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Abstract
The mobile gaming industry, particularly the free-to-play sector, has been around for more than a decade, yet it still experiences rapid
growth. The concept of games-as-service requires game developers to pay much more attention to recommendations of content in their
games. With recommender systems (RS), the inevitable problem of bias in the data comes hand in hand. A lot of research has been
done on the case of bias in RS for online retail or services, but much less is available for the specific case of the game industry. Also,
in previous works, various debiasing techniques were tested on explicit feedback datasets, while it is much more common in mobile
gaming data to only have implicit feedback. This case study aims to identify and categorize potential bias within datasets specific to
model-based recommendations in mobile games, review debiasing techniques in the existing literature, and assess their effectiveness on
real-world data gathered through implicit feedback. The effectiveness of these methods is then evaluated based on their debiasing
quality, data requirements, and computational demands.
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1. Introduction
In the context of mobile gaming, delivery of content to play-
ers through recommendations plays an important role. It
could include elements such as, for example, in-game store
products or certain parts of content. However, RSs used
within this context are susceptible to bias due to (1) lim-
ited exposure: unlike in webshops (e.g. Amazon), available
placements for sellable products in mobile games are often
limited, and showing one product to a user means that alter-
natives would not be displayed; (2) the common approach of
segmenting content through fixed heuristics before adopting
RS introduces biases in the training data, which influences
the development of these models. Traditionally, at King
we have been addressing these biases by either training
models on biased data, or by establishing holdout groups
of users who would receive random recommendations for
a period of time in order to collect a uniform dataset that
reflects user preference in an unbiased way. Although the
second approach allows the collection of unbiased data, it
could compromise user experience for a segment of players,
and may lead to significant operational costs and poten-
tial revenue losses. In previous studies, researchers have
primarily focused on data derived from explicit feedback,
where users rate items using a numerical scale, and vari-
ous debiasing techniques are tested on this data. However,
within the realm of mobile gaming, obtaining explicit feed-
back affects from user experience, making it challenging to
collect. As an alternative, data is often collected through
implicit feedback [1], where user preferences are inferred
from behaviors such as impressions, purchases, and other
interactions. Given these challenges, our objectives in this
study are: (1) to identify and categorize potential bias within
our datasets; (2) to conduct a review of existing literature
on debiasing techniques and assess their effectiveness on
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publicly available datasets; (3) to adapt and apply debias-
ing strategies, originally developed for explicit feedback
data, to the implicit feedback data specific to King, and (4)
to evaluate and compare the efficacy of different methods
based on the quality of debiasing, data requirements, and
computational complexity.

2. Related work
The existing literature on addressing debiasing techniques in
RS presents a well-structured and categorized list of method-
ologies [2][3]. It suggests that the selection of particular
debiasing techniques should depend on the specific types
of bias present in the data, as well as on the availability of
unbiased data samples. In recommender systems for mobile
games, various types of bias can arise, including but not
limited to selection bias, exposure bias, position bias, and
conformity bias. Some of the relevant methods to debias the
data in these cases could be The Inverse Propensity Scoring
(IPS) [4] method, which deals with selection and exposure
biases by weighting observations inversely to their selection
probability, and does so without need for unbiased data. Yet
the method could potentially result in high variance due
to the challenges in accurately estimating propensities. Po-
tential solutions to the high variance issue of IPS method
include, for example, using Doubly Robust (DR) learning
[5] that introduces a novel approach to loss functions as
a combination of IPS-based models with imputation-based
models. The combination of two models assures doubly
robustness property when either of the two components
(propensity estimation or imputed data) remains accurate.
This method, though, relies on having an unbiased data
sample to work. Another option is model-agnostic and bias-
agnostic solutions like AutoDebias [6], which are based on
meta-learning to dynamically assign weights within the RS,
aiming to neutralize biases across the board. A potential
benefit of such solution is that it doesn’t require knowing the
types of bias present in the data, but as a downside, it also
relies on randomized samples. In addition, the process of fit-
ting multiple models makes training more computationally
demanding. Despite the advances and variety of available
debiasing techniques, applying Recommendation Systems
to mobile gaming content remains a relatively untapped
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Figure 1: Examples of content placements in Candy Crush Soda
Saga (left) and Candy Crush Saga (right), highlighting biases:
selection bias with a prominently placed product (left) and ex-
posure bias with limited visibility, where products are hidden
behind the ”More Offers” button (right).

