a hypothetical case where position bias
does not exist. In this setting, the user interacts with a rec-
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Figure 1: Distribution of popularity of items. (a) Example of the histogram. (b) Discretized exponential distribution. The
distribution with parameter 𝜆′ has a stronger bias towards favoring more popular items illustrated by the expected values 𝜇
and 𝜇′ of the rank.

ommended item according to the probability of its relevance
to the user. For that, we denote by 𝐷 (without prime sym-
bol) the interaction data that represents the current iteration
that maintains its natural bias in popularity and remains
unaffected by the feedback loop. This data is used by the
recommender system to train and serve a model, resulting
in interactions that may be confounded by the exposure
mechanism – the feedback loop. Consequently, data 𝐷′ is
obtained in the subsequent iteration.

2.1. Interaction model without position bias
We follow the Plackett-Luce ranking model [17, 18] to de-
scribe the interaction model. Consider a situation where
we display an item 𝑖 given some presented ranking to the
user 𝑢. Let 𝑝𝑢𝑖 denote the actual relevance of item 𝑖 to the
user 𝑢 (i.e. the probability of the user interacting with an
item provided the item has been observed). To model user
engagement with recommended items 𝑅 without position
bias, we interpret the selection of an item at time step 𝑡 from
a presented ranking subset of items 𝑟𝑡 ∈ 𝑅 as sampling
from the probability mass function 𝑓𝐼(𝑖 | 𝑟𝑡) of a random
variable 𝐼𝑡. This random variable represents the selected
item at time step 𝑡. Formally, this is defined as follows:

𝑓𝐼(𝑖 | 𝑟𝑡) =
𝑝𝑢𝑖∑︀

𝑗∈𝑟𝑡
𝑝𝑢𝑗

, 𝑖 ∈ 𝑟𝑡,

𝐼𝑡 ∼ 𝑓𝐼 (𝑖 | 𝑟𝑡) .

(1)

These interactions (𝐼𝑡) together with the recommended
items 𝑅 on the current iteration will constitute data 𝐷′ on
the next iteration.

We assume that the presented ranking, along with its
interactions, can be viewed as a resampling process. In
the absence of feedback loop effects, these observations
are expected to produce data with distributions that are
approximately equivalent, 𝐷′ ≈ 𝐷, neglecting randomness
and user behavior/traffic changes.

This leads us to a key observation of how we model the ef-
fect of position bias on the popularity histogram, which has
remained unaffected by the feedback loop until now. Specif-
ically, we note that the collected interaction data can be
viewed as a sample from a distribution over the vocabulary.

3. Interaction model within the
feedback loop

A feedback loop is a mechanism that makes past ranking
results appear in the data as more aligned with user pref-
erences than they are. It is called a loop because once a

deployed model induces a skew in the data, it affects models
trained on that data. Those models get deployed, and the
whole phenomenon repeats. These iterations are illustrated
in Figure 2.
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Figure 2: Model’s life cycle within the feedback loop.

The most prominent driver of the feedback loop is posi-
tion bias. Now, we present the case where the user behavior
exhibits the position bias while interacting with the recom-
mendation model, which is trained on data 𝐷. This means
that the users may not observe all of the positions in the
recommended list and may also pay different attention to
different positions. In the remainder of this section, we elab-
orate on the concept of position bias and define it formally.
Then, we extend the interaction model defined in (1).

3.1. Position bias
Let 1𝐶 be the indicator of the event that the user interacted
with the item 𝑖 (e.g. clicked on it), 1𝑂 – the indicator of the
event that the user observed the displayed item 𝑖, and pos(𝑖)
– the position at which the item was displayed. Define the
relevance variable, 1𝑉 ∼ Bernoulli (𝑝𝑢𝑖), as the indicator
of the event that the item is relevant to the user. Under
the standard examination hypothesis [19], a displayed item
receives a click if and only if the user observes it and finds
relevant, i. e.

1𝐶 = 1𝑂 · 1𝑉 . (2)

From Eq. (2) it immediately follows that

P (1𝐶 = 1 |pos(𝑖) = 𝑘) ≤ P (1𝑉 = 1 | pos(𝑖) = 𝑘) .

Then the position bias can be defined as the following ratio:

bias(𝑘) := P (1𝐶 = 1 | pos(𝑖) = 𝑘)/P (1𝑉 = 1 | pos(𝑖) = 𝑘).

