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Abstract
Improving recommendation systems (RS) can greatly enhance the user experience across many domains, such as social media. Many
RS utilize embedding-based retrieval (EBR) approaches to retrieve candidates for recommendation. In an EBR system, the embedding
quality is key. According to recent literature, self-supervised multitask learning (SSMTL) has showed strong performance on academic
benchmarks in embedding learning and resulted in an overall improvement in multiple downstream tasks, demonstrating a larger
resilience to the adverse conditions between each downstream task and thereby increased robustness and task generalization ability
through the training objective. However, whether or not the success of SSMTL in academia as a robust training objectives translates to
large-scale (i.e., over hundreds of million users and interactions in-between) industrial RS still requires verification. Simply adopting
academic setups in industrial RS might entail two issues. Firstly, many self-supervised objectives require data augmentations (e.g.,
embedding masking/corruption) over a large portion of users and items, which is prohibitively expensive in industrial RS. Furthermore,
some self-supervised objectives might not align with the recommendation task, which might lead to redundant computational overheads
or negative transfer. In light of these two challenges, we evaluate using a robust training objective, specifically SSMTL, through a
large-scale friend recommendation system on a social media platform in the tech sector, identifying whether this increase in robustness
can work at scale in enhancing retrieval in the production setting. Through online A/B testing with SSMTL-based EBR, we observe
statistically significant increases in key metrics in the friend recommendations, with up to 5.45% improvements in new friends made
and 1.91% improvements in new friends made with cold-start users. Besides, with a dedicated case study, the benefits of robust training
objectives are demonstrated through SSMTL on large-scale graphs with gains in both retrieval and end-to-end friend recommendation.

1. Introduction
Recommendation systems (RS) have become a crucial com-
ponent for user experience [1, 2]. Most industrial RS ex-
plore a two-stage process [3]. During the first stage (i.e., the
retrieval phase), among hundreds of millions of candidate
users/items, the RS usually utilizes several models optimized
for recall to select a small set of candidate users/items (e.g.,
1,000 candidates). Whereas during the second stage (i.e., the
ranking phase), within the candidate subset, the RS can ex-
plore complicated expensive models that are optimized for
precision to select top 𝐾 candidates for the final recommen-
dation. Such two-stage process enables recommendation
over large quantities of possible users/items and allows for
greater flexibility towards key recommendation metrics.

In this two-stage scheme, the retrieval stage is especially
important, as it acts as the bottleneck for possible candidates
provided to the ranker in the second stage. One common ap-
proach [4, 5] for the retrieval step is to leverage embedding-
based retrieval (EBR). Specifically, EBR learns embeddings
for all users and items as vectors in a low-dimensional latent
space. These embeddings are learned in a way such that
the distance between them is reflective of their similarity,
with more similar items being closer together in the latent
space. As a result, candidates can be retrieved through a
nearest-neighbor search across the latent space. In practice,
this is done using an approximate nearest neighbor methods
optimized for large-scale retrieval, such as FAISS [6] and
HNSW [7].

Many methods [8, 9, 10, 11] have been proposed for gen-
erating high-quality embeddings for EBR, which lead to
more relevant candidates and improved metrics after the
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end-to-end recommendation. In this work, we specifically
focus on the friend recommendation EBR setting, where
vast amounts of topological information relating users are
readily available. Recent works [12, 13, 14] have shown
that including this relational information can improve the
embedding quality. The relational information is commonly
modeled with graph neural networks (GNNs), producing
embeddings that leverage neighbor information in graphs,
such as co-friend relationships. For graph-aware EBR in
particular, link prediction has seen success for generating
high-quality embeddings [15], where we look to predict
the presence of an edge between a query node and set of
candidate nodes.

While link prediction is effective in learning nuanced sim-
ilarities and distinctions between candidates, there are sev-
eral other self-supervised graph learning philosophies that
can provide high-quality embeddings, such as mutual infor-
mation maximization [16], generative reconstruction [17],
or whitening decorrelation [18]. Based on these general
philosophies, many graph-based approaches have been pro-
posed and used to learning embeddings directly, achieving
desirable properties of embeddings without requiring ex-
plicit labels. Recently, Ju et al. [19] evaluated combining
these self-supervised learning approaches with link predic-
tion in a multitask (MTL) setting, demonstrating a larger re-
silience to the adverse conditions between each downstream
task and thereby increased robustness and generalization
ability through the training objective