area, with most of the publications focusing on building
recommendations [7] [8] [9], and not on issues of imbalance
and bias. Previous efforts at King introduced DFSNet [10],
an end-to-end model-specific debiasing technique that en-
ables training an in-game recommender on an imbalanced
dataset without randomized data. This work aims to en-
rich King’s debiasing toolkit by exploring model-agnostic
solutions, specifically focusing on the challenges of content
recommendations within mobile games. However, the archi-
tecture of DFSNet is complex, involving multiple modules,
which can make the implementation and maintenance chal-
lenging. Moreover, it requires constant feedback loops over
time and the model’s performance is highly dependent on
the quality and recency of the training data.

3. Methodology

3.1. Datasets
Our study utilized two public datasets (COAT[4], ya-
hooR3![13]) to validate theoretical results and three pro-
prietary datasets from King (Set A, Set B, Set C) that are
focused on user-item interactions in game shops within
Match-3 Game A and Match-3 Game B (Fig.1). The sizes of
each dataset, along with their respective feedback types, are
provided in Table 1. We aimed to observe the effectiveness
of different techniques on datasets collected with explicit
feedback (public datasets), and those with implicit feedback
(King’s datasets). Explicit feedback is typically collected by
asking users to rate items on a numerical scale, for example
from 1 to 5, where 1 indicates disinterest, 2 signifies dissat-
isfaction, and 5 shows a preference. In contrast, Implicit
feedback (as in the proprietary datasets) involves a binary
response from users: purchase or non-purchase. This setup
makes it harder to accurately measure user preferences. As
discussed in the Introduction, mobile games often have lim-
ited space for displaying sellable products, which is the case
for all three proprietary datasets. This limitation leads to ex-
posure bias in the data. Additionally, placement of different
products within the game shop creates positional bias, with

Table 1
The sizes and feedback types of all datasets used in this study.
A key difference is that the open datasets (COAT and YahooR3!)
provide explicit feedback, while the proprietary datasets (A, B,
and C) offer only implicit feedback (purchase/no purchase). Set A,
a proprietary dataset, lacks randomized data, limiting debiasing
options.

Dataset Biased samples Unbiased samples Feedback type

COAT 311k 54k Explicit
yahooR3! 12.5k 75k Explicit
Set A 47.6k - Implicit
Set B 100k 218k Implicit
Set C 980k 1.2mln Implicit

some items displayed in more appealing placements while
others are not visible on the first screen (Fig. 1). Another
bias, selection bias, arises from imbalanced product impres-
sions, where certain items—such as conversion offers—are
shown to users more frequently, resulting in significantly
higher exposure for those items.

3.2. Selection of Debiasing techniques
The primary reasoning for the selection of debiasing tech-
niques for this study was based in a literature review, and
included the applicability of each method to the specific
biases present in the propreitery datasets—namely, selec-
tion bias, exposure bias, and position bias. Further, it was
imperative to evaluate techniques across two dimensions:
those that require randomized datasets and those that do
not, as well as to examine methodologies that are agnostic
to any particular type of bias. Given the identified biases in
the datasets, we adopted several debiasing techniques: (1)
Matrix Factorisation (MF) as a baseline model, Inverse
Propensity Scoring (IPS), a method that does not require
randomized data collection and primarily addresses selec-
tion and exposure biases. (2) Doubly Robust learning,
that tackles the same biases but, unlike IPS, requires a ran-
domized dataset. And (3) AutoDebias (DR), a bias-agnostic
technique that also needs randomized data. Each method
was tested across all datasets to evaluate model performance
and complexity. We initially applied MF to biased dataset𝐷𝑇
to establish metrics for comparison, we denote our baseline
model as MF(biased), then compared these outcomes with
the results from the debiasing methods.