From Eq. (2), it follows that

P (1𝐶 = 1 |pos(𝑖) = 𝑘) = P (1𝐶1𝑉 = 1 | pos(𝑖) = 𝑘) ,

hence by the definition of conditional probability, the posi-
tion bias is the probability of being clicked conditional on
being relevant:

bias(𝑘) = P (1𝐶 = 1 | 1𝑉 = 1,pos(𝑖) = 𝑘) .



Finally, assuming 𝑂 and 𝑉 are independent events condi-
tional on the position, we have that

P (1𝐶 = 1 |pos(𝑖) = 𝑘) =

P (1𝑂 = 1 | pos(𝑖) = 𝑘)P (1𝑉 = 1 | pos(𝑖) = 𝑘) ,

and the bias is just the probability of observing the item 𝑖
displayed at the 𝑘-th position,

bias(𝑘) = P (1𝑂 = 1 | pos(𝑖) = 𝑘) .

The position bias is commonly modeled as follows [6]:

bias(𝑘) ∝ 𝑘−𝛽 , (3)

where the parameter 𝛽 controls the severity of bias.

3.2. Interaction model
To reason about the feedback loop dynamics of user behavior
and algorithmic recommendations built on observations 𝐷,
we define a model of how users engage with recommended
items 𝑅 considering the presence of position bias. For that,
we extend the model (1) with the position bias defined earlier
as follows:

𝑓𝐼(𝑖 | 𝑟𝑡) =
bias(pos(𝑖 | 𝑟𝑡)) · 𝑝𝑢𝑖∑︀

𝑗∈𝑟𝑡
bias(pos(𝑗 | 𝑟𝑡)) · 𝑝𝑢𝑗

, 𝑖 ∈ 𝑟𝑡,

𝐼𝑡 ∼ 𝑓𝐼 (𝑖 | 𝑟𝑡) ,
(4)

where the item’s selection is done by the user 𝑢 at time step
𝑡 given a presented ranking 𝑟𝑡 ∈ 𝑅. This way, position bias
introduces extra skew into sampling from the underlying
distribution of the user judgment. The interactions (𝐼𝑡) will
produce biased data 𝐷′ with distributions different from 𝐷.

4. Skew in the distribution of
popularity of items

In this section, we demonstrate and quantify the skew in
the popularity histogram based on interaction data 𝐷. As
we explained earlier, we view such interaction data as a
sample from a distribution over the vocabulary of items. A
common approach to model such a distribution is by dis-
cretizing a continuous density, like exponential distribution,
which gives a suitable approximation to a discrete empirical
distribution. We will use the assumption of an exponential
distribution.

4.1. Sample selection bias
Let us first turn to the case where the position bias does not
exist and let 𝜆 be the rate of the exponential distribution
that approximates the popularity histogram or, equivalently,
the item sampling distribution in that case.

Define the random variable 𝑋 as the popularity rank of
an item. Now, the interaction model (1) without position
bias results in sampling a random variable 𝑋𝑡 at time step
𝑡 from an exponential distribution with the rate parameter
𝜆. As a result, the current iteration produces observations
(𝑋𝑡) along with interactions (𝐼𝑡). These observations are ex-
pected to yield a similar distribution of popularity of items.

Next consider the interaction model (4) with position bias.
The interpretation of the interaction data as an item sample
applies in this scenario too but the sampling probabilities

change. We encounter biased sampling of 𝑋𝑡 because the
sampling distribution is different from the target popula-
tion exp (𝜆). This is known as the sample selection bias
[20]. In this scenario, the probability density function of 𝑋
can be described as follows using the weighted exponential
distribution:

𝑓𝑋(𝑥) =
𝑤bias(𝑥)𝜆𝑒

−𝜆𝑥∫︀∞
0

𝑤bias(𝑥)𝜆𝑒−𝜆𝑥 𝑑𝑥
∝ 𝜆′𝑒−𝜆′𝑥, 𝑥 > 0,

(5)
where 𝑥 corresponds to the popularity rank of an item and
𝑤bias(𝑥) is a weighting function that describes the effect of
the position bias on the popularity at different ranks.

Since the bias is typically a monotonically decreasing
function of the position and popular items are generally
shown in earlier positions, it is natural to expect that 𝜆′ >
𝜆 or, in other words, that the popularity histogram has a
greater skew when the position bias is present. Such positive
skewness can be demonstrated by estimating a monotonic
density under selection bias sampling [21].