However, whether or not using SSMTL in academia as
a robust training objective translates to large-scale (i.e.,
over hundreds of millions of users and interactions in-
between) industrial RSs still requires verification. Simply
adopting academic setups in industrial RSs might result
in several issues. Firstly, many self-supervised objectives
require data augmentations (e.g., embedding masking/cor-
ruption) over a large portion of users and items, which
is prohibitively expensive in industrial RSs. Furthermore,
some self-supervised objectives might not align with the rec-
ommendation task, which might lead to redundant compu-
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Figure 1: In our proposed SSMTL framework, we combine the CCA and MAE SSL methods with the retrieval task in our embedding
generation scheme for EBR. CCA looks to maximize the correlation of two augmented views of the input subgraph while decorrelating
features of a single view. MAE seeks to reconstruct the query user nodes after being propagated through the GNN encoder backbone.
Finally, the retrieval task seeks to predict which candidates share a link with the query user using a categorical cross entropy loss. The
loss of each subtask is weighted and summed to measure the final loss. Embeddings can be generated through the GNN encoder for EBR.

tational overheads or negative transfer [20], a phenomenon
where performance can worsen as a result of the complexity
and potentially opposing nature of the various tasks.

In this work, we investigate whether robust SSMTL train-
ing objectives are able to improve the link prediction re-
trieval performance on large-scale graphs with over hun-
dreds of millions of nodes and edges. Specifically, we look to
find what combination of SSL approaches can improve over-
all robustness and thereby augment retrieval through com-
plementary yet disjoint information. In our experiments,
we find two SSL approaches, based on philosophies from
whitening decorrelation (e.g., Canonical Correlation Anal-
ysis [21]) and generative reconstruction (e.g., Masked Au-
toencoders [22]), that are able to augment the performance
of link prediction without negative transfer. We deploy
the proposed framework on an industrial large-scale friend
recommendation system to a community of hundreds of
millions of users. In the online A/B testing, we observe
significant improvements in key metrics like new friends
made, especially with cold-start users on the platform. Our
contributions are summarized as follows:

• We demonstrate the effectiveness of robust training
objectives such as SSMTL in a large-scale industrial
recommendation system.

• We conduct an online study of SSMTL on a massive
real-world recommendation system, and observe a
statistically significant increase in key metrics, with
up to 5.45% improvements in new friends made
and 1.91% improvements in new friends made with
cold-start users.

2. Background

2.1. Graph-Aware Embedding-based
Retrieval

In a two-stage recommendation system with a retrieval then
ranking phase, the retrieval phase plays an important role fil-
tering out the most relevant candidates to lighten the load of
the ranker. Since the ranking result is largely dependent on
items retrieved in the retrieval phase, a good quality retrieval
model can drastically improve the final ranking. Embedding
based retrieval (EBR) is a method that’s recently adopted
and deployed in many content, product, and friend recom-
mendation systems[4, 23, 24, 12], and proved to achieve
superior results. EBR transform users and items into em-
beddings, changing the retrieval problem into a nearest-
neighbor search problem in a low-dimensional latent space.
These embeddings can be determined in advance and in-
dexed using an approximate nearest neighbor search such
as FAISS [6] and HNSW [7] in order to retrieve the top-𝑘
most relevant items efficiently at serving.

When applying EBR to RS problems, the quality of em-
beddings is of upmost importance. In this paper, we use a
friend recommendation system as our subject. In scenarios
like friend recommendation where vast amounts of topolog-
ical information relating users and items is readily available,
these embeddings can be augmented with GNNs. Previous
work showed that EBR for friend recommendation systems
see benefits leveraging graph-aware embeddings[12]. In
this setting, nodes would contain individual user features
while edges map to user-user interactions. This approach
compliments commonly used graph traversal approaches
(eg. friend-of-friend (FoF) [25]), allowing for retrieval of
candidates from any number of hops away from the target.

Here we describe GNNs for generating graph-aware em-
beddings for EBR. GNNs have demonstrated state-of-the-art
performance in many problems containing rich topological
information within the graph data [26], such as recommen-
dation and forecasting. Formally, we define 𝐺 = (𝒱, ℰ , 𝑋),



where 𝒱 is the set of 𝑛 nodes (|𝒱| = 𝑛), ℰ is the set of
edges (ℰ ∈ 𝒱 ⊆ 𝒱), and 𝑋 is a feature matrix of dimension
𝑑 where 𝑋 ∈ R𝑛×𝑑. Many modern GNNs also employ
a message-passing structure, consisting of an aggregation
(AGG) and update (UPD) function. The goal of this paradigm
is for nodes to receive information from their neighbors,
collecting messages using its AGG function before updating
their own messages with the UPD function, both of which
are learnable and permutation-invariant. For some node 𝑢
at layer 𝑘, the next message-passing layer can be written as

h(𝑘+1)
𝑢 = UPD(𝑘)