3.3. Evaluation metrics
For models’ evaluation, we use metrics that assess both
predictive power of the models (RMSE and AUC), as well as
quality of ranking (NDCG@5) and inequality and diversity
in the recommendations (Gini index and Entropy):

• NDCG@5 assesses the model’s ability to rank rele-
vant items in the recommendation list:

NDCG@k =
DCG@k
IDCG@k

, DCG@k =
𝑘
∑
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
log2(𝑖 + 1)

,

where IDCG@k is the ideal DCG@k and 𝑟𝑒𝑙𝑖 repre-
sents items ordered by their relevance up to position
k.



Figure 2: Debiasing results on open datasets (COAT and yahooR3!). The graphs show the percentage change in metrics
(AUC, RMSE, NDCG@5, Gini, and Entropy) for various models relative to MF(biased). AUC is plotted against other metrics to
demonstrate the trade-off between diversity gains in recommendation systems and potential compromises in predictive power.
Different models are represented by colors, training times are indicated by point sizes, and dataset types are distinguished by
shapes.

Table 2
Percentage improvement of various models compared to MF(biased) across open datasets. The best results for each metric are
highlighted in bold.

Dataset Model RMSE AUC NDCG Gini Entropy Training time (sec)

COAT
IPS -2.53% -0.26% -1.18% 0.62% -0.29% 8.82%
DR 3.86% -1.57% 2.75% -18.88% 6.16% 194.12%
AutoDebias -5.06% 0.39% 3.73% 0.16% 0.00% 767.65%

yahooR3!
IPS -29.70% -0.55% 0.73% -6.33% 0.82% -22.98%
DR -30.39% -0.83% 0.00% 1.22% -0.12% 412.56%
AutoDebias -36.89% 1.79% 20.70% -58.15% 4.26% 3215.87%

• RMSE measures the magnitude of prediction errors
of exact rating predictions:

RMSE =
√

1
|𝑅|

∑
(𝑢,𝑖)∈𝑅

( ̂𝑟𝑢𝑖 − 𝑟𝑢𝑖)2,

where |𝑅| denotes the total number of ratings in the
dataset, ̂𝑟𝑢𝑖 and 𝑟𝑢𝑖 are predicted and true ratings for
all user-item pairs (𝑢, 𝑖).

• AUC reflects how well the model distinguishes be-
tween positive and negative interactions:

AUC =
∑(𝑢,𝑖)∈𝐷+

te
rank𝑢,𝑖 −

(|𝐷+
te|+1)⋅|𝐷+

te|
2

|𝐷+
te| ⋅ (|𝐷te| − |𝐷+

te|)
,

where 𝐷+
te is the number of positive samples in test

set 𝐷te, and 𝑟𝑎𝑛𝑘𝑢,𝑖 denotes the position of a positive
feedback (𝑢, 𝑖). In experimentation, AUC mainly
served as a metric to prevent overfitting and help
fine-tunning in validation phase.

• Gini index measures inequality in the recommen-
dations distribution. The higher coefficient indicates
higher inequality

𝐺 =
∑𝑛

𝑖=1 (2𝑖 − 𝑛 − 1) 𝜙(𝑖)
𝑛 ⋅ ∑𝑛

𝑖=1 𝜙(𝑖)
Where 𝜙𝑖 is the popularity score of the 𝑖-th item, with
the scores 𝜙𝑖 arranged in ascending order (𝜙𝑖 ≤ 𝜙𝑖+1),
and 𝑛 represents the total number of items.

• Entropy measures the diversity in the distribution
of recommended items with higher values indicating
higher diversity.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
𝑛
∑
𝑖=1

𝑝𝑖 log(𝑝𝑖),

where 𝑛 is a total number of items u in a dataset and
𝑝𝑖 is a probability of an item being recommended.