4.2. Influence on popularity
Without correcting for the bias, the distribution of popu-
larity of items will follow exp(𝜆′) from Eq. (5), exhibiting
a stronger bias towards more popular items as depicted in
Figure 1b. A commonly used method to correct for sample
selection bias is the inverse probability-weighted method
originated from Horvitz and Thompson [22], akin to the
inverse propensity scores method used in counterfactual
learning-to-rank [7].

In this manner, we show how the feedback loop driven
by the position bias affects item popularity. Addressing po-
sition bias mitigates its influence on popularity, effectively
reducing the skew. The validity of this popularity amplifica-
tion is supported by simulations conducted in [12], where
the sampling process, derived from user interactions, can be
seen as a form of sample selection bias. If we further assume
that the deployment of a debiased model would make the
popularity histogram look closer to the hypothetical case
in which the position bias is absent, we should expect the
position debiasing to reduce the skew in the recorded popu-
larity histogram. This is exactly what we observed in our
debiasing experiment that we present next.

At last, we quantify the skew in the popularity of
items induced by the feedback loop as the relative change(︁
𝜆

′
− 𝜆

)︁
/𝜆 between the actual parameter 𝜆 and the bi-

ased parameter 𝜆
′

of Eq. (5). The magnitude of the change
reflects the strength of the feedback loop’s influence on
popularity.

5. Experiments and results
To address position bias and counteract the extra skew in
the popularity of items influenced by the feedback loop,
we integrate position-aware learning [23] into the ranking
model that powers both Browse and Search use cases of
our e-commerce platform’s catalog. This approach models
positional information as a feature during training, allowing
the model to separate the impact of item position from its
actual relevance. Due to its simplicity, this method is widely
used in practical applications [24]. In contrast, another
common approach – using inverse propensity weighting
transformations during training – often results in challenges
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Figure 3: Position-aware learning.

related to the accuracy of the transformations [23] and high
variance [9].

Dataset. Our dataset consists of a sample of catalog ses-
sions. Each session consists of articles displayed in response
to the customer’s browse or search request. This set of arti-
cles is combined with contextual data (e.g. market, device
type, browsing category, etc), user history prior to the time
of the request (previous product clicks, add-to-cart and add-
to-wishlist events, purchases), and information about which
of the displayed received an interaction from the customer.
The training dataset consists of 250 million sessions, involv-
ing 71 million unique customers across 25 markets, with an
average history length of 24 actions. We split the sessions
temporarily to create the training and test datasets to ensure
no data leakage.
Base Model. We performed debiasing on top of an ex-

isting catalog ranking model. This model has a two-tower
architecture [25, 26]. It did not have any mechanisms to
remove position bias prior to our intervention. The train-
ing objective of the model is to rank a given set of items.
This task is modeled as a pointwise prediction problem us-
ing binary cross entropy, where we predict the probability
of a customer performing a positive action. Within this
model, the user tower utilizes historical action sequences
and contextual data to produce a user embedding, while
the item tower represents item embeddings. Then, these
embeddings are combined using a dot product operation
to produce a score per item. We use early stopping as a
regularization technique to halt training when parameter
updates no longer yield improvements on a validation set.
Figure 3a depicts the final architecture, which includes the
baseline model along with a newly added shallow position
branch.
Methodology. Using the position-aware approach [24,

27], we add position information as a feature, allowing the
model to disentangle the influence of item position from the
true relevance of the probability that a user would engage
with an item. During training, the model is conditioned
on positions, while during serving, it becomes position-
independent by setting a default value. To prevent potential
negative effects of correlation with other features, we iso-
late this positional feature from the remaining features by
using a shallow position branch. Additionally, to prevent
overfitting on position information, we apply L2 regular-
ization to the position embeddings. Figure 3b illustrates
the position embedding weights for each position based on

the regularization applied. Higher weights indicate greater
overfitting to position information during training. Adding
the position branch did not significantly change the training
dynamics. It slightly increased the loss, but the number of
epochs required to reach saturation remained the same.

During the offline evaluation, we use inverse-propensity-
weighted NDCG to measure relevance and an average rec-
ommendation popularity metric to detect improvements in
popularity skew. In the online experiment, we also measure
the effective catalog size. The main metrics are described as
follows:

• Recall@k [28]: Proportion of all relevant items
within top-k items.