(︁
h(𝑘)
𝑢 ,AGG(𝑘)

(︁
{h(𝑘)

𝑣 , ∀𝑣 ∈ 𝒩 (𝑢)}
)︁)︁
(1)

where 𝒩 (𝑢) is the neighborhood nodes of node 𝑢. Dif-
ferent message-passing GNN models use different combi-
nations of AGG and UPD functions. An example of a more
complex GNN, Graph-attention networks (GATs) [27], use
an attention mechanism for each pair of nodes 𝑖 and 𝑗

𝛼𝑖𝑗 = softmax𝑗 (𝑓att (Wℎ𝑖,Wℎ𝑗)) (2)

where W is a linear transformation applied to every node
and 𝑓att is the attention function parameterized by a weight
vector and a non-linearity function. The AGG function is
then a attention-weighted sum of its neighbors features
while the UPD function is implicitly defined in W and the
non-linearity function. Typically, to generate graph-aware
embeddings from GNNs, a margin based ranking loss[13, 12]
or contrastive[28] loss can be used, to encourage items that
are closer in the graph to be closer in the embedding space.

2.2. Multitask Learning
Multitask learning (MTL) is an approach in machine learn-
ing where a model is trained simultaneously on several tasks.
MTL has been extensively explored in recommendation as a
way to improve key metrics [29, 30, 31, 32]. Thus, the core
idea behind multitask learning is to improve the robustness
of the model by leveraging the domain-specific information
contained in the training signals of related tasks [33, 34].
Hard parameter sharing, one of the most fundamental forms
of MTL, uses a shared representation which then branches
into multiple heads capable of learning task-specific infor-
mation [35, 36, 37].

For graph-aware EBR in particular, self-supervised multi-
task learning (SSMTL) has been proposed as a new approach
to MTL, optimizing the embeddings directly to achieve de-
sirable embedding properties without the use of positive
or negative labels. In this setting, we combine several self-
supervised learning (SSL) methods with a downstream re-
trieval task to learn both direct and indirect embedding fea-
tures. Recent work [19] has shown that SSMTL can lead to
improved task generalization and embedding quality on sev-
eral academic benchmarks through the increasingly robust
training objective. However, many of the SSL approaches
used are constrained to the assumption that global graph in-
formation can be inferred within the graph structure. This is
not valid in the large-scale recommendation setting, where
graphs are constrained to some 𝐾-hop around a query user
in order to fit in memory. As a result, many of these SSL
methods may lead to negative transfer due to SSL task con-
flict with the target link prediction task, and there remains
work to be done to investigate which methods perform best
in this large-scale setting.

3. Self-Supervised Multitask
Learning for EBR

In the following sections, we describe details of the SSL
methods used in our SSMTL approach, our experiment set
up and results, highlighting the benefits and impact of in-
cluding SSMTL based embedding in EBR for large-scale
industrial recommendation systems.

3.1. Self-Supervised Learning Methods
We identify two self-supervised learning approaches that
are scalable and lead to improvements in the large-scale
recommendation setting through a more robust training
objective.

Canonical Correlation Analysis. Based on work from
[21], Canonical Correlation Analysis (CCA) deploys a non-
contrastive, non-discriminitive SSL method to train the
GNN. The self-supervised training objective is described in
Equation 3. First, given a subgraph with 𝑛 nodes, two aug-
mented views of the subgraph are created and fed through
the GNN, producing ZA and ZB where ZA,ZB ∈ R𝑛×𝑘 .
Each of these embeddings are fed through a task-specific
head, and then are normalized so that each feature has 0
mean and 1√

𝑛
standard deviation, resulting in Z̃A and Z̃B.

The loss is then computed from Equation 3. The first term
in the equation seeks to minimize the distance of the same
nodes between the two views. The second term enforces
that the feature-wise covariance of all nodes is equal to the
identity matrix.