Additionally, we include Training Time, defined as the
time required for each model to reach saturation, measured
in seconds. This metric provides insights into the compu-
tational complexity and the resources required by different
methodologies.

4. Experimentation
We regard biased data as training set, 𝐷𝑇. When it comes
to randomized data, following the strategies as mentioned
in [11], we split it into 3 parts: 5% for randomised set 𝐷𝑈
to help training as required by DR and Autodebias, 5% for
validation set 𝐷𝑉 to tune hyper-parameters and incur early-
stopping mechanism to prevent overfitting, the rest 90% for
test set 𝐷𝑇 𝑒 to evaluate the model. For conformity reasons,
the data split strategy mentioned above is applied to both
open datasets and proprietary datasets. For this project, we
deploy a training pipeline on Vertex AI [12], integrating
components such as data transformation powered by Big-
Query, model training and evaluation, as well as experiment
tracking. The training pipeline retrieves data from the data
warehouse to train models and produces artifacts that are
later integrated into an experiment tracker. By adopting
this artifact-based approach, we address the inherent chal-
lenge of reproducibility in operationalizing ML projects, as
it provides all the necessary components to reproduce ex-
periments. Each experiment is run up to 10 times on Vertex
AI with the same hyper parameters, but varying random
seeds to get estimation on the variability of the results.
A pipeline plays a pivotal role in enhancing machine

learning processes within the industry by automating each
step from data fetching to model evaluation. For this project,
a training pipeline was implemented on Vertex AI, encom-
passing components such as data transformation utilizing
BigQuery, model training, model evaluation, and experi-
ment tracking. All the experiments were conducted within



Figure 3: Debiasing results on internal datasets (Set A, Set B and Set C). The graphs show the percentage change in metrics
(AUC, RMSE, NDCG@5, Gini, and Entropy) for various models relative to MF(biased). AUC is plotted against other metrics to
demonstrate the trade-off between diversity gains in recommendation systems and potential compromises in predictive power.
Different models are represented by colors, training times are indicated by point sizes, and dataset types are distinguished by
shapes.

Table 3
Percentage improvement of various models compared to MF(biased) across internal datasets. The best results for each metric
are highlighted in bold.

Dataset Model RMSE AUC NDCG Gini Entropy Training time (sec)

Set A IPS 20.95% -0.97% -1.53% -3.06% 0.41% -4.72%

Set B
IPS -8.61% 3.18% -0.14% 3.29% -0.02% -12.23%
DR -45.40% 7.07% 0.68% -0.54% 0.00% 386.46%
AutoDebias -26.46% -1.25% -0.48% 3.26% -0.02% -63.26%

Set C
IPS 39.01% -23.46% -29.36% -9.47% 9.04% -15.50%
DR 7.74% -13.76% -28.44% -5.36% 5.47% 14.74%
AutoDebias 64.50% 2.61% -0.01% 1.72% -2.47% 233.93%

this framework, ensuring consistency, efficiency, and preci-
sion throughout the development lifecycle.

5. Experimentation results
The absolute results of all experiments, including confi-
dence intervals, are presented in Table 4. In this section,
we report the percentage improvement of various debias-
ing techniques compared to the baseline model, which was
trained on biased data (MF(biased) model).

5.1. Open Datasets
For the COAT dataset, the results show varying degrees of
improvement across different metrics (Table 2). The top per-
forming method (AutoDebias), exhibited the best improve-
ments in RMSE (-5.06%), AUC (0.39%) and NGCG@5 (3.73%)
with low changes in Gini (0.16%) and no improvement in En-
tropy. DR also provided higher gains in NDCG@5 (2.75%),
and performed better in Gini (-18.88%) and Entropy (6.16%),
but at a cost of higher RMSE (3.86%) and lower AUC (-1.57%).
While AutoDebias outperformed other techniques when it
comes to improving predictive power of the model (AUC,
RMSE), it was not very efficient in terms of Gini and En-
tropy, and has a significantly higher computational cost.
This highlights a trade-off between improved accuracy and
increased resource requirements.
For YahooR3! dataset, again, AutoDebias results in

the highest improvement in RMSE (-36.89%), AUC (1.79%),
NDCG@5 (20.70%), as well as Gini (-58.15%) and Entropy
(4.26%), but did so also with dramatically increased compu-
tational cost (3216%). IPS provides a balanced performance
with improvements in RMSE (-29.70%) and Entropy (0.82%)
at a lower computational cost (-22.98%), making it a practical
choice for resource-constrained environments.