• Inverse Propensity Score weighted NDCG (IPS-
NDCG@k) [7]: Assesses ranking effectiveness by
considering the position of relevant items within
the top-k list. All attributed items are considered as
relevant and their relevance is weighted based on in-
verse propensity scores. The propensities were mod-
eled as Eq. (3), and their severity 𝛽 was estimated
using the Expectation-Maximization algorithm [29].
It is essentially a correction for bias in Eq. (5).

• Average Recommendation Popularity within top k
items (ARP@k) [30]: Measures the average popu-
larity of recommended items in each list. For any
item in the list, popularity is computed by the num-
ber of interactions accumulated in the preceding
days. A higher ARP indicates a greater propensity
for popular items within the recommendations.

• Effective Catalog Size (ECS@X) [31]: Measures the
share of items that constitute X% of all interactions
aiming at describing the distribution of interactions.

5.1. Offline experiments
We offline evaluate the model on a holdout set containing in-
stances (catalog sessions) from the subsequent day, ensuring
that the evaluation data remains unseen during the training
phase. Table 1 presents the results of a grid search for L2
regularization, identifying the best model for further online
experiments with an L2 value of 0.001. After tuning the
regularization, the offline evaluation showed no statistically
significant improvement in IPS-NDCG (relevance), but did
demonstrate a notable improvement of -4.34% in ARP, with
a statistically significant difference (p-value < 0.05). Further
adjustments in either direction did not improve the results.



Additionally, we included the performance of random and
popularity-based baselines.

Table 1
Results of grid search for L2 regularization compared to the base-
line model without position-aware learning. Best results for each
metric are highlighted with an underscore.

Model Recall@6 ARP@6 IPS-NDCG@6

L2 = 0.001 -0.15% -4.34% 0.16%
L2 = 0.0001 -0.97% -8.66% -1.43%
L2 = 0.00001 -1.64% -14.68% -2.70%

Popularity -28.94% 129.10% -14.78%
Random -49.51% -48.19% -27.11%

5.2. Online experiment
We conducted an online A/B test on the ranking use case,
where we allocated equal traffic splits among variants over
several weeks to achieve the minimum detectable effect for
the success KPI, with a p-value < 0.05. The findings from
offline experiments were consistent with the outcomes of
the A/B test:

• No statistically significant changes in the main KPIs,
customer engagement and financial metrics, or ei-
ther of the guardrail KPIs: net merchandise value
after return per user and discovery return days per
user.

• Decrease (i.e. improvement) in the popularity metric
by 5.7% in ARP@6.

• Increase (i.e. improvement) in the catalog items uti-
lization by 3.1% in ECS@10.

The results are further detailed in Table 2 and Table 3.

Table 2
The relative change of the average recommendation popularity
(ARP@k).

k top-6 top-12 top-24 top-84

ARP -5.7% -5.4% -4.9% -2.9%

The experiments demonstrate that position debiasing can
effectively spread visibility and interactions more evenly
across the assortment, maintaining user engagement and
financial metrics even when the strength of the position
bias is not sufficient to impact relevance significantly. This
makes the ranking fairer and helps attract more partners or
content providers, benefiting the customers and the business
in the long term.

At last, following the deployment of the debiased model,
we calculated the skew in the popularity of items as the rela-
tive change between the distribution parameters before and
after the model rollout, as defined in the previous section.
We approximated the distributions using exponential dis-
tribution with parameters, determined through maximum
likelihood distribution fitting. The rollout of the debiased
model resulted in a 2.5% reduction in skew, indicating a shift
towards a more balanced distribution across items. It’s im-
portant to note that this comparison in skew is not rigorous
due to inherent daily variations in factors such as user traffic
patterns, behavior distribution, introduction of new items,
and other sources of randomness. As a result, it serves as a
supplementary metric to the main KPIs.

6. Conclusion
The paper has demonstrated that debiasing can spread visi-
bility and interactions more evenly across the assortment
without hurting user engagement and financial metrics.
This makes the ranking fairer and helps attract more part-
ners or content providers, benefiting the customers and the
business in the long term. We have provided a theoretical
explanation of how the feedback loop, influenced by posi-
tion bias, impacts popularity. Through experiments on our
e-commerce platform, we have showcased these findings.
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