ℒCCA =
⃦⃦⃦
Z̃𝐴 − Z̃𝐵

⃦⃦⃦2
𝐹
+𝜆

(︂⃦⃦⃦
Z̃

𝑇
𝐴Z̃𝐴 − I

⃦⃦⃦2
𝐹
+
⃦⃦⃦
Z̃

𝑇
𝐵Z̃𝐵 − I

⃦⃦⃦2
𝐹

)︂
(3)

Masked Autoencoders. Based on work from [22], this
approach leverages a graph masked autoencoder (MAE)
that focuses on feature reconstruction. First, an augmented
view of the subgraph is created and the features of the query
users are masked out. This augmented graph is then fed
through the GNN and a task-specific head. The features of
the query users are then re-masked and passed through a
graph convolution layer. As described in Equation 4, for
all masked nodes 𝒱 , the final loss is equal to the average
of the scaled cosine error between the original features X
and generated features Z. This approach only relies on the
local neighborhood surrounding the query node, making it
a good option for large-scale SSMTL.

ℒMAE =
1

|𝒱|
∑︁
𝑣𝑖∈𝒱

(︂
1− x𝑇

𝑖 z𝑖
‖x𝑖‖ · ‖z𝑖‖

)︂𝑦

, 𝑦 ≥ 1 (4)

We note that these two approaches both utilize non-
contrastive methods. While experimenting with different
SSL tasks, we find that contrastive SSL approaches do not
perform very well in the production setting due to their
assumption that global information is readily available in
the original and augmented graphs. This is not necessarily
true for large-scale recommendation, where subgraphs are
constrained to the K-hop neighborhood surrounding each
query node.



3.2. Experimental Setup
3.2.1. Problem Breakdown

We evaluate the SSMTL as a robust training objective on an
industrial friend recommendation system with hundreds of
millions of users and connections. To handle this scale of
training, we sample subgraphs containing the 𝑘-hop neigh-
borhood around each query user. Following training, the
embeddings for EBR can be via propagation through the
encoder backbone.

3.2.2. Retrieval Baseline

The baseline model uses a supervised single-task setup for
embedding-based retrieval. We use a GAT as the GNN en-
coder backbone to obtain embeddings for the query user and
each candidate, producing a candidate embedding matrix z.
We can then compute the dot product between the query
user and each candidate and apply Softmax to generate the
logits. We then calculate the Categorical Cross Entropy
Loss with the true labels y across the 𝑁 = 2 classes and 𝑀
candidates, outlined in Equation 5.

ℒretrieval = −
𝑁∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖𝑗 log

(︃
𝑒𝑧𝑖𝑗∑︀𝑀

𝑘=1 𝑒
𝑧𝑖𝑘

)︃
(5)

3.2.3. SSMTL Implementation Details

In our SSMTL approach, we use both CCA and MAE in com-
bination with the retrieval baseline as the training objec-
tives. All three methods share the same GAT GNN backbone.
The augmented views for CCA and MAE occur separately,
with CCA performing edge and feature drop augmentations
while MAE performs edge drop and query node masking.
The task-specific head for CCA is a Linear-ReLU-Linear
block while the task-specific head for MAE is one linear
layer. The final loss with SSMTL is a weighted sum of the
losses.

ℒcombined = 𝛼ℒretrieval + 𝛽ℒCCA + 𝛾ℒMAE (6)

where 𝛼 is the weight for the retrieval loss, 𝛽 is the weight
of the CCA loss, and 𝛾 is the weight of the MAE loss. In
practice, we observed best performance when the retrieval
weight was several orders of magnitude larger than the
other loss weights.

3.3. Results
We evaluated the effectiveness of SSMTL for end-to-end
friend recommendation with online A/B testing. The con-
trol group used candidates retrieved from the production
model trained with retrieval baseline, while the treatment
group instead used candidates retrieved with the new robust
training objective in the SSMTL setting, specifically combin-
ing the previous retrieval loss with whitening decorrelation
and generative reconstruction objectives.

In the A/B experimental results, we saw statistically signif-
icant improvements across several friend recommendation
metrics. Specifically, we observed up to 5.45% improve-
ments in new friends made and +1.91% new friends made
with low-degree users in various markets. Overall, from
these results, we see that SSMTL is able to provide improved
recommendation compared with the single-task setting, in
particular helping with candidate generation for low-degree
users.

4. Conclusion
In this paper, we evaluate the effectiveness of a robust self-
supervised multitask learning objective in embedding-based
retrieval. Through online evaluation, we demonstrate that
self-supervised methods used in a multi task setting are able
to augment the performance of the underlying retrieval task
on the scale of over 800 million nodes and edges, providing
complementary yet disjoint information to enhance the em-
bedding quality. We observe statistically significant gains
in the number of friendships made for both high and low
degree users.
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