5.2. Internal Datasets
For the internal datasets, the results are less consistent
across the datasets and debiasing techniques (Table 3). This
may be due to the fact that internal datasets employed im-
plicit feedback when collecting data, where user preferences
are inferred from their impression and purchase records.
This can introduce biases due to the lack of negative sam-
ples and overrepresentation of user interactions, potentially
skewing the models towards popular items.

Set A is a relatively small dataset (Table 1), and the lack of
randomized data limits our options to only using IPS. As a re-
sult, some metrics, such as RMSE and AUC, actually worsen
(Table 3), which we might accept as a trade-off to achieve
better balance in recommendations. However, NDCG@5
also does not improve. On the positive side, IPS enhances
diversity metrics, with Gini improving by 3.06% and En-
tropy by 0.41%, while also reducing computational cost by
4.27%. Overall, applying this method increases model diver-
sity with comparable training time, but comes at the cost of
accuracy.
Set B demonstrates substantial improvements with DR,

including a 45.40% reduction in RMSE, a 7.07% increase in
AUC, and gains in NDCG@5 (0.68%) and Gini (-0.54%), mak-
ing the model perform better in both accuracy and diversity.
However, this comes at a significant computational cost,
increasing training time by 386.46%. Given the total number
of samples being 318k, this leads to a considerably longer
training process. AutoDebias ranks second in RMSE im-
provement (-26.46%), while IPS shows a positive gain in
AUC (3.18%). However, DR is the only method that consis-
tently improves outcomes of NDCG@5, Gini, and Entropy.
For Set C, the largest dataset with nearly 2.2 million

samples, AutoDebias achieves the highest improvement
in AUC (2.61%) and maintains stable NDCG@5. However,
it underperforms compared to the baseline and other tech-



Table 4
Performance metrics across different models and datasets, with 95% confidence intervals.

Dataset Model RMSE AUC NDCG@5 Gini Entropy Training time (sec)

COAT

MF (uniform) 1.00 ± 0.02 0.54 ± 0.01 0.36 ± 0.02 0.64 ± 0.01 4.91 ± 0.02 2.00 ± 1.60
MF (biased) 0.75 ± 0.01 0.77 ± 0.01 0.51 ± 0.01 0.64 ± 0.04 4.9 ± 0.11 3.40 ± 1.00
IPS 0.73 ± 0.01 0.76 ± 0.01 0.50 ± 0.01 0.65 ± 0.04 4.89 ± 0.10 3.70 ± 2.30
DR 0.78 ± 0.02 0.75 ± 0.01 0.52 ± 0.01 0.52 ± 0.01 5.20 ± 0.03 10.00 ± 6.90
AutoDebias 0.71 ± 0.01 0.77 ± 0.02 0.53 ± 0.01 0.64 ± 0.06 4.90 ± 0.14 29.50 ± 9.6

yahooR3!

MF (uniform) 0.73 ± 0.01 0.57 ± 0.01 0.43 ± 0.01 0.41 ± 0.01 6.58 ± 0.01 4.80 ± 1.20
MF (biased) 0.86 ± 0.01 0.73 ± 0.01 0.55 ± 0.01 0.41 ± 0.01 6.58 ± 0.01 60.50 ± 12.20
IPS 0.61 ± 0.01 0.72 ± 0.01 0.55 ± 0.01 0.39 ± 0.01 6.63 ± 0.02 46.60 ± 16.10
DR 0.60 ± 0.04 0.72 ± 0.01 0.55 ± 0.01 0.42 ± 0.01 6.57 ± 0.01 310.10 ± 54.60
AutoDebias 0.54 ± 0.01 0.74 ± 0.01 0.66 ± 0.01 0.17 ± 0.01 6.86 ± 0.01 2006.10 ± 1541.00

Set A
MF (biased) 0.82 ± 0.07 0.54 ± 0.02 0.56 ± 0.02 0.36 ± 0.01 2.83 ± 0.01 694.30 ± 163.30
IPS 0.99 ± 0.02 0.54 ± 0.01 0.55 ± 0.01 0.35 ± 0.02 2.84 ± 0.02 661.5 ± 85.9

Set B

MF (uniform) 0.61 ± 0.00 0.92 ± 0.01 0.97 ± 0.00 0.10 ± 0.00 1.77 ± 0.00 2891.00 ± 126.90
MF (biased) 0.81 ± 0.06 0.89 ± 0.00 0.97 ± 0.00 0.10 ± 0.00 1.80 ± 0.00 2123.90 ± 441.3
IPS 0.74 ± 0.14 0.92 ± 0.01 0.97 ± 0.00 0.10 ± 0.00 1.77 ± 0.00 1864.10 ± 86.70
DR 0.44 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.10 ± 0.01 1.77 ± 0.00 10332.00 ± 2486.30
AutoDebias 0.56 ± 0.02 0.88 ± 0.01 0.96 ± 0.01 0.10 ± 0.00 1.77 ± 0.00 780.30 ± 153.70

Set C

MF (uniform) 0.92 ± 0.04 0.25 ± 0.02 0.07 ± 0.01 0.52 ± 0.01 2.52 ± 0.02 775.90 ± 265.00
MF (biased) 0.62 ± 0.01 0.84 ± 0.01 0.80 ± 0.01 0.65 ± 0.01 2.18 ± 0.02 650.80 ± 114.70
IPS 0.86 ± 0.06 0.64 ± 0.05 0.56 ± 0.08 0.59 ± 0.01 2.37 ± 0.02 549.90 ± 128.30
DR 0.67 ± 0.02 0.72 ± 0.05 0.57 ± 0.09 0.61 ± 0.02 2.29 ± 0.05 746.70 ± 140.00
AutoDebias 1.02 ± 0.03 0.86 ± 0.04 0.78 ± 0.02 0.66 ± 0.02 2.12 ± 0.04 2173.20 ± 1826.10

niques in RMSE, Gini, Entropy, and training time, which
increases significantly by 233.93%. IPS, on the other hand,
delivers poor results in RMSE (39.01%), AUC (-23.46%), and
NDCG@5 (-29.36%), but excels in Gini (-9.47%) and Entropy
(9.04%) without adding to the training time.

6. Conclusion and Future work
Implementing more accurate and less biased models is cru-
cial to avoiding the perpetuation of negative feedback loops
and the overexposure of certain items caused by segmen-
tation heuristics in retraining data. This approach also
enhances data quality, which is essential for fine-tuning
models. A recommender system that diversifies content
exposure improves user experience by ensuring that vis-
ibility is not limited to only the most popular items. In
our experiments, Inverse Propensity Scoring (IPS) stands
out for its simplicity and model-agnostic nature, requiring
no randomized data collection and fewer training epochs.
However, the improvements it offers are somewhat limited.
AutoDebias excels in improving accuracy metrics, but at
substantially higher computational costs and sometimes
poorer performance in Gini and Entropy. DR still offers
strong improvement in observed metrics, including Gini
and Entropy. So while each debiasing method has its own
trade-offs, significant performance gains still depend on the
challenging task of collecting randomized datasets, as high-
lighted in our introduction. Potential future work includes:
(1) adopting online reinforcement learning approach such
as Multi-Armed Bandit (MAB) [14, 15, 16] for data collec-
tion, including contextual bandit models, (2) developing
and testing combined debiasing models which can com-
bine strengths of different debiasing techniques to mitigate
various biases simultaneously while optimizing for compu-
tational efficiency.